Dissertation the Effects of Docosahexaenoic Acid

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation the Effects of Docosahexaenoic Acid DISSERTATION THE EFFECTS OF DOCOSAHEXAENOIC ACID INTAKE DURING PREGNANCY AND LACTATION ON INFANT GROWTH AND NEUROCOGNITIVE DEVELOPMENT AND THE ASSOCIATED EFFECTS OF GENETIC VARIANTS OF THE FADS1 FADS2 GENE CLUSTER Submitted by Stacy Marie Miller Department of Food Science and Human Nutrition In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2014 Doctoral Committee: Advisor: Mary Harris Adam Chicco Susan Baker Melinda Frye Copyright by Stacy Marie Miller 2014 All Rights Reserved ABSTRACT THE EFFECTS OF DOCOSAHEXAENOIC ACID INTAKE DURING PREGNANCY AND LACTATION ON INFANT GROWTH AND NEUROCOGNITIVE DEVELOPMENT AND THE ASSOCIATED EFFECTS OF GENETIC VARIANTS OF THE FADS1 FADS2 GENE CLUSTER Maternal docosahexaenoic acid (DHA) intake during pregnancy and/or lactation has been positively associated with infant growth and neurocognitive development. However, randomized controlled clinical trials (RCT) report mixed results. Several RCT that failed to demonstrate an effect of DHA supplementation have found correlations between DHA status and cognitive benefits, possibly due to a failure to account for total maternal DHA intake. The majority of studies to date investigating neurocognitive development have not examined the effect of supplementing women with DHA during both pregnancy and lactation and fail to determine the effects of maternal genetic variation on infant neurocognitive development. Single nucleotide polymorphisms (SNPs) within the fatty acid desaturase (FADS)1 FADS2 gene cluster encoding for Δ5- and Δ6-desaturase enzymes were previously reported to be associated with altered omega-3 (n-3) and omega-6 (n-6) fatty acid proportions of erythrocyte, plasma phospholipids and breastmilk, possibly effecting DHA transfer to the infant. This study was conducted to determine the relationship between DHA intake in women obtaining varying amounts of DHA daily during pregnancy and lactation and infant neurocognitive development in the first year of life and the association of maternal SNPs in the FADS1 FADS2 gene cluster. One hundred and fifteen pregnant women were randomized to ii receive purified tuna oil supplement containing 300 mg of DHA and 67 mg EPA per day or an identical placebo (Sunola oil) for the last trimester of pregnancy through the first 3 months of lactation in a double-blinded placebo controlled clinical trial. Two SNPs in the FADS1 FADS2 gene cluster, rs174575 and rs174561, were genotyped from maternal DNA and erythrocyte, plasma phospholipid and breastmilk fatty acids and daily DHA intake from food frequency questionnaires (FFQ) were analyzed. Neurocognitive development of the infants was measured using the Mental Development Index (MDI) of the Bayley Scales of Infant Development III (BSID-III) at 4 and 12 months of age. Gestational length in days was calculated based upon last menstrual period and birth date. Infant birth weights and lengths were obtained from pediatric medical records at delivery and at 2 months of age. Total daily DHA intake was estimated to range from 18 mg to 1.374 g per day calculated from all sources of DHA, including food and supplementation. Data was analyzed based on treatment group, placebo versus DHA, and by total daily DHA intake broken into three groups: low = 0-299 mg per day DHA, medium = 300-599 mg per day DHA, high = ≥600 mg per day DHA. DHA portion of 2 month breastmilk fatty acids directly correlated with daily DHA intake (r=0.37, p=0.0002). Erythrocyte and breastmilk DHA proportions significantly increased in women homozygous for the major allele (SNP rs174575, p=0.0002 and p=0.030, respectively; SNP rs174561, p=0.003 and p=0.040, respectively) in the high daily DHA intake compared to the low intake group. However, daily DHA intake had no effect significantly increasing DHA proportions in women homozygous for the minor alleles of both SNPs studied. Infants born to mothers in the high DHA intake group showed significantly higher scores on the 12 month cognitive scale of the MDI of the BSID-III (p=0.018), compared to the low intake group. No significant differences were seen between treatment groups or DHA intake groups on any of the iii 4 month infant