(1940) : - Proposed New Systematic

Total Page:16

File Type:pdf, Size:1020Kb

(1940) : - Proposed New Systematic Downloaded from https:// www.studiestoday.com ANIMAL DIVERSITY-I IN TRODUCTION : –Taxomony (Gr.) - study of nomenclature, classification and their principles. This word was given by ''Candolle'' (Taxis – arrangements. Nomos - Law) HISTORICAL BACKGROUND OF TAXONOMY : –Aristotle : - ''father of zoology ''. (Book : Historia Animalium) Father of ancient animal – Classification. He classified animals into two groups on the basis of their natural similarities and differences into – (i) Anaima :- Those animals which don't have Red blood or in which RBC are absent e.g. Sponges, Cnidaria, Mollusca, Arthropoda. Echinodermata like Invertebrates. (ii) Enaima :- These animals have red blood. This group includes all vertebrated and it has been further divided into two sub groups. (a) Vivipara :- It incldues animals which give birth to young-ones e.g. Man, Whale and other mammals. (b) Ovipara : - It includes animals which lay eggs. e.g. Amphibians, Pisces, Aves, Reptiles etc. –Pliny :- He classified animal into groups : - (a) Flying (b) Non-flying –John-Ray :- He gave & defined the term '' species'' as the smallest unit of classfication. He gave ''concept of species ''. According to him, the organisms which develop from the similar type of parents, belong to the same-species. –Mayr : - According to him similar species are those which are capacble of interbreeding in natureal condtions. Modern definition of species is conied by ''Mayr''. –Binomial system of Nomenclature was devised by Gesparrd-Bauhin. But the detailed information about Binomial system was given by Linnaeus. In 1758 in the 10th edition of his book ''Systema Naturae'' he gave the classification of known 4236 animals and presented the Binomial system of nomenclature of animal. He is also known as ''Father of Modern-Taxonomy'' –In binomial system the name of each animal has two parts. First part has its genus name and second part has its species name. First letter of genus name must be written in Capital letter and species name is written in small letters eg. Canis familiaris. In certain species, sub-species are also found. For naming the sub species three words are used. First name is for genus, second for species and third for sub- species. The method of nomenclature of Sub-species is termed as the Trinomial nomenclature and it was given by ''Huxley and Strickland''. eg. Homo sapiens sapiens. – G.L. Cuvier : - Coined the term Phylum. – Julian-Huxleyhttps://www.studiestoday.com (1940) : - Proposed New systematic. – Engler and Prantl : - Proposed Phylogenetic classification. – Key for identification of animal was developed by John Ray. – Invertebrate and Vertebrate term was given by Lamarck. –Robert Whittaker (1969) : - Proposed Five-Kingdom system classification to show phylogenetic relationship. 3 Downloaded from https:// www.studiestoday.com (1) Monera (2) Protista (3) Fungi (4) Plantae (5) Animalia – Linnaeus classified animal kingdom into 6-classes. (1) Mammalia (2) Aves (3) Amphibia (4) Insecta (5) Pisces (6) Vermes SEQUENCE OF CLASSIFICATION : –Smallest unit of classification is ''Species''. Genus includes various types of species. Family is made up of various genera. Many families join together to form an Order, many order join together to form a class and many classes form a Phylum. All the phyla unite to form the largest unit i.e. Kingdom. Various grouping levels or ranks in classification known as Obligate categories. e.g. kingdom –– Phylum –– Class –– Order –– Family –– Genus –– Species –Based on this, all animals are included in the animals kingdom – groups and written in the following Hierarchical manner. For example obligate category of man can be written as TAXA Category Kingdom Animalia Phylum Chordata Class Mammalia Order Primates Family Hominidae Genus Homo Species Sapiens IMPORTANT PHYLA : Storer and Usinger classified whole animal kingdom into 31 phyla. Out of which 10 are major and 21 are minor phyla. Main phyla are : 1. Protozoa - e.g. Amoeba, Paramoecium etc. 2. Porifera - Sponges etc. 3. Coelenterate - Hydra, Jellyfish etc. 4. Ctenophora (minor phylum) - Beroe etc. 5. Platyhelminthes - Tape worm etc. 6. Nemathelminthes-Nematoda - Ascaris etc. 7. Annelida - Earthworm, Leach etc. 8. Arthropodahttps://www.studiestoday.com - Insects, Scorpion, Fly etc. 9. Mollusca - Snail, Pila, Octopus etc 10. Echinodermata - Star fish etc. 11. Hemichordata - Balanoglossus 12. Chordata - Fish, Snake, Birds, Monkey etc. 4 Downloaded from https:// www.studiestoday.com Basis of Classification. METAZOA : – Animal groups are characterized by mobility, and the presence of a sensory or a nervous system. These systems receive stimuli from the environment and respond by exhibiting some behaviour. – The only exception are the porifers (pore-bearers) or the sponges. They have no cell that can be termed as nerve cell. – Like plant life, early animal life also arose in sea. – The animals which live on the sea floor are called Benthonic (e.g., echinoderms, corals and deep sea fishes), whereas, which swim about actively in sea are called Nektons. – The multicellular eukaryotic organisms with holozoic mode of nutrition are called as metazoans. – Based on complexity of organization, metazoans are further sub-divided into two sub-kingdoms, the Parazoa and Eumetazoa. –Parazoa : Parazoa includes the sponges in which the cells are loosely aggregated and do not form tissues or organs. –Eumetazoa : Eumetazoa includes the rest of the animals, the cells are organized into structural and functional units called as tissues, organs and organ systems. SYMMETRY : – Two type of symmetry are usually seen in the animals : (i) Radial symmetry : The animals with radial symmetry are called as Radiata. For example, Cnidarians (hydra, jellyfish and starfish). Biradial symmetry is present in sea anemone. For sessile animals, radial symmetry is advantageous, as it allows food to be gathered from all sides. They may develop appendages all round the mouth to capture and push prey into it. Their sensory and nerve coordination surrounds the mouth. We see this in coelenterates. (ii) Bilateral symmetry : - The animals with bilateral symmetry are called as Bilateria. The body can be divided into right and left halves in only one plane. Bilateral symmetry arose when animals on the ocean floor became mobile. A crawling animal is most likely to encounter food with the end that goes first. So the mouth https://www.studiestoday.comdeveloped at this end. With the mouth, sensory organs and a coordinating brain also development at the front end. These organs helped in sensing food. So we see how the head, enclosing the brain, became associated with the mouth end. This is cephalization. Asymmetric organisms cannot be divided in any plane to produce two equivalent halves. 5 Downloaded from https:// www.studiestoday.com Bilateral symmetry Radial symmetyry GERM LAYERS Mesoglea Ectoderm Endoderm Mesoderm Diploblastic Triploblastic –Germ layer give rise to all the tissues/organs of the fully formed individuals. On the basis of germ layers, animals can be (i) Diploblastic : In Diploblastic animals the body cells are arranged in two layers, an outer Ectoderm and an internal Endoderm with an intervening Mesoglea. (ii) Triploblastic : If the body wall in animals is made up of three germ layer i.e. ectoderm, mesoderm and endoderm, they are called as triploblastic animals. BODY PLAN – Animals have three types of body plan : (i) https://www.studiestoday.comCell aggregate : Cell aggregate type of body plan is present in sponges. (ii) Blind sac : Blind sac type of body plan is present in Platyheiminthes and Coelenterates, where the alimentary canal has only one opening. (iii) Tube within tube : Tube within tube type of body plan is present in Nemathelminthes, Annelida, Arthropoda, Mollusca, Echinoderms Hemichordates and Chordates. The digestive system is a continuous tube with an opening at each end. 6 Downloaded from https:// www.studiestoday.com Tube-within-a-tube body plan has been achieved in two different ways in two evolutionary lines. In one called the Protostomes, the first opening to develop in the embryonic digestive tube is the mouth; the anus develops later. This is seen in the annelid, mollusc and arthropod line. In the other, the Deuterostomes, the anus develops first and the mouth is formed later. This occurs in the Echinoderms Hemichordates and Chordates (including the vertebrates). BODY CAVITY OR COELOM – On the basis of coelom, animals can be (i) Acoelomate : The animals in which the coelom is absent are called as Acoelomates, for example flatworms. In them the space between ectoderm and endoderm is