Wallops Ushers in a New Age of Space Exploration Pg 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The James Webb Space Telescope
The James Webb Space Telescope Jonathan P. Gardner NASA’s Goddard Space Flight Center http://jwst.nasa.gov Space Science Reviews, 2006, 123/4, 485 1 James Webb Space Telescope Integrated Science Primary Mirror Instrument Module (ISIM) • 6.6m Telescope • Successor to Hubble & Spitzer. • Demonstrator of deployed optics. Secondary • 4 instruments: 0.6 to 28.5 μm Mirror • Passively cooled to < 50 K. • Named for 2nd NASA Administrator 5 Layer Sunshield Spacecraft Bus • Complementary: 30m, ALMA, WFIRST, LSST • NASA + ESA + CSA: 14 countries • Lead: Goddard Space Flight Center • Prime: Northrop Grumman • Operations: STScI • Senior Project Scientist: Nobel Laureate John Mather • Launch date: October 2018 2 NIRCam: NIRSpec Imaging 0.6 – 5.0 µm Broad, med & narrow 10 sq. arcmin FOV 65 mas resolution Coronagraphy NIRCam FGS/NIRISS: NIRSpec: Guiding Multi-object: 10 sq. arcmin Slitless spectroscopy (R~150) IFU: 3x3 arcsec Exoplanet transits (R~750) R~100, R~1000, R~3000 Non-redundant mask MIRI: 5 – 28.5 µm 2 sq. arcmin FOV IFU R~3000 Coronagraphy FGS/NIRISS MIRI 4 Model-Dependent Rule of Thumb: Deep NIR Surveys • Ultra-deep, deep and deep-wide imaging surveys: • JWST will do at z~12 what HST is doing at z~6 • JWST will do at z~17 what HST is doing at z~9 CANDELS UDF COSMOS 5 15 Angular Resolution 2 mm 10 5 per 1 kpc 3.6 mm NIRCam Pixels 0 0 10 20 Redshift NIRCam resolution JWST + NIRCam have enough resolution to study the structure of distant galaxies. The plots at right show the two-pixel resolution at 2 microns. -
Nasa Langley Research Center 2012
National Aeronautics and Space Administration NASA LANGLEY RESEARCH CENTER 2012 www.nasa.gov An Orion crew capsule test article moments before it is dropped into a An Atlantis flag flew outside Langley’s water basin at Langley to simulate an ocean splashdown. headquarters building during NASA’s final space shuttle mission in July. Launching a New Era of Exploration Welcome to Langley NASA Langley had a banner year in 2012 as we helped propel the nation toward a new age of air and space. From delivering on missions to creating new technologies and knowledge for space, aviation and science, Langley continued the rich tradition of innovation begun 95 years ago. Langley is providing leading-edge research and game-changing technology innovations for human space exploration. We are testing prototype articles of the Orion crew vehicle to optimize designs and improve landing systems for increased crew survivability. Langley has had a role in private-industry space exploration through agreements with SpaceX, Sierra Nevada Corp. and Boeing to provide engineering expertise, conduct testing and support research. Aerospace and Science With the rest of the world, we held our breath as the Curiosity rover landed on Mars – with Langley’s help. The Langley team performed millions of simulations of the entry, descent and landing phase of the Mars Science Laboratory mission to enable a perfect landing, Langley Center Director Lesa Roe and Mark Sirangelo, corporate and for the first time made temperature and pressure vice president and head of Sierra Nevada Space Systems, with measurements as the spacecraft descended, providing the Dream Chaser Space System model. -
NASA TV Schedule for Web (Week of 6-22-2020).Xlsx