cognitive testing. Genotype had no direct effect on BSID-III scores, however, ANCOVA for 12 month cognitive MDI subtest showed a statistically significant interaction between SNP rs174575 genotype and daily DHA intake group (p=0.023). Additionally, infants born to mothers in the DHA treatment group had an increase of 4.5 days in gestational age (p=0.048) and significantly lower incidence of preterm birth (5%; n=3) compared to infants born to mothers in the control group (18%; n=10; χ2=4.97, p=0.026). No significant differences were seen between treatment groups or DHA intake groups in infant growth measurements at birth or at 2 months of age, although 2 month breastmilk DHA proportion of fatty acids was negatively correlated with 2 month weight (r= -0.22, p=0.048). An intake of 600 mg of DHA per day or greater during the third trimester of gestation throughout the first three months of breastfeeding was associated with improved infant neurocognitive development. Genetic variants of the FADS1 FADS2 gene cluster influence erythrocyte and breastmilk fatty acids, and increased DHA intake does not effectively increase DHA proportions in minor allele carriers. Additionally, DHA supplementation increased gestational length and decreased preterm birth risk, however, did not affect infant birth weights. DHA supplementation during pregnancy and lactation could be beneficial for improving the neurocognitive development of infants, however, genetic variation may affect DHA transfer to the infant. iv ACKNOWLEDGEMENTS I have received a great deal of support, encouragement and guidance from a great number of individuals. I would like to thank my entire advisory committee for the time, patience and flexibility they have had in completing this project. To my advisor, Mary Harris, I would like to extend heartfelt gratitude. Her expertise and guidance throughout the study, analysis and writing process was invaluable and I am grateful to have had her assistance. My committee member, Adam Chicco, provided crucial advice, support and direction for which I am grateful. I would also like to thank Susan Baker and Melinda Frye for their time and expertise throughout this project. I am very grateful for so many other individuals who were instrumental in making this project a success. I would like to thank Deana Davalos in the CSU Department of Psychology for her advisement, expertise, and for collecting and managing the cognitive data essential to the success of this project. Kathryn McGirr was an integral part of organizing the project, maintaining data files and providing expert assistance throughout the project. Thank you to Sherry Nash for managing the study supplements and aiding the breastfeeding coaches. Thank you to Alena Clark for your help with the study design, breastfeeding expertise and training of our coaches. To our breastfeeding coaches, Annaliese Zieler and Janice Gillespie, thank you for all of your help and continued dedication to the study. Without you, this project would not have been a success. And thank you Nicole Booker for your excitement and recruiting efforts and Ruth Inglis-Widrick for your ongoing project assistance. During my data collection, analysis, and writing, Chris Mulligan provided extensive laboratory expertise, guidance and support. Without Chris and his GC wisdom, I feel that I v would not have been able to successfully complete all aspects of this project. I am grateful for my previous employer, Aftab Ahmad, at the University of Colorado, for his support and allowing me to use the real-time PCR equipment and laboratory space that was necessary for genetic analysis. Additionally, I would like to thank John Wilson for his computer expertise and help with the CDC z-scores, and Jim zumBrunnen and the graduate students in the Colorado State University Statistical Laboratory for their unending and vital statistics guidance. Finally, I owe a great deal to my friends and family who supported me in this journey. First and foremost, I want to acknowledge my husband, Kyle. His unwavering support, perspective and encouragement was and is vital to my continued success. To my baby girl, Hadley, I appreciate your support and understanding while I wrote and was at “work”. I want to acknowledge my parents, Paul and Vicki, for their never-ending, immense