filled with parenchyma eg. Platyhelminthes. (ii) Pseudocoelomate : The body cavity is not completely lined with mesoderm. Instead, the mesoderm is present as scattered pouches in between the ectoderm and endoderm. Such a body cavity is called as pseudocoelom e.g roundworm. (iii) Eucoelomate : The true coelom is a body cavity which arises as a cavity in embryonic mesoderm. In this case, the mesoderm of the embryo provides a cellular lining, called as coelomic epithelium or peritoneum, to the cavity. The coelom is filled with coelomic fluid secreted by the peritoneum. The coelom is found in Arthropods, Molluscs, Annelids, Echinoderms, Hemichordates and Chordates. True coelom is of two types : (a) Schizocoelom : It develops by the splitting up of mesoderm. It is found in annelids, arthropods and molluscs. Body cavity of arthropods is called heamocoel. (b) Enterocoelom : The mesoderm arises from the wall of the
Recommended publications
  • BULLETIN (Mailed to Financial Members of the Society Within Victoria) Price 50¢ EDITOR Val Cram
    THE MALACOLOGICAL SOCIETY OF AUSTRALASIA Inc. VICTORIAN BRANCH BULLETIN (Mailed to financial members of the Society within Victoria) Price 50¢ EDITOR Val Cram. Tel. No. 9792 9163 ADDRESS: 6 Southdean Street, Dandenong, Vic. 3175 Conus marmoreus Linne EMAIL: [email protected] VIC. BR. BULL. NO. 269 JUNE/JULY 2013 NOTICE OF MEETING The next meeting of the Branch will be held on the 17th June at the Melbourne Camera Club Building, cnr. Dorcas & Ferrars Sts South Melbourne at 8pm. This will be a Member’s night. Raffles & Supper as usual. There will be no meeting in July. A Bulletin will be issued prior to the August meeting which will be held on the 19th. At the April meeting we welcomed Caitlin Woods, PR Officer for the Malacological Society of Australasia. We discussed with her our role in the society and she offered any assistance she could to promote our branch to further the study of molluscs in Victoria. Jack Austin advises, with considerable regret, that he must dispose of his shell collection as his intended successor-grandson has opted for a volunteer career overseas and will not have a house in Australia for some years. Jack is a part-sponsor of this venture and will sell-off what he can of the collection to raise funds for his grandson. The collection is fairly extensive world-wide, about 7,000 lots, emphasising GBR, SE Australia, NT, Pacific lslands. All lots are registered - lists of families or places can be supplied. Contact details" 11 Station St., Hastings, Vic. (03) 59797242 Secretary/Treasurer Michael Lyons Tel.
    [Show full text]
  • Gyraulus Laevis in Nederland 87
    Kuijper: Gyraulus laevis in Nederland 87 Gyraulus laevis (Mollusca: Planorbidae) in Nederland door W.J. Kuijper Enkele recente waarnemingen van een van onze zeldzaamste planorbiden waren de aanleiding tot het samenstellen van een over- laevis zicht van alle van Nederland bekende vondsten van Gyraulus (Alder, 1838). Tot voor kort waren slechts enkele vindplaatsen van dit dier bekend (Janssen & De Vogel, 1965: 75). Hierbij komt het betrof feit dat het in een aantal gevallen slechts een enkel exemplaar en de soort niet meer teruggevonden kon worden. Het volgende geeft een chronologisch overzicht van de waarnemingen van Gyraulus laevis in Nederland. Voor zover beschikbaar zijn diverse gegevens van de vindplaatsen vermeld. WAARNEMINGEN 1. Koudekerke (bij Middelburg), buitenplaats Vijvervreugd, ± 1890. Fraai vers materiaal: 69 exemplaren in de collectie Schep- de man (Zoölogisch Museum, Amsterdam). Later niet meer vermeld, buitenplaats bestaat niet meer (Kuiper, 1944: 6). Dit materiaalwerd verzameld door Dr. IJ. Keijzer en is vermeld in: Verslag over 1885-1893 van het Zeeuwsch Genootschap der Wetenschappen, blz. 88 (volgens Mevr. Dr. W.S.S. van der Feen - van Benthem Jut- ting). Verder is materiaal van deze vindplaats in de collecties van het Zeeuwsch Museum te Middelburg (2 ex.) en het Natuurhistorisch Museum te Enschede (6 ex.) aanwezig. 2. Warmond (bij Leiden), in de Leede, januari 1916 (Van Ben- them Jutting, 1933: 179). Dit materiaal werd verzameld door P.P. de Koning; in het Rijksmuseum van Natuurlijke Historie te Leiden bevinden zich vier schelpen van deze vindplaats, waarvan twee een doorsnede van ca. 4 mm bereiken. 3. 't Zand (bij Roodeschool), Oostpolder, 1927 (Van Benthem Jutting, 1947: 66).
