Bayesian Option Pricing Framework with Stochastic Volatility for FX Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Black-Scholes Model
Chapter 5 Black-Scholes Model Copyright c 2008{2012 Hyeong In Choi, All rights reserved. 5.1 Modeling the Stock Price Process One of the basic building blocks of the Black-Scholes model is the stock price process. In particular, in the Black-Scholes world, the stock price process, denoted by St, is modeled as a geometric Brow- nian motion satisfying the following stochastic differential equation: dSt = St(µdt + σdWt); where µ and σ are constants called the drift and volatility, respec- tively. Also, σ is always assumed to be a positive constant. In order to see if such model is \reasonable," let us look at the price data of KOSPI 200 index. In particular Figure 5.1 depicts the KOSPI 200 index from January 2, 2001 till May 18, 2011. If it is reasonable to model it as a geometric Brownian motion, we must have ∆St ≈ µ∆t + σ∆Wt: St In particular if we let ∆t = h (so that ∆St = St+h − St and ∆Wt = Wt+h − Wt), the above approximate equality becomes St+h − St ≈ µh + σ(Wt+h − Wt): St 2 Since σ(Wt+h − Wt) ∼ N(0; σ h), the histogram of (St+h − St)p=St should resemble a normal distribution with standard deviation σ h. (It is called the h-day volatility.) To see it is indeed the case we have plotted the histograms for h = 1; 2; 3; 5; 7 (days) in Figures 5.2 up to 5.1. MODELING THE STOCK PRICE PROCESS 156 Figure 5.1: KOSPI 200 from 2001. -
Lévy Finance *[0.5Cm] Models and Results
Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Stochastic Calculus for L´evy Processes L´evy-Process Driven Financial Market Models Jump-Diffusion Models Merton-Model Kou-Model General L´evy Models Variance-Gamma model CGMY model GH models Variance-mean mixtures European Style Options Equivalent Martingale Measure Jump-Diffusion Models Variance-Gamma Model NIG Model Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Stochastic Integral for L´evyProcesses Let (Xt ) be a L´evy process with L´evy-Khintchine triplet (α, σ, ν(dx)). By the L´evy-It´odecomposition we know X = X (1) + X (2) + X (3), where the X (i) are independent L´evyprocesses. X (1) is a Brownian motion with drift, X (2) is a compound Poisson process with jump (3) distributed concentrated on R/(−1, 1) and X is a square-integrable martingale (which can be viewed as a limit of compensated compound Poisson processes with small jumps). We know how to define the stochastic integral with respect to any of these processes! Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Canonical Decomposition From the L´evy-It´odecomposition we deduce the canonical decomposition (useful for applying the general semi-martingale theory) Z t Z X (t) = αt + σW (t) + x µX − νX (ds, dx), 0 R where Z t Z X xµX (ds, dx) = ∆X (s) 0 R 0<s≤t and Z t Z Z t Z Z X X E xµ (ds, dx) = xν (ds, dx) = t xν(dx). -
Lecture 4: Risk Neutral Pricing 1 Part I: the Girsanov Theorem
SEEM 5670 { Advanced Models in Financial Engineering Professor: Nan Chen Oct. 17 &18, 2017 Lecture 4: Risk Neutral Pricing 1 Part I: The Girsanov Theorem 1.1 Change of Measure and Girsanov Theorem • Change of measure for a single random variable: Theorem 1. Let (Ω; F;P ) be a sample space and Z be an almost surely nonnegative random variable with E[Z] = 1. For A 2 F, define Z P~(A) = Z(!)dP (!): A Then P~ is a probability measure. Furthermore, if X is a nonnegative random variable, then E~[X] = E[XZ]: If Z is almost surely strictly positive, we also have Y E[Y ] = E~ : Z Definition 1. Let (Ω; F) be a sample space. Two probability measures P and P~ on (Ω; F) are said to be equivalent if P (A) = 0 , P~(A) = 0 for all such A. Theorem 2 (Radon-Nikodym). Let P and P~ be equivalent probability measures defined on (Ω; F). Then there exists an almost surely positive random variable Z such that E[Z] = 1 and Z P~(A) = Z(!)dP (!) A for A 2 F. We say Z is the Radon-Nikodym derivative of P~ with respect to P , and we write dP~ Z = : dP Example 1. Change of measure on Ω = [0; 1]. Example 2. Change of measure for normal random variables. • We can also perform change of measure for a whole process rather than for a single random variable. Suppose that there is a probability space (Ω; F) and a filtration fFt; 0 ≤ t ≤ T g. Suppose further that FT -measurable Z is an almost surely positive random variable satisfying E[Z] = 1. -
Pricing, Risk and Volatility in Subordinated Market Models