NASA TV Daily Program Schedule Monday - 6/22/2020 Eastern Daylight Time 12 a.m. Way Station to Space: The History of Stennis Space Center 12 a.m. 12:30 a.m. Preparing America for Deep Space (Ep.2) 12:30 a.m. 1 a.m. The Final Shuttle Mission 1 a.m. 1:30 a.m. Airborne Tropical Tropopause Experiment (Ep.2) 1:30 a.m. 2 a.m. NASA X - SAGE 3 Monitoring Earths Ozone Layer 2 a.m. 2:30 a.m. Space for Women 2:30 a.m. 3 a.m. NASA EDGE - Robotics 3 a.m. 3:30 a.m. No Small Steps 3:30 a.m. 4 a.m. The Time of Apollo 4 a.m. 4:30 a.m. Space Shuttle Era (Ep.3) 4:30 a.m. 5 a.m. KORUS-AQ: Chapter 3/4 5 a.m. 5:30 a.m. Exploration of the Planets (1971) 5:30 a.m. 6 a.m. NASA X - SAGE 3 Monitoring Earths Ozone Layer 6 a.m. 6:30 a.m. Airborne Tropical Tropopause Experiment (Ep.2) 6:30 a.m. 7 a.m. NASA EDGE - Robotics 7 a.m. 7:30 a.m. ISS Benefits for Humanity (Ep.2) 7:30 a.m. 8 a.m. The Time of Apollo 8 a.m. 8:30 a.m. Space Shuttle Era (Ep.3) 8:30 a.m. 9 a.m. KORUS-AQ: Chapter 3/4 9 a.m. 9:30 a.m. Way Station to Space: The History of Stennis Space Center 9:30 a.m. -
JWST Project Status
James Webb Space Telescope JSTUC Project Status June 8, 2020 29 July 2011 11 Topics Project Status Observatory I&T Ground System and Operations Launch Vehicle Commissioning 2 Observatory Status 3 Observatory Major Accomplishments Completed Deployment Tower Assembly (DTA) deployment/stow (#1) Completed Sunshield Deployment Completed Sunshield Membrane Folding Completed anomalous Command/Telemetry Processor (CTP) and Traveling Wave Tube Amplifier (TWTA) replacements Root cause for both anomalous flight boxes identified – both random part failures which don’t impugn other units Deployed/Stowed Primary Mirror Wings as part of Observatory Pre- Environmental Deployments MIRI Cryocooler Fill Complete Sunshield (SS) Bi-Pod First Motion Test Successfully Complete DTA Deployment (#2) Complete Partial Stow SS Unitized Pallet Structure Complete 4 TWTA and CTP Replacement 5 Deployed Primary Mirror 6 Sunshield Preps For Folding 7 Remaining I&T Activities Spacecraft Elem. Observatory Observatory Post-environmental Pre-environmental Environmental Deployments Deployments Tests Completed In Progress Begins in Aug. Observatory Observatory Post-environmental Deployments Final Build 8 Remaining I&T Activities SCE Post SCE OTIS/SCE / Environment Reconfigure Deployments SCE for OTIS Integration OTIS Integration (Part 1) 2 DTA Deploy Sunshield Sunshield Fold J2 Panel Stow Deployment Sunshield Preps for Repairs & Sunshield Stow DTA #1 Opening Midbooms #1 Membranes Folding Updates Membranes Propulsion SCE Post-Env MRD Install GAA ROM SCE Deployment -
NASA Next Editor at the Gas Giant, Orbiting Jupiter 37 Core
MAY 2016 1 NASAnext National Aeronautics and Space Administration next NASAempowering the next generation of space explorers OSIRIS-REx NASA’s asteroid sampling mission takes off PAGE 6 www.nasa.gov MAY 2016 MAY 2016 2 3 NASAnext NASAnext Dear Reader, Humans are curious; they love to explore. Throughout our history, man has tirelessly pursued the next hori- zon. The same is true of our scientists and engineers. NASA’s missions and accomplish- ments are a direct result of this ines- capable curiosity and thirst for explo- ration. To many of our scientists and engineers, space is the final frontier — a place of endless discovery. Our eyes are fixed on this frontier. NASA’s Hubble Space Telescope has helped scientists uncover some of the most distant objects ever seen. We observed the Juno spacecraft make A meteor streaks across the sky during the annual Perseid meteor shower on Aug. its arrival at Jupiter this summer. In 12, 2016, in West Virginia. What have you seen in the night sky? NASA/Bill Ingalls fall, we watch as OSIRIS-REx trav- els to a near-Earth asteroid known as Bennu to retrieve a sample and send it back to Earth. SEPTEMBER 2016 But our scientists and engineers juno know that we also must keep a close meets a 3 Juno meets a giant eye on our own planet. Warmer than NASA/JPL-Caltech average temperatures and disappear- ing sea ice are indicators that our 4 NASA’s NICER planet is changing. NASA continuous- ly monitors and studies these chang- giant 5 One planet, two suns es to help us understand the future of upiter has captivated people sky, Jupiter’s magnetic field would ap- our home. -