support and encouragement. If it were not for them, I never would have learned to believe in myself, push myself and reach for my dreams. To my in-laws, Bruce and Debbie, your continued love and support (and Starbucks) helped me immensely, thank you. For all of my friends and family that listened to me, supported and encouraged me throughout this process, I am in debt to your assistance. And to my dogs, Marley and Dylan, thank you for your love and therapeutic runs and walks. Without the immense support from my family and friends, achieving my dreams would never have been possible. Whatever you do, do it well. vi TABLE OF CONTENTS ABSTRACT .................................................................................................................................... ii ACKNOWLEDGEMENTS .............................................................................................................v CHAPTER 1: INTRODUCTION ....................................................................................................1
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Genes Regulating Cholesterol Metabolism
    GENES REGULATING CHOLESTEROL METABOLISM Chau Vu Bio 118 FUNCTIONS OF CHOLESTEROL Maintain membrane fluidity, facilitate trafficking and signaling of membrane- associated proteins Precursor for important metabolites LDL = low density lipoprotein HDL = high density lipoprotein High LDL atherosclerosis SYNTHESIS OF CHOLESTEROL Occurs in cytoplasm and microsomes acetyl-CoA – starting material Less than half from biosynthesis de novo liver 10% intestines 15% 5 major steps SYNTHESIS OF CHOLESTEROL REGULATION OF CHOLESTEROL Synthesis and dietary intake: Normal Adult: produce1g/day; consume 0.3g/day Pathway 1: LDL binds to receptors; receptor- ligand complex absorbed by endocytosis Pathway 2: cholesterol synthesized when intra-cellular levels are low Pathway 3: reduce HMG CoA reductase activity; excess cholesterol transported to the liver Involve many transcription factors, binding proteins, enzymes and receptors REGULATION OF CHOLESTEROL SYNTHESIS GAPS IN OUR UNDERSTANDING OF CHOLESTEROL METABOLISM Heritability of human plasma cholesterol levels ~ 50% to 70%. Known common genetic factors linked to cholesterol explain 5 to 7% of heritability common polymorphisms that modulate plasma cholesterol levels account for small portion STUDY 1: CHANGES IN THE EXPRESSION OF CHOLESTEROL METABOLISM-ASSOCIATED GENES IN HCV-INFECTED LIVER real time PCR Results (SREBP)-2 expression unchanged transcription protein, induces production of sterols; negative feedback loop low density lipoprotein receptor expression reduced by 90% in HCV
    [Show full text]
  • Suppression of FADS1 Induces ROS Generation, Cell Cycle Arrest, and Apoptosis in Melanocytes: Implications for Vitiligo
    www.aging-us.com AGING 2019, Vol. 11, No. 24 Research Paper Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo Luyan Tang1, Jian Li1, Wenwen Fu1, Wenyu Wu1, Jinhua Xu1 1Department of Dermatology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China Correspondence to: Jinhua Xu; email: [email protected] Keywords: vitiligo, microarray, fatty acid desaturase 1, apoptosis, melanocyte Received: May 6, 2019 Accepted: November 7, 2019 Published: December 21, 2019 Copyright: Tang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Vitiligo is a potentially serious condition characterized by loss of melanin and death of melanocytes. To identify potential therapeutic targets for vitiligo, we conducted a microarray analysis of three human vitiligo specimens and paired adjacent normal tissues. Because we found that the fatty acid desaturase 1 (FADS1) gene was downregulated in vitiligo specimens, we carried out experiments to assess its role in melanocyte replication and survival. RT-qPCR was used to verify that FADS1 expression was lower in vitiligo-affected tissues and vitiligo melanocyte PIG3V cells than in matched controls or normal human epidermal PIG1 melanocytes. In addition, CCK-8, immunofluorescence, western blot and flow cytometry assay were used to detect the proliferation and apoptosis in PIG1 cells respectively. Overexpression of FADS1 promoted proliferation of PIG3V melanocytes, while FADS1 silencing inhibited proliferation and induced cell death in PIG1 melanocytes.