risks Article Pricing, Risk and Volatility in Subordinated Market Models Jean-Philippe Aguilar 1,* , Justin Lars Kirkby 2 and Jan Korbel 3,4,5,6 1 Covéa Finance, Quantitative Research Team, 8-12 rue Boissy d’Anglas, FR75008 Paris, France 2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA; [email protected] 3 Section for the Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; [email protected] 4 Complexity Science Hub Vienna, Josefstädterstrasse 39, 1080 Vienna, Austria 5 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech Republic 6 The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodárenskou Vˇeží4, 182 00 Prague 8, Czech Republic * Correspondence: jean-philippe.aguilar@covea-finance.fr Received: 26 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: We consider several market models, where time is subordinated to a stochastic process. These models are based on various time changes in the Lévy processes driving asset returns, or on fractional extensions of the diffusion equation; they were introduced to capture complex phenomena such as volatility clustering or long memory. After recalling recent results on option pricing in subordinated market models, we establish several analytical formulas for market sensitivities and portfolio performance in this class of models, and discuss some useful approximations when options are not far from the money. We also provide some tools for volatility modelling and delta hedging, as well as comparisons with numerical Fourier techniques. -
Risk Neutral Measures
We will denote expectations and conditional expectations with respect to the new measure by E˜. That is, given a random variable X, Z E˜X = EZ(T )X = Z(T )X dP . CHAPTER 4 Also, given a σ-algebra F, E˜(X | F) is the unique F-measurable random variable such that Risk Neutral Measures Z Z (1.2) E˜(X | F) dP˜ = X dP˜ , F F Our aim in this section is to show how risk neutral measures can be used to holds for all F measurable events F . Of course, equation (1.2) is equivalent to price derivative securities. The key advantage is that under a risk neutral measure requiring the discounted hedging portfolio becomes a martingale. Thus the price of any Z Z 0 ˜ ˜ derivative security can be computed by conditioning the payoff at maturity. We will (1.2 ) Z(T )E(X | F) dP = Z(T )X dP , F F use this to provide an elegant derivation of the Black-Scholes formula, and discuss for all F measurable events F . the fundamental theorems of asset pricing. The main goal of this section is to prove the Girsanov theorem. 1. The Girsanov Theorem. Theorem 1.6 (Cameron, Martin, Girsanov). Let b(t) = (b1(t), b2(t), . , bd(t)) be a d-dimensional adapted process, W be a d-dimensional Brownian motion, and ˜ Definition 1.1. Two probability measures P and P are said to be equivalent define if for every event A, P (A) = 0 if and only if P˜(A) = 0. Z t W˜ (t) = W (t) + b(s) ds . -
The Girsanov Theorem Without (So Much) Stochastic Analysis Antoine Lejay
The Girsanov theorem without (so much) stochastic analysis Antoine Lejay To cite this version: Antoine Lejay. The Girsanov theorem without (so much) stochastic analysis. 2017. hal-01498129v1 HAL Id: hal-01498129 https://hal.inria.fr/hal-01498129v1 Preprint submitted on 29 Mar 2017 (v1), last revised 22 Sep 2018 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Girsanov theorem without (so much) stochastic analysis Antoine Lejay March 29, 2017 Abstract In this pedagogical note, we construct the semi-group associated to a stochastic differential equation with a constant diffusion and a Lipschitz drift by composing over small times the semi-groups generated respectively by the Brownian motion and the drift part. Similarly to the interpreta- tion of the Feynman-Kac formula through the Trotter-Kato-Lie formula in which the exponential term appears naturally, we construct by doing so an approximation of the exponential weight of the Girsanov theorem. As this approach only relies on the basic properties of the Gaussian distribution, it provides an alternative explanation of the form of the Girsanov weights without referring to a change of measure nor on stochastic calculus. -
Arbitrage Free Approximations to Candidate Volatility Surface Quotations