James Webb Space Telescope
Integrated Science Instrument Module NASA’s Goddard Space Flight Center Optical Telescope Element Mid-infrared Instrument NASA/JPL, ESA Telescope Design and Deployment Near-infrared Spectrograph Northrop Grumman European Space Agency (ESA) Optical Telescope and Mirror Near-infrared Camera Design University of Arizona Ball Aerospace Fine Guidance Sensor Telescope Structures Canadian Space Agency Alliant Techsystems James Optical Telescope Integration and Test ITT/Exelis Webb Mirror Manufacturing Beryllium Mirror Blanks Brush Wellman Space Mirror Machining Axsys Technologies For more information, please contact: Telescope Mirror Grinding and Polishing SSG/Tinsley Laboratories Northrop Grumman Aerospace Systems Blake Bullock Milestone 310-813-8410 Achievements [email protected] in 2012 Christina Thompson 310-812-2375 [email protected] Spacecraft Bus Northrop Grumman Sunshield Northrop Grumman ManTech/NeXolve Webb Telescope Operating in space nearly a million miles from Earth and protected by its tennis court-sized, five-layer sunshield, the Webb Telescope will be shielded from sunlight and kept cool at a temperature of approximately www.northropgrumman.com 45 Kelvin (-380° F). This extreme cold enables Webb’s infrared © 2012 Northrop Grumman Systems Corporation Printed in USA sensors to see the most distant galaxies and to peer through galactic CBS Bethpage dust into dense clouds where star and galaxy formation take place. 12-2339 • AS • 12/12 • 43998-12 Northrop Grumman is under contract to NASA’s Goddard Space Flight Center in Greenbelt, Md., for the design and development of the Webb Telescope’s optics, sunshield and spacecraft. James Webb Space Telescope assembly is a critical component of the spacecraft that closes the Webb’s Far-reaching Achievements in 2012 mission data link to NASA’s Deep Space Network that will transmit the he James Webb Space Telescope is NASA’s top science mission telescope’s data from its orbit nearly a million miles from Earth. -
James Webb Space Telescope | Handbook James Webb Space Telescope | Handbook
James Webb Space Telescope | Handbook James Webb Space Telescope | Handbook Contents 1. Introduction 2 2. Design 3 2.1 Development timeline 3 2.2 Testing 4 2.3 Sunshield 4 2.4 Mirror 6 2.5 Instruments 7 3. Mission 9 3.1 Infrared light 9 3.2 First light 10 3.3 Formation and evolution of galaxies 11 3.4 Formation of stars and planetary systems 12 3.5 Planetary systems and the origins of life 12 4. Taking Webb into schools 13 5. Glossary 14 6. Useful links 15 Note: numbers in square brackets, e.g. [1] refer to entries in the glossary. James Webb Space Telescope | Handbook 1. Introduction This guide contains information about the James Webb Space Telescope. Webb is a collaboration between ESA, NASA, and the Canadian Space Agency. It is named after the NASA administrator James E. Webb who oversaw the first human spaceflight programmes of Mercury and Gemini and the establishment of the Apollo missions. Webb is the largest space telescope ever built and it will see objects up to 100 times fainter than those the Hubble Space Telescope can see. Hubble observes mainly visible light but Webb will use infrared light. Infrared light allows scientists to see further back in time to when the earliest stars and galaxies formed and into areas where visible light cannot get through, such as clouds of gas where stars and planets form. Scientists will use these observations to understand as much as possible about how the Universe evolved into what is seen today. Thousands of engineers and scientists from across the world have worked together for over twenty years to design and develop the technologies required for such a large and complex telescope. -