    [Show full text]
  • Genetic Analyses of Human Fetal Retinal Pigment Epithelium Gene Expression Suggest Ocular Disease Mechanisms
    ARTICLE https://doi.org/10.1038/s42003-019-0430-6 OPEN Genetic analyses of human fetal retinal pigment epithelium gene expression suggest ocular disease mechanisms Boxiang Liu 1,6, Melissa A. Calton2,6, Nathan S. Abell2, Gillie Benchorin2, Michael J. Gloudemans 3, 1234567890():,; Ming Chen2, Jane Hu4, Xin Li 5, Brunilda Balliu5, Dean Bok4, Stephen B. Montgomery 2,5 & Douglas Vollrath2 The retinal pigment epithelium (RPE) serves vital roles in ocular development and retinal homeostasis but has limited representation in large-scale functional genomics datasets. Understanding how common human genetic variants affect RPE gene expression could elu- cidate the sources of phenotypic variability in selected monogenic ocular diseases and pin- point causal genes at genome-wide association study (GWAS) loci. We interrogated the genetics of gene expression of cultured human fetal RPE (fRPE) cells under two metabolic conditions and discovered hundreds of shared or condition-specific expression or splice quantitative trait loci (e/sQTLs). Co-localizations of fRPE e/sQTLs with age-related macular degeneration (AMD) and myopia GWAS data suggest new candidate genes, and mechan- isms by which a common RDH5 allele contributes to both increased AMD risk and decreased myopia risk. Our study highlights the unique transcriptomic characteristics of fRPE and provides a resource to connect e/sQTLs in a critical ocular cell type to monogenic and complex eye disorders. 1 Department of Biology, Stanford University, Stanford, CA 94305, USA. 2 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. 3 Program in Biomedical Informatics, Stanford University School of Medicine, Stanford 94305 CA, USA. 4 Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles 90095 CA, USA.
    [Show full text]
  • Genetic and Genomics Laboratory Tools and Approaches
    Genetic and Genomics Laboratory Tools and Approaches Meredith Yeager, PhD Cancer Genomics Research Laboratory Division of Cancer Epidemiology and Genetics [email protected] DCEG Radiation Epidemiology and Dosimetry Course 2019 www.dceg.cancer.gov/RadEpiCourse (Recent) history of genetics 2 Sequencing of the Human Genome Science 291, 1304-1351 (2001) 3 The Human Genome – 2019 • ~3.3 billion bases (A, C, G, T) • ~20,000 protein-coding genes, many non-coding RNAs (~2% of the genome) • Annotation ongoing – the initial sequencing in 2001 is still being refined, assembled and annotated, even now – hg38 • Variation (polymorphism) present within humans – Population-specific – Cosmopolitan 4 Types of polymorphisms . Single nucleotide polymorphisms (SNPs) . Common SNPs are defined as > 5% in at least one population . Abundant in genome (~50 million and counting) ATGGAACGA(G/C)AGGATA(T/A)TACGCACTATGAAG(C/A)CGGTGAGAGG . Repeats of DNA (long, short, complex, simple), insertions/deletions . A small fraction of SNPs and other types of variation are very or slightly deleterious and may contribute by themselves or with other genetic or environmental factors to a phenotype or disease 5 Different mutation rates at the nucleotide level Mutation type Mutation rate (per generation) Transition on a CpG 1.6X10-7 Transversion on a CpG 4.4X10-8 Transition: purine to purine Transition out of CpG 1.2X10-8 Transversion: purine to pyrimidine Transversion out of CpG 5.5X10-9 Substitution (average) 2.3X10-8 A and G are purines Insertion/deletion (average) 2.3X10-9 C and T are pyrimidines Mutation rate (average) 2.4X10-8 . Size of haploid genome : 3.3X109 nucleotides .
    [Show full text]
  • Identification of HIF-2Α-Regulated Genes That Play a Role in Human Microvascular Endothelial Sprouting During Prolonged Hypoxia in Vitro
    UvA-DARE (Digital Academic Repository) Identification of HIF-2α-regulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro Nauta, T.D.; van den Broek, M.; Gibbs, S.; van der Pouw-Kraan, T.C.T.M.; Oudejans, C.B.; van Hinsbergh, V.W.M.; Koolwijk, P. DOI 10.1007/s10456-016-9527-4 Publication date 2017 Document Version Final published version Published in ANGIOGENESIS License CC BY Link to publication Citation for published version (APA): Nauta, T. D., van den Broek, M., Gibbs, S., van der Pouw-Kraan, T. C. T. M., Oudejans, C. B., van Hinsbergh, V. W. M., & Koolwijk, P. (2017). Identification of HIF-2α-regulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro. ANGIOGENESIS, 20(1), 39-54. https://doi.org/10.1007/s10456-016-9527-4 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands.