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Gyraulus) Gilberti (Dunker, 1848
    Gyraulus (Gyraulus) gilberti (Dunker, 1848) Diagnostic features The peripheral keel or angulation is weaker than in G. edgbastonensis, and like that species it is central. This species varies widely in degree of depression and angulation, and Gyraulus (Gyraulus) gilberti (adult size 4.8-5.5 mm) Distribution of Gyraulus (Gyraulus) gilberti. development of spiral sculpture. Classification Gyraulus (Gyraulus) gilberti (Dunker, 1848) Class Gastropoda I nfraclass Heterobranchia Megaorder Hygrophila Order Lymnaeida Superfamily Planorboidea Family Planorbidae Subfamily: Planorbinae Genus Gyraulus Charpentier, 1837 Original name: Planorbis gilberti Dunker, A.G. (1848). Dunker, A.G. (1848). Diagnoses specierum novarum generis Planorbis collection is Cumingianae. Proceedings of the Zoological Society London 1848: 40-43. Type locality: Brisbane district, Queensland. Synonyms: Planorbis macquariensis Smith, 1883; Planorbis fragilis Smith, 1883 (non Dunker, 1850); Planorbis brazieri Clessin, 1885 (replacement name for P. fragilis Smith); Planorbis planissimus Clessin, 1885; Planorbis daemeli Clessin, 1885; Glyptanisus idenusredale, 1943; Glyptanisus stabilis redale, 1943; Glyptanisus speranusredale, 1943. Biology and ecology This species lives in water weeds and other vegetation in ponds, billabongs, swamps and sluggish streams and rivers in tropical and subtropical eastern Australia. Feeds on detritus. Egg mass presumably a jelly strip containing small eggs. Development direct. Brown (2001) described the anatomy of this species. This species is an intermediate host for the stomach fluke Orthocoelium streptocoelium (Boray, 1982; Beesley et al., 1998). Distribution This species occurs throughout eastern Australia, from Cape York to northern New South Wales. Notes G. isingi and/or G.waterhousei may possibly be conspecific with this species (Brown, 2001). Further reading Beesley, P. L., Ross, G. J.
    [Show full text]
  • Upper Cretaceous Deposits in the Northwest of Saratov Region, Part 2: Problems of Chronostratigraphy and Regional Geological History A
    ISSN 0869-5938, Stratigraphy and Geological Correlation, 2008, Vol. 16, No. 3, pp. 267–294. © Pleiades Publishing, Ltd., 2008. Original Russian Text © A.G. Olfer’ev, V.N. Beniamovski, V.S. Vishnevskaya, A.V. Ivanov, L.F. Kopaevich, M.N. Ovechkina, E.M. Pervushov, V.B. Sel’tser, E.M. Tesakova, V.M. Kharitonov, E.A. Shcherbinina, 2008, published in Stratigrafiya. Geologicheskaya Korrelyatsiya, 2008, Vol. 16, No. 3, pp. 47–74. Upper Cretaceous Deposits in the Northwest of Saratov Region, Part 2: Problems of Chronostratigraphy and Regional Geological History A. G. Olfer’eva, V. N. Beniamovskib, V. S. Vishnevskayab, A. V. Ivanovc, L. F. Kopaevichd, M. N. Ovechkinaa, E. M. Pervushovc, V. B. Sel’tserc, E. M. Tesakovad, V. M. Kharitonovc, and E. A. Shcherbininab a Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia b Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia c Saratov State University, Astrakhanskaya ul., 83, Saratov, 410012 Russia d Moscow State University, Vorob’evy Gory, Moscow, 119991 Russia Received November 7, 2006; in final form, March 21, 2007 Abstract—Problems of geochronological correlation are considered for the formations established in the study region with due account for data on the Mezino-Lapshinovka, Lokh and Teplovka sections studied earlier on the northwest of the Saratov region. New paleontological data are used to define more precisely stratigraphic ranges of some stratigraphic subdivisions, to consider correlation between standard and local zones established for different groups of fossils, and to suggest how the Upper Cretaceous regional scale of the East European platform can be improved.
