LPIB Issue No. 149 Now Available
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copyrighted Material
Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED -
ESA Solar System Missions
Small Missions and the Science Programme of ESA Alvaro Gimenez, Director of Science and Robotic Exploration 26 February 2014 2 2 Astro-H suzaku corot Science Programme building blocks “Large” (Ariane 5-class) missions 1. High innovation content 2. European flagships 3. 1 B€ class 4. 3 per 20 years Herschel XMM-Newton Rosetta BepiColombo L3 L2 JUICE BepiColombo GAIA Herschel Rosetta XMM STSP 1980 1990 2000 2010 2020 2030 2040 H2000 H2000+ CV 2040 2035 2030 2025 2020 2015 2010 2005 2000 1995 1990 0 2 4 6 8 10 Science Programme building blocks “Medium” (Soyuz-class) missions 1. Makes use of current cutting-edge technology 2. Programme workhorse 3. 500 M€ class Planck 4. 3-4 per 10 years Euclid Solar Orbiter Mars Express 2040 2030 2020 2010 2000 1990 1980 0 5 10 15 20 Science Programme building blocks Missions of Opportunity 1. Moderate-size participation of the ESA Science Programme in missions led by partners 2. Format can vary 3. Increase flight and science opportunities for European scientists COROT ASTRO-H Hinode Double Star Science Programme building blocks Small missions a. New Programme element, still “experimental” b. Fast and with ESA CaC = 0.1 yearly budget c. Increase flight opportunities for European scientists d. Example: CHEOPS PLATO EUCLID SOLAR JUICE Astro H ORBITER µSCOPE Cheops ExoMars JWST BEPI LISA PF GAIA COLOMBO Akari Proba 2 Chandrayaan PLANCK Hinode HERSCHEL COROT ROSETTA Double Star SMART INTEGRAL Suzaku 1 SOHO VENUS MARS XMM F 2 CLUSTER → EXPRESS EXPRESS NEWTON CLUSTER HUYGENS ULYSSES ISO Time II HST 2030 2025 2020 2015 2010 2005 2000 1995 1990 1985 0 2 4 6 8 10 12 Small missions a. -
Observation of Pc 3/5 Magnetic Pulsations Around the Cusp at Mid Altitude
1 OBSERVATION OF PC 3/5 MAGNETIC PULSATIONS AROUND THE CUSP AT MID ALTITUDE Liu Yonghua(1), Liu Ruiyuan(1), B. J. Fraser(2), S. T. Ables(2), Xu Zhonghua(1), Zhang Beichen(1), Shi Jiankui(3), Liu Zhenxing(3), Huang Dehong(1), Hu Zejun(1), Chen Zhuotian(1), Wang Xiao(3), Malcolm Dunlop(4), A. Balogh(5) (1) Polar Research Institute of China, 451 Jinqiao Rd., Shanghai 200136, P. R. CHINA, [email protected] (2) The University of Newcastle, University Drive, Callaghan NSW 2308, AUSTRALIA, [email protected] (3)The Center of Space Science & Applied Research, Chinese Academy of Science, Post Box8701, Beijing 100080, jkshi@@center.cssar.ac.cn (4) The Rutherford Appleton Laboratory, Chilton, DIDCOT, Oxfordshire, OX11 0QX, UK, [email protected] (5)Space and Atmospheric Physics Group, Imperial College, London, [email protected] ABSTRACT transmitted straightforwardly from solar wind to the ionosphere (Bolshakova & Troitskaia, 1984). So far most Since launched in year 2000 the Cluster mission has research work on such topic are on basis of observation passed the region around the cusp at mid-altitude (~6Re) at ground or/and data from satellite located in the for many times, where ULF wave activities are rich in. upstream of solar wind or in the magnetosheath. To my From 0800 to 1300UT on October 30 2002 the Cluster knowledge, few authors take a study based on the spacecrafts ran along an orbit of southern cusp- measurement at the mid-altitude of the cusp. It seems plasmasphere-northern cusp that provides an excellent reasonable to assume that such a measurement be a direct observation of ULF waves in dayside magnetosphere. -
Mars Reconnaissance Orbiter
Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations. -
China's Space Industry and International Collaboration