    [Show full text]
  • The Key Roles of Elongases and Desaturases in Mammalian Fatty Acid Metabolism: Insights from Transgenic Mice
    Progress in Lipid Research 49 (2010) 186–199 Contents lists available at ScienceDirect Progress in Lipid Research journal homepage: www.elsevier.com/locate/plipres Review The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice Hervé Guillou a, Damir Zadravec b, Pascal G.P. Martin a, Anders Jacobsson b,* a Integrative Toxicology and Metabolism, Pôle de Toxicologie Alimentaire, Laboratoire de Pharmacologie et Toxicologie, Institut National de la Recherche Agronomique INRA UR66, Toulouse Cedex 3, France b Dept. of Physiology, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-10691 Stockholm, Sweden article info abstract Article history: In mammalian cells, elongases and desaturases play critical roles in regulating the length and degree of Received 19 November 2009 unsaturation of fatty acids and thereby their functions and metabolic fates. In the past decade, a great Received in revised form 9 December 2009 deal has been learnt about these enzymes and the first part of this review summarizes our current knowl- Accepted 10 December 2009 edge concerning these enzymes. More recently, several transgenic mouse models lacking either an elong- ase (Elovl3À/À, Elovl4À/À, Elovl5À/À, Elovl6À/À) or a desaturase (Scd-1À/À, Scd-2À/À, Fads2À/À) have been developed and the second part of this review focuses on the insights gained from studies with these mice, Keywords: as well as from investigations on cell cultures. Elongase Ó 2009 Elsevier Ltd. All rights reserved. Desaturase VLCFA PUFA Knockout mice Contents 1. Introduction ......................................................................................................... 187 2. Mammalian elongases and desaturases . ...................................................................... 188 2.1. Elongases . ............................................................................................... 188 2.2.
    [Show full text]
  • The Influence of Evolutionary History on Human Health and Disease
    REVIEWS The influence of evolutionary history on human health and disease Mary Lauren Benton 1,2, Abin Abraham3,4, Abigail L. LaBella 5, Patrick Abbot5, Antonis Rokas 1,3,5 and John A. Capra 1,5,6 ✉ Abstract | Nearly all genetic variants that influence disease risk have human-specific origins; however, the systems they influence have ancient roots that often trace back to evolutionary events long before the origin of humans. Here, we review how advances in our understanding of the genetic architectures of diseases, recent human evolution and deep evolutionary history can help explain how and why humans in modern environments become ill. Human populations exhibit differences in the prevalence of many common and rare genetic diseases. These differences are largely the result of the diverse environmental, cultural, demographic and genetic histories of modern human populations. Synthesizing our growing knowledge of evolutionary history with genetic medicine, while accounting for environmental and social factors, will help to achieve the promise of personalized genomics and realize the potential hidden in an individual’s DNA sequence to guide clinical decisions. In short, precision medicine is fundamentally evolutionary medicine, and integration of evolutionary perspectives into the clinic will support the realization of its full potential. Genetic disease is a necessary product of evolution These studies are radically changing our understanding (BOx 1). Fundamental biological systems, such as DNA of the genetic architecture of disease8. It is also now possi- replication, transcription and translation, evolved very ble to extract and sequence ancient DNA from remains early in the history of life. Although these ancient evo- of organisms that are thousands of years old, enabling 1Department of Biomedical lutionary innovations gave rise to cellular life, they also scientists to reconstruct the history of recent human Informatics, Vanderbilt created the potential for disease.
    [Show full text]
  • And Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid
    cells Review Circulating Pro- and Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid Arthritis Pathogenesis Roxana Coras 1,2, Jessica D. Murillo-Saich 1 and Monica Guma 1,2,* 1 Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; [email protected] (R.C.); [email protected] (J.D.M.-S.) 2 Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain * Correspondence: [email protected] Received: 22 January 2020; Accepted: 18 March 2020; Published: 30 March 2020 Abstract: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects synovial joints, leading to inflammation, joint destruction, loss of function, and disability. Although recent pharmaceutical advances have improved the treatment of RA, patients often inquire about dietary interventions to improve RA symptoms, as they perceive pain and/or swelling after the consumption or avoidance of certain foods. There is evidence that some foods have pro- or anti-inflammatory effects mediated by diet-related metabolites. In addition, recent literature has shown a link between diet-related metabolites and microbiome changes, since the gut microbiome is involved in the metabolism of some dietary ingredients. But diet and the gut microbiome are not the only factors linked to circulating pro- and anti-inflammatory metabolites. Other factors including smoking, associated comorbidities, and therapeutic drugs might also modify the circulating metabolomic profile and play a role in RA pathogenesis. This article summarizes what is known about circulating pro- and anti-inflammatory metabolites in RA. It also emphasizes factors that might be involved in their circulating concentrations and diet-related metabolites with a beneficial effect in RA.