    [Show full text]
  • The Effect of Caffeine and Ethanol on Flatworm Regeneration
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2007 The ffecE t of Caffeine nda Ethanol on Flatworm Regeneration. Erica Leighanne Collins East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Chemical and Pharmacologic Phenomena Commons Recommended Citation Collins, Erica Leighanne, "The Effect of Caffeine nda Ethanol on Flatworm Regeneration." (2007). Electronic Theses and Dissertations. Paper 2028. https://dc.etsu.edu/etd/2028 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. The Effect of Caffeine and Ethanol on Flatworm Regeneration ____________________ A thesis presented to the faculty of the Department of Biological Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology ____________________ by Erica Leighanne Collins August 2007 ____________________ Dr. J. Leonard Robertson, Chair Dr. Thomas F. Laughlin Dr. Kevin Breuel Keywords: Regeneration, Planarian, Dugesia tigrina, Flatworms, Caffeine, Ethanol ABSTRACT The Effect of Caffeine and Ethanol on Flatworm Regeneration by Erica Leighanne Collins Flatworms, or planarian, have a high potential for regeneration and have been used as a model to investigate regeneration and stem cell biology for over a century. Chemicals, temperature, and seasonal factors can influence planarian regeneration. Caffeine and ethanol are two widely used drugs and their effect on flatworm regeneration was evaluated in this experiment.
    [Show full text]
  • Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
    Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.
    [Show full text]
  • Growth Inhibition of Red Abalone (Haliotis Rufescens) Infested with an Endolithic Sponge (Cliona Sp.)
    GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) By Kirby Gonzalo Morejohn A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Science In Natural Resources: Biology May, 2012 GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) HUMBOLDT STATE UNIVERSITY By Kirby Gonzalo Morejohn We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Science. ________________________________________________________________________ Dr. Sean Craig, Major Professor Date ________________________________________________________________________ Dr. Tim Mulligan, Committee Member Date ________________________________________________________________________ Dr. Frank Shaughnessy, Committee Member Date ________________________________________________________________________ Dr. Laura Rogers-Bennett, Committee Member Date ________________________________________________________________________ Dr. Michael Mesler, Graduate Coordinator Date ________________________________________________________________________ Dr. Jená Burges, Vice Provost Date ii ABSTRACT Understanding the effects of biotic and abiotic pressures on commercially important marine species is crucial to their successful management. The red abalone (Haliotis rufescensis) is a commercially
    [Show full text]
  • The Genome of Schmidtea Mediterranea and the Evolution Of
    OPEN ArtICLE doi:10.1038/nature25473 The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms Markus Alexander Grohme1*, Siegfried Schloissnig2*, Andrei Rozanski1, Martin Pippel2, George Robert Young3, Sylke Winkler1, Holger Brandl1, Ian Henry1, Andreas Dahl4, Sean Powell2, Michael Hiller1,5, Eugene Myers1 & Jochen Christian Rink1 The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms. Rapid regeneration from tiny pieces of tissue makes planarians a prime De novo long read assembly of the planarian genome model system for regeneration. Abundant adult pluripotent stem cells, In preparation for genome sequencing, we inbred the sexual strain termed neoblasts, power regeneration and the continuous turnover of S. mediterranea (Fig. 1a) for more than 17 successive sib- mating of all cell types1–3, and transplantation of a single neoblast can rescue generations in the hope of decreasing heterozygosity. We also developed a lethally irradiated animal4. Planarians therefore also constitute a a new DNA isolation protocol that meets the purity and high molecular prime model system for stem cell pluripotency and its evolutionary weight requirements of PacBio long-read sequencing12 (Extended Data underpinnings5.