China’s Space Industry and International Collaboration Presenter: Ju Jin Title: Minister Counselor,the Embassy of P.R.China Date: Feb 27,2008 Brief History • 52 years since 1956, first space institute established • Learning from Soviet Union until 1960 • U.S.A.’s close door policy until now • China’s self-reliance Policy Major Achievements • 12 series of Long March Launching Rockets • >100 Launches • >80 satellites in remote sensing, telecommunication, GPS, scientific experiment • Manned space flights——Shenzhou 5 (2003) and Shenzhou 6 (2005) • Lunar Exploration Project——Chang’e 1 (2007) LM-2F Launch Vehicle • Stages 1 & 2 & 4 strap-on boosters • 58.3 meters long • Launch Mass: 480 tons • Total Thrust : 600 tons • Reliability & Safety Index: 0.97 & 0.997 • 10 Sub-Systems Manned Space Flight--Shenzhou 6 Manned Space Flight--Shenzhou 6 Lunar Probe Project--Change-1 First Lunar Surface Photos Lunar Probe Project—Change 1 • 3 Years • 17,000 Scientists and Engineers • Young Team averaged in the age of 30s • 100% China-Made • Technology Breakthroughs – All-direction Antenna – Ultra-violet Sensor International Exchange and Cooperation: Main Activities Over the recent years, China has signed cooperation agreements on the peaceful use of outer space and space project cooperation agreements with Argentina, Brazil, Canada, France, Malaysia, Pakistan, Russia, Ukraine, the ESA and the European Commission, and has established space cooperation subcommittee or joint commission mechanisms with Brazil, France, Russia and Ukraine. China and the ESA z Sino-ESA Double Star Satellite Exploration of the Earth's Space Plan. z "Dragon Program," involving cooperation in Earth observation satellites, having so far conducted 16 remote-sensing application projects in the fields of agriculture, forestry, water conservancy, meteorology, oceanography and disasters. -
Visit the National Academies Press Online, the Authoritative Source
Assessment of the CRAF and Cassini Science Missions: Letter Report Committee on Planetary and Lunar Exploration, Space Science Board, Commission on Physical Sciences, Mathematics, and Resources, National Research Council ISBN: 0-309-12299-6, 7 pages, 8 1/2 x 11, (1988) This free PDF was downloaded from: http://www.nap.edu/catalog/12334.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. Space Studies Board Jump to Search: Top NewsJump to Science in the Subscribe to our FREE e- Headlines newsletter! NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL June 18, 2004 Current Operating Status Assessment of the CRAF and Cassini Science Missions: Letter Report http://www.nap.edu/catalog/12334.html On September 1, 1988, Dr. -
On the Structure of Polar Faculae on the Sun
A&A 425, 321–331 (2004) Astronomy DOI: 10.1051/0004-6361:20041120 & c ESO 2004 Astrophysics On the structure of polar faculae on the Sun O. V. Okunev1,2 and F. Kneer1 1 Universitäts-Sternwarte, Geismarlandstr. 11, 37083 Göttingen, Germany e-mail: [Kneer;olok]@uni-sw.gwdg.de 2 Central Astronomical Observatory at Pulkovo, 196140 St. Petersburg, Russia Received 20 April 2004 / Accepted 25 May 2004 Abstract. Faculae on the polar caps of the Sun, in short polar faculae (PFe), are investigated. They take part in the magnetic solar cycle. Here, we study the fine structures of PFe, their magnetic fields and their dynamics on short time scales. The observations stem from several periods in 2001 and 2002. They consist of spectropolarimetric data (Stokes I and V) taken in the Fe 6301.5 and 6302.5 Å and Fe 6149.3 Å lines with the Gregory-Coudé Telescope (GCT) and the Vacuum Tower Telescope (VTT) at the Observatorio del Teide on Tenerife. At the VTT, the “Göttingen” two-dimensional Fabry-Perot spectrometer was used. It allows image reconstruction with speckle methods resulting in spatial resolution of approximately 0. 25 for broadband images and 0. 5 for magnetograms. The application of singular value decomposition yielded a polarimetric detection limit of −3 |V|≈2 × 10 Ic.WefindthatPFe,ofsizeof1 or larger, possess substantial fine structure of both brightness and magnetic fields. The brightness and the location of polar facular points change noticeably within 50 s. The facular points have strong, kilo-Gauss magnetic fields, they are unipolar with the same polarity as the global, poloidal magnetic field. -
Mro High Resolution Imaging Science Experiment (Hirise)