    [Show full text]
  • A Single Nucleotide Polymorphism in the FADS1 Gene Is Associated With
    Guo et al. Lipids in Health and Disease (2017) 16:67 DOI 10.1186/s12944-017-0459-9 RESEARCH Open Access A Single Nucleotide Polymorphism in the FADS1 Gene is Associated with Plasma Fatty Acid and Lipid Profiles and Might Explain Gender Difference in Body Fat Distribution Huilan Guo1,2, Lichao Zhang1,2, Chaonan Zhu1,2, Fei Yang1,2, Shanshan Wang3, Shankuan Zhu1,2 and Xiaoguang Ma1,2* Abstract Background: Genotyping of the rs174547 polymorphism in the fatty acid desaturase 1 gene (FADS1) shows that it is associated with the FA composition of plasma phospholipids and lipid metabolic indices among several ethnic groups. However, this association requires further confirmation in the Chinese population, and little is known about the effect of polymorphisms in fatty acid-related genes on body fat distribution. Methods: Anthropometric measurements of 951 Chinese adults aged 18–79 were obtained and body fat distribution was estimated using dual-energy X-ray absorptiometry. The FA composition of plasma phospholipids was measured by gas chromatography. Multiple linear regression assessed whether the rs174547 genotype was associated with FA composition, body fat distribution, and metabolic traits in additive, dominant, and recessive models. Results: The rs174547 C minor allele was associated with a higher proportion of linoleic acid, lower arachidonic acid and docosahexaenoic acid, as well as lower delta-6-desaturase and delta-5-desaturase activity. Female C allele carriers had lower android fat percentages and lower levels of low-density lipoprotein-cholesterol, while male C allele carriers had lower gynoid fat percentages and higher triglyceride after adjusting for age, income, BMI, behavioral risk factors, and regional fat percentages.
    [Show full text]
  • Identification of HIF-2Α-Regulated Genes That Play a Role in Human
    Angiogenesis DOI 10.1007/s10456-016-9527-4 ORIGINAL PAPER Identification of HIF-2a-regulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro 1,2 1,2 3,4 Tessa D. Nauta • Marloes van den Broek • Sue Gibbs • 5 6 Tineke C. T. M. van der Pouw-Kraan • Cees B. Oudejans • 1 1 Victor W. M. van Hinsbergh • Pieter Koolwijk Received: 16 June 2016 / Accepted: 28 September 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract During prolonged hypoxic conditions, endothe- differentially regulated genes in hypoxia were compared to lial cells change their gene expression to adjust to the low the genes that were differentially regulated upon silencing oxygen environment. This process is mainly regulated by of HIF-2a in hypoxia. Surprisingly, KEGG pathway anal- the hypoxia-inducible factors, HIF-1a and HIF-2a. ysis showed that metabolic pathways were enriched within Although endothelial cells do not form sprouts during genes upregulated in response to hypoxia and enriched prolonged hypoxic culturing, silencing of HIF-2a partially within genes downregulated upon HIF-2a silencing. restores sprout formation. The present study identifies Moreover, 51 HIF-2a-regulated genes were screened for novel HIF-2a-target genes that may regulate endothelial their role in endothelial sprouting in hypoxia, of which four sprouting during prolonged hypoxia. The gene expression genes ARRDC3, MME, PPARG and RALGPS2 directly profile of primary human microvascular endothelial cells influenced endothelial sprouting during prolonged hypoxic (hMVECs) that were cultured at 20 % oxygen was com- culturing.
    [Show full text]