NASA Langley Research Center
National Aeronautics and Space Administration LANGLEY RESEARCH CENTER www.nasa.gov contents NASA is on a reinvigorated “path of exploration, innovation and technological development leading to an array of challenging destinations and missions. — Charles Bolden” NASA Administrator Director’s Message ........................................ 2-3 Exploration Developing a New Launch Crew Vehicle ................. 4-5 Aeronautics Forging Tomorrow’s Flight Today ............................... 6 NASA Tests Biofuels for Commercial Jets .................. 7 Science Tracking Dynamic Change ......................................... 8 Airborne Air-Quality Campaign Created a Buzz ........... 9 Systems Analysis Making the Complex Work ...................................... 10 Partnerships Collaborating to Transition NASA Technologies .......................................... 12-13 We Have Liftoff Two Launches Carried Langley Instruments into Space ..................................... 14-15 A Space Shuttle Tribute ........................... 16-17 Economics ................................................... 18-19 Langley People ........................................... 20-21 Outreach & Education .............................. 22-23 Awards & Patents ...................................... 24-26 Contacts/Leadership ...................................... 27 Virginia Air & Space Center ........................... 27 (Inside cover) Splashdown of a crew A conference room in Langley’s new headquarters capsule mockup in Langley’s new Hydro building uses -
Technology Demonstration Mission Program
National Aeronautics and Space Administration Technology Demonstration Mission Program Volume 1, Issue 1 The Bridge January–February 2013 An artist’s rendering of the Ball smallsat, set to carry the Green Propellant Infusion Green Propellant Infusion Mission to space for flight-testing in 2015. Mission Joins TDM With this award, NASA has expanded (Image: Ball Aerospace) Project Family the scope of TDM to pursue environ- mentally friendly technologies. Mission Late last summer, NASA selected researchers will deliver a cheaper, safer, NASA’s Supersonic Ball Aerospace & Technologies Corp. more powerful alternative to the toxic, of Boulder, Colo., to lead its newest corrosive propellant hydrazine. Decelerator Project Technology Demonstration Mission ‘On Track’ for Success project: the Green Propellant Infusion Read all about the newest TDM project NASA has completed three key Mission. here. milestones in its development of new atmospheric deceleration technologies MEDLI On the ‘EDGE’ Data from the sensors, now being to support exploration missions across studied by MEDLI researchers, will the solar system. The Mars Science Laboratory Entry, help NASA engineers design safer, Descent & Landing Instrumentation, more lightweight entry systems for The Low-Density Supersonic Decel- or MEDLI, was the subject of a recent future Mars missions — ones carry- erator project, which is developing video feature by NASA EDGE, the ing human crews as well as robotic technologies to use atmospheric agency’s offbeat, informative video- explorers. drag to dramatically slow a vehicle podcast series. as it penetrates the skies over worlds Watch the complete NASA EDGE feature beyond our own, completed three NASA EDGE visited the MEDLI team on MEDLI here. -
NASA TV Schedule for Web (Week of 3-1-2021).Xlsx