Sixth International Conference on Mars (2003) 3287.pdf MROHIGHRESOLUTIONIMAGINGSCIENCEEXPERIMENT(HIRISE): INSTRUMENTDEVELOPMENT.AlanDelamere,IraBecker,JimBergstrom,JonBurkepile,Joe Day,DavidDorn,DennisGallagher,CharlieHamp,JeffreyLasco,BillMeiers,AndrewSievers,Scott StreetmanStevenTarr,MarkTommeraasen,PaulVolmer.BallAerospaceandTechnologyCorp.,PO Box1062,Boulder,CO80306 Focus Introduction:Theprimaryfunctionalre- Mechanism PrimaryMirror quirementoftheHiRISEimager,figure1isto PrimaryMirrorBaffle 2nd Fold allowidentificationofbothpredictedandun- Mirror knownfeaturesonthesurfaceofMarstoa muchfinerresolutionandcontrastthanprevi- ouslypossible[1],[2].Thisresultsinacam- 1st Fold erawithaverywideswathwidth,6kmat Mirror 300kmaltitude,andahighsignaltonoise ratio,>100:1.Generationofterrainmaps,30 Filters cmverticalresolution,fromstereoimages Focal requiresveryaccurategeometriccalibration. Plane Theprojectlimitationsofmass,costand schedulemakethedevelopmentchallenging. FocalPlane SecondaryMirror Inaddition,thespacecraftstability[3]must Electronics TertiaryMirror SecondaryMirrorBaffle notbeamajorlimitationtoimagequality. Thenominalorbitforthesciencephaseofthe missionisa3pmorbitof255by320kmwith Figure1Cameraopticalpathoptimizedforlowmass periapsislockedtothesouthpole.Thetrack Integration(TDI)tocreateveryhigh(100:1)signalnoise velocityisapproximately3,400m/s. ratioimages. HiRISEFeatures:TheHiRISEinstrumentperformance Theimagerdesignisanall-reflectivethreemirrorastig- goalsarelistedinTable1.Thedesignfeaturesa50cm matictelescopewithlight-weightedZeroduropticsanda -
Volume 36 March 2007 Number 3 from the Director
The Official Publication of the Amateur Astronomers Association of Princeton Director Treasurer Program Chairman Rex Parker Brian VanLiew Ken Kremer Assistant Director Secretary Editors John Miller Ludy D’Angelo Bryan Hubbard and Ira Polans Volume 36 March 2007 Number 3 From the Director presentation on March 30, he will share some of this experience through photos and video, including his most recent expedition to Libya AAAP Meeting March 13 (8:00 Peyton Hall). Our astronomical in 2006. Information about future solar eclipses visible from Princeton excursion heads next to an exciting new area with a novel will be distributed at this event, at which the public is also welcome presentation on Plasma Propulsion and the Exploration of (bring your kids too!). For more information, please go to the AAAP Space, by Dr. Edgar Choueiri, Director of Princeton's Electric website or contact Ken Kremer. Propulsion and Plasma Dynamics Lab (EPPDyL). Dr Choueiri is Associate Professor in the Mechanical and Aerospace Observing events coming up. The Observatory Committee and other Engineering (MAE) Dept at Princeton, and also Assoc. Faculty in members have been doing a great job organizing and getting the Astrophysics. With his deep background in plasma and space telescope/mount upgrade completed for the next observing season. At physics and applied mathematics, Dr Choueiri is a leading expert the recent Board meeting Feb 1, we decided to improve public outreach and proponent of advances in propulsion science and technology. (and member access) at the Observatory by scheduling every Friday In his talk he will describe from firsthand knowledge what this night in April-October as public observing nights. -
A Forecast of Reduced Solar Activity and Its Implications for Nasa
A FORECAST OF REDUCED SOLAR ACTIVITY AND ITS IMPLICATIONS FOR NASA Kenneth Schatten and Heather Franz* a.i. solutions, Inc. ABSTRACT The “Solar Dynamo” method of solar activity forecasting is reviewed. Known generically as a “precursor” method, insofar as it uses observations which precede solar activity generation, this method now uses the Solar Dynamo Amplitude (SODA) Index to estimate future long-term solar activity. The peak amplitude of the next solar cycle (#24), is estimated at roughly 124 in terms of smoothed F10.7 Radio Flux and 74 in terms of the older, more traditional smoothed international or Zurich Sunspot number (Ri or Rz). These values are significantly smaller than the amplitudes of recent solar cycles. Levels of activity stay large for about four years near the peak