Journal of Risk and Financial Management Article Arbitrage Free Approximations to Candidate Volatility Surface Quotations Dilip B. Madan 1,* and Wim Schoutens 2,* 1 Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA 2 Department of Mathematics, KU Leuven, 3000 Leuven, Belgium * Correspondence: [email protected] (D.B.M.); [email protected] (W.S.) Received: 19 February 2019; Accepted: 10 April 2019; Published: 21 April 2019 Abstract: It is argued that the growth in the breadth of option strikes traded after the financial crisis of 2008 poses difficulties for the use of Fourier inversion methodologies in volatility surface calibration. Continuous time Markov chain approximations are proposed as an alternative. They are shown to be adequate, competitive, and stable though slow for the moment. Further research can be devoted to speed enhancements. The Markov chain approximation is general and not constrained to processes with independent increments. Calibrations are illustrated for data on 2695 options across 28 maturities for SPY as at 8 February 2018. Keywords: bilateral gamma; fast Fourier transform; sato process; matrix exponentials JEL Classification: G10; G12; G13 1. Introduction A variety of arbitrage free models for approximating quoted option prices have been available for some time. The quotations are typically in terms of (Black and Scholes 1973; Merton 1973) implied volatilities for the traded strikes and maturities. Consequently, the set of such quotations is now popularly referred to as the volatility surface. Some of the models are nonparametric with the Dupire(1994) local volatility model being a popular example. The local volatility model is specified in terms of a deterministic function s(K, T) that expresses the local volatility for the stock if the stock were to be at level K at time T. -
Informs 2007 Proceedings
informs14th ® Applied Probability Conference July 9–11, 2007 Program Monday July 9, 2007 Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Track 7 Track 8 Track 9 Room CZ 4 CZ 5 CZ 10 CZ 11 CZ 12 CZ 13 CZ 14 CZ 15 CZ 16 9:00am - 9:15am Opening (Room: Blauwe Zaal) 9:15am - 10:15am Plenary - Peter Glynn (Room: Blauwe Zaal) MA Financial Random Fields Rare Event Asymptotic Scheduling Call Centers 1 MDP 1 Retrial Inventory 1 10:45am - 12:15pm Engineering 1 Simulation 1 Analysis 1 Queues Kou Kaj Dupuis Bassamboo / Borst / Koole Feinberg Artalejo Van Houtum Randhawa Wierman Keppo Scheffler Blanchet Lin Gupta Taylor Bispo Machihara Buyukkaramikli DeGuest Ruiz-Medina Glasserman Tezcan Ayesta Jongbloed Van der Laan Nobel Qiu Peng Kaj Juneja Gurvich Wierman Henderson Haijema Shin Timmer Weber Mahmoodi Dupuis Randhawa Winands Koole Feinberg Artalejo Van Houtum 12:45pm - 1.45pm Tutorial Philippe Robert MB Financial Percolation and Simulation 1 Stability of Stoch. Communication Many-server Games 1 Fluid Queues Search 2:00pm - 3:30pm Engineering 2 Related Topics Networks Systems 1 Models 1 Models Schoutens / Van den Berg Henderson Ramanan Choi Armony Economou Adan Klafter Valdivieso Werker Newman Chick Gamarnik Bae Tezcan Economou Dieker Benichou Koch Newman Haas Reiman Kim Jennings Amir Nazarathy Oshanin Scherer Meester Blanchet Williams Park Ward Dube Margolius Eliazar Valdivieso Kurtz Henderson Zachary Roubos Armony Economou Adan Metzler MC Exit Times Interacting Stoch. Prog. Stoch. Netw. & Flow-Level Markov Control Queueing Inventory 2 4:00pm - 5:30pm -
Comparison of Option Pricing Between ARMA-GARCH and GARCH-M Models
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship@Western Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-22-2013 12:00 AM Comparison of option pricing between ARMA-GARCH and GARCH-M models Yi Xi The University of Western Ontario Supervisor Dr. Reginald J. Kulperger The University of Western Ontario Graduate Program in Statistics and Actuarial Sciences A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Yi Xi 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Statistics and Probability Commons Recommended Citation Xi, Yi, "Comparison of option pricing between ARMA-GARCH and GARCH-M models" (2013). Electronic Thesis and Dissertation Repository. 1215. https://ir.lib.uwo.ca/etd/1215 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. COMPARISON OF OPTION PRICING BETWEEN ARMA-GARCH AND GARCH-M MODELS (Thesis format: Monograph) by Yi Xi Graduate Program in Statistics and Actuarial Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada ⃝c Yi Xi 2013 Abstract Option pricing is a major area in financial modeling. Option pricing is sometimes based on normal GARCH models. Normal GARCH models fail to capture the skewness and the leptokurtosis in financial data. -
Some Mathematical Aspects of Market Impact Modeling by Alexander Schied and Alla Slynko