NASA TV Daily Program Schedule Monday - 3/1/2021 Eastern Standard Time 12 a.m. Planet Mars: 1979 12 a.m. 12:30 a.m. NASA X 12:30 a.m. 1 a.m. STS-109 Mission Highlights 1 a.m. 1:30 a.m. 1:30 a.m. NASA’s Incredible Discovery Machine: The Story of the Hubble Space Telescope 2 a.m. 2 a.m. 2:30 a.m. NASA Explorers 2:30 a.m. 3 a.m. NASA EDGE@ Home with SPLICE 3 a.m. 3:30 a.m. ISS Benefits for Humanity 3:30 a.m. 4 a.m. Planet Mars: 1979 4 a.m. 4:30 a.m. NASA X 4:30 a.m. 5 a.m. STS-109 Mission Highlights 5 a.m. 5:30 a.m. 5:30 a.m. NASA’s Incredible Discovery Machine: The Story of the Hubble Space Telescope 6 a.m. 6 a.m. 6:30 a.m. NASA Explorers 6:30 a.m. 7 a.m. NASA EDGE@ Home with SPLICE 7 a.m. 7:30 a.m. ISS Benefits for Humanity 7:30 a.m. 8 a.m. 8 a.m. Teaching Space With NASA - Introducing the Perseverance Mars Rover 8:30 a.m. 8:30 a.m. 9 a.m. NASA STEM Stars: Aerospace Engineer 9 a.m. 9:30 a.m. 9:30 a.m. 10 a.m. Planet Mars: 1979 10 a.m. 10:30 a.m. NASA X 10:30 a.m. 11 a.m. STS-109 Mission Highlights 11 a.m. 11:30 a.m. -
NASA TV Daily Program Schedule Monday - 4/19/2021 Eastern Daylight Time 12 A.M
NASA TV Daily Program Schedule Monday - 4/19/2021 Eastern Daylight Time 12 a.m. Nuclear Propulsion in Space 12 a.m. 12:30 a.m. Ocean Worlds: The Search for Life 12:30 a.m. 1 a.m. Orion Crew Module Cone Panel 1 a.m. 1:30 a.m. Tech On Deck 1:30 a.m. 2 a.m. 2 a.m. 2:30 a.m. Shuttle Documentary 2:30 a.m. 3 a.m. 3 a.m. 3:30 a.m. STS-100 Mission Highlights 3:30 a.m. 4 a.m. Nuclear Propulsion in Space 4 a.m. 4:30 a.m. Ocean Worlds: The Search for Life 4:30 a.m. 5 a.m. Orion Crew Module Cone Panel 5 a.m. 5:30 a.m. Orion Flight Test-1 5:30 a.m. 6 a.m. 6 a.m. 6:30 a.m. Coverage of the Ingenuity Mars helicopter’s first flight 6:30 a.m. 7 a.m. 7 a.m. 7:30 a.m. ISS Expedition 64 In-Flight Event for the Japan Aerospace Exploration Agency with JAXA 7:30 a.m. Flight Engineer Soichi Noguchi 8 a.m. 8 a.m. The von Karman Lecture Series - Venus: Earths Evil Twin or Just 8:30 a.m. 8:30 a.m. 9 a.m. How to Weigh an Exoplanet : Ask the Astronomers Live! 9 a.m. 9:30 a.m. 9:30 a.m. 10 a.m. Nuclear Propulsion in Space 10 a.m. 10:30 a.m. Ocean Worlds: The Search for Life 10:30 a.m. -
JWST OTE and OTIS Review
Telescope, ISIM, Spacecraft & Observatory Development ======================= - Pictorial History - Gary Matthews Chris Gunn 1 JWST OTE and OTIS Review • Acronym Review • OTE – Optical Telescope Element – The Telescope • ISIM – Integrated Science Instrument Module • OTIS – OTE/ISIM Integrated Subsystem – The Camera – Payload • SCE – Spacecraft Element • Current Status • The OTE/ISIM – OTIS are now part of an Observatory at NGAS 2019 Mirror Tech Days – JWST OTE Review 2 Hardware Timeline 2012 2014 2015 2016 SSDIF Pathfinder OTIS OTIS OTE Optical OTE/ISIM OTIS Vibe Cleanroom Optical Thermal Acoustic Integration Integration Test Preps Integration Closeouts Test Pathfinder OTE Optical Optical Integration 2017 Integration JSC Cleanroom Cryo Final OTIS OGSE1 OGSE2 Thermal & Chamber Load Chamber Cryo (CoC Only) (BIA) Pathfinder Preps Test Cert Test 2018 here are We Ship SCE/OTIS To NGAS I&T 3 - 2012 - Before we can start SSDIF and JSC Facility Modifications 2019 Mirror Tech Days – JWST OTE Review 4 SSDIF* pre-OTE SSDIF before JWST Hubble stuff all over the place Pre-ISIM and OTE * Spacecraft Systems Development and Integration Facility 2019 Mirror Tech Days – JWST OTE Review 5 AOAS* Installation in SSDIF Need finished picture *Ambient Optical Alignment Stand 2019 Mirror Tech Days – JWST OTE Review 6 OTE Integration Equipment PAIF placing primary mirror system assembly (PMSA) onto the Backplane Stability Thermal Assembly (BSTA) AOAS in the GSFC Cleanroom 2019 Mirror Tech Days – JWST OTE Review 7 Pre-JWST view of the JSC vacuum chamber A lot of potential stuff here. Your discretion The transformation As we arrived – The original chamber. Before the clean room Clean room installation The Harris upgrades.