    [Show full text]
  • Regulatory Circuit Rewiring and Functional Divergence of the Duplicate Admp Genes in Dorsoventral Axial Patterning
    Developmental Biology 410 (2016) 108–118 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Evolution of Developmental Control Mechanisms Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning Yi-Cheng Chang a,b, Chih-Yu Pai a, Yi-Chih Chen a, Hsiu-Chi Ting a, Pedro Martinez c,d, Maximilian J. Telford e, Jr-Kai Yu a, Yi-Hsien Su a,b,n a Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan b Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan c Department de Genètica, Universitat de Barcelona, Barcelona, Spain d Institució de Recerca I Estudis Avançats (ICREA), Barcelona, Spain e Department of Genetics, Evolution and Environment, University College London, London, UK article info abstract Article history: The spatially opposed expression of Antidorsalizing morphogenetic protein (Admp) and BMP signals Received 18 December 2015 controls dorsoventral (DV) polarity across Bilateria and hence represents an ancient regulatory circuit. Accepted 18 December 2015 Here, we show that in addition to the conserved admp1 that constitutes the ancient circuit, a second Available online 21 December 2015 admp gene (admp2) is present in Ambulacraria (EchinodermataþHemichordata) and two marine worms Keywords: belonging to Xenoturbellida and Acoelomorpha. The phylogenetic distribution implies that the two admp BMP genes were duplicated in the Bilaterian common ancestor and admp2 was subsequently lost in chordates Admp and protostomes. We show that the ambulacrarian admp1 and admp2 are under opposite transcriptional Sea urchin control by BMP signals and knockdown of Admps in sea urchins impaired their DV polarity.
    [Show full text]
  • Zootaxa: Cliona Minuscula, Sp. Nov. (Hadromerida : Clionaidae) And
    Zootaxa 1312: 1–24 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1312 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Cliona minuscula, sp. nov. (Hadromerida : Clionaidae) and other bioeroding sponges that only contain tylostyles CHRISTINE HANNA LYDIA SCHÖNBERG1, STEFANIE GRASS2 & ANKE TARJA HEIERMANN2 1Centre for Marine Studies, The University of Queensland, Brisbane, St. Lucia, QLD 4072, Australia; 2present address: Carl von Ossietzky Universität Oldenburg, Fakultät 5, Institut für Biologie und Umweltwissen- schaften, Abteilung Zoomorphologie und Systematik, 26111 Oldenburg, ph +49-(0)441-7983611, fax +49- (0)441-7983250. 2Carl von Ossietzky Universität Oldenburg, Fakultät 5, Institut für Biologie und Umweltwissenschaften, Abtei- lung Zoomorphologie und Systematik, 26111 Oldenburg, ph +49-(0)441-7983611, fax +49-(0)441-7983250. Abstract A new bioeroding sponge belonging to the genus Cliona is described from the Australian Great Barrier Reef, Cliona minuscula, sp. nov. As the sponge lacked microscleres, comparison with existing clionaid species was difficult. We considered 15 other species of Cliona with only tylostyles: C. alderi, C. arenosa. C. caesia nov. comb., C. californiana, C. celata, C. delitrix, C. dissimilis, C. ecaudis, C. insidiosa, C. janitrix, C. kempi, C. laticavicola, C. macgeachii, C. millepunctata and C. peponaca. Characters of all species are presented in table-form to facilitate comparison during future studies. We listed additional species of Cliona that were not directly compared to the new species, because they were either invalid, insufficiently described, or they may not be obligate bioeroders. The form and dimensions of the megascleres of C. minuscula, sp. nov. indicated that it is distinct from all considered species.
    [Show full text]