EMS Series of Congress Reports EMS Congress Reports publishes volumes originating from conferences or seminars focusing on any field of pure or applied mathematics. The individual volumes include an introduction into their subject and review of the contributions in this context. Articles are required to undergo a refereeing process and are accepted only if they contain a survey or significant results not published elsewhere in the literature. Previously published: Trends in Representation Theory of Algebras and Related Topics, Andrzej Skowro´nski (ed.) K-Theory and Noncommutative Geometry, Guillermo Cortiñas et al. (eds.) Classification of Algebraic Varieties, Carel Faber, Gerard van der Geer and Eduard Looijenga (eds.) Surveys in Stochastic Processes Jochen Blath Peter Imkeller Sylvie Rœlly Editors Editors: Jochen Blath Peter Imkeller Sylvie Rœlly Institut für Mathematik Institut für Mathematik Institut für Mathematik der Technische Universität Berlin Humboldt-Universität zu Berlin Universität Potsdam Straße des 17. Juni 136 Unter den Linden 6 Am Neuen Palais, 10 10623 Berlin 10099 Berlin 14469 Potsdam Germany Germany Germany [email protected] [email protected] [email protected] 2010 Mathematics Subject Classification: Primary: 60-06, Secondary 60Gxx, 60Jxx Key words: Stochastic processes, stochastic finance, stochastic analysis,statistical physics, stochastic differential equations ISBN 978-3-03719-072-2 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. -
Equivalent and Absolutely Continuous Measure Changes for Jump-Diffusion
The Annals of Applied Probability 2005, Vol. 15, No. 3, 1713–1732 DOI: 10.1214/105051605000000197 c Institute of Mathematical Statistics, 2005 EQUIVALENT AND ABSOLUTELY CONTINUOUS MEASURE CHANGES FOR JUMP-DIFFUSION PROCESSES By Patrick Cheridito1, Damir Filipovic´ and Marc Yor Princeton University, University of Munich and Universit´e Pierre et Marie Curie, Paris VI We provide explicit sufficient conditions for absolute continuity and equivalence between the distributions of two jump-diffusion pro- cesses that can explode and be killed by a potential. 1. Introduction. The purpose of this paper is to give explicit, easy-to- check sufficient conditions for the distributions of two jump-diffusion pro- cesses to be equivalent or absolutely continuous. We consider jump-diffusions that can explode and be killed by a potential. These processes are, in general, not semimartingales. We characterize them by their infinitesimal generators. The structure of the paper is as follows. In Section 2 we introduce the notation and state the paper’s main result, which gives sufficient conditions for the distributions of two jump-diffusions to be equivalent or absolutely continuous. The conditions consist of local bounds on the transformation of one generator into the other one and the assumption that the martingale problem for the second generator has for all initial distributions a unique solution. The formulation of the main theorem involves two sequences of stopping times. Stopping times of the first sequence stop the process before it explodes. The second sequence consists of exit times of the process from regions in the state space where the transformation of the first generator into the second one can be controlled. -
Optimal Importance Sampling for Diffusion Processes
U.U.D.M. Project Report 2019:38 Optimal Importance Sampling for Diffusion Processes Malvina Fröberg Examensarbete i matematik, 30 hp Handledare: Erik Ekström Examinator: Denis Gaidashev Juni 2019 Department of Mathematics Uppsala University Acknowledgements I would like to express my sincere gratitude to my supervisor, Professor Erik Ekström, for all his help and support. I am thankful for his encouragement and for introducing me to the topic, as well as for the hours spent guiding me. 1 Abstract Variance reduction techniques are used to increase the precision of estimates in numerical calculations and more specifically in Monte Carlo simulations. This thesis focuses on a particular variance reduction technique, namely importance sampling, and applies it to diffusion processes with applications within the field of financial mathematics. Importance sampling attempts to reduce variance by changing the probability measure. The Girsanov theorem is used when chang- ing measure for stochastic processes. However, a change of the probability measure gives a new drift coefficient for the underlying diffusion, which may lead to an increased computational cost. This issue is discussed and formu- lated as a stochastic optimal control problem and studied further by using the Hamilton-Jacobi-Bellman equation with a penalty term to account for compu- tational costs. The objective of this thesis is to examine whether there is an optimal change of measure or an optimal new drift for a diffusion process. This thesis provides examples of optimal measure changes in cases where the set of possible measure changes is restricted but not penalized, as well as examples for unrestricted measure changes but with penalization.