in smoothed activity, which is estimated to occur near the 2012 timeflame. Confidence is added to the prediction of low activity by numerous examinations of the Sun’s weakened polar field. Direct measurements are obtained by the Mount Wilson Solar Observatory and the Wilcox Solar Observatory. Further support is obtained by examining the Sun’s polar faculae (bright features), the shape of coronal soft X-ray “holes,” and the shape of the “source surface” - a calculated coronal feature which maps the large scale structure of the Sun’s field. These features do not show the characteristics of well-formed polar coronal holes associated with typical solar minima. They show stunted polar field levels, which are thought to result in stunted levels of solar activity during solar cycle #24. The reduced levels of solar activity would have concomitant effects upon the space environment in which satellites orbit. -
Space Telescope
rnal 5 Monty tarium of the Space Telescope ............ New ............................................... a 29 Gibbous Gazette ........................................... 32 Mobile News Network ............................................ 36 Planetechnica: Slip Rings .............................. 41 Reports from Committees ................................. 43 Secretary's Report ............................................. 47 President's Message ....................................... 54 jane's Corner ............................................................ Seeing Is Believing! In The U.S. & Canada contact Pearl Reilly: 1-800-726-8805 fax : 1-504-764-7665 email : [email protected] Aufflonzoo DlSlntJur", of ZetSS Plaflelilnums In The Umtoo Stares & Canada Carl Zeiss, Planelarium Division 0-07740 Jena ~SEILER +49-3641-642406, fax: -643023 email: [email protected] I N B TRLJIVlENT 170 E. Kirkham Ave ., St.louis. MO 63119 Planetarium Office: #28 Houmas Place, Destrehan, LA 70047 The Planetarian (ISN 0090-3213) is published quarterly by the International Dl"Ylai-,.,,,.',-,,,,,, Society. ©1998, International Planetarium Society, Inc., all rights reserved. Opinions exp1ressed e by authors are personal opinions and are not necessarily the opinions of the International etarium Society, its officers, or agents. Acceptance of advertisements, announcements, 1.27, No.4 material does not imply endorsement by the International Planetarium Society, its officers agents. The Editor welcomes items for consideration for publication. Please consult -
Oscillations Accompanying a He I 10830 {\AA} Negative Flare in a Solar
Draft version November 9, 2018 Typeset using LATEX twocolumn style in AASTeX61 OSCILLATIONS ACCOMPANYING A HE I 10830 A˚ NEGATIVE FLARE IN A SOLAR FACULA Andrei Chelpanov1 and Nikolai Kobanov1 1Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia ABSTRACT On September 21, 2012, we carried out spectral observations of a solar facula in the Si i 10827 A,˚ He i 10830 A,˚ and Hα spectral lines. Later, in the process of analyzing the data, we found a small-scale flare in the middle of the time series. Due to an anomalous increase in the absorption of the He i 10830 A˚ line, we identified this flare as a negative flare. The aim of this paper is to study the influence of the negative flare on the oscillation characteristics in the facular photosphere and chromosphere. We measured line-of-sight (LOS) velocity and intensity of all the three lines as well as half-width of the chromospheric lines. We also used SDO/HMI magnetic field data. The flare caused modulation of all the studied parameters. In the location of the negative flare, the amplitude of the oscillations increased four times on average. In the adjacent magnetic field local maxima, the chromospheric LOS velocity oscillations appreciably decreased during the flare. The facula region oscillated as a whole with a 5-minute period before the flare, and this synchronicity was disrupted after the flare. The flare changed the spectral composition of the line-of-sight magnetic field oscillations, causing an increase in the low-frequency oscillation power.