Historical Vegetation of Central Southwest Oregon, Based on GLO Survey Notes : Final Report to USDI Bureau of Land Management, Medford District

Total Page:16

File Type:pdf, Size:1020Kb

Historical Vegetation of Central Southwest Oregon, Based on GLO Survey Notes : Final Report to USDI Bureau of Land Management, Medford District Portland State University PDXScholar Institute for Natural Resources Publications Institute for Natural Resources - Portland 10-31-2011 Historical Vegetation of Central Southwest Oregon, Based on GLO Survey Notes : Final Report to USDI Bureau of Land Management, Medford District O. Eugene Hickman John A. Christy Portland State University Let us know how access to this document benefits ouy . Follow this and additional works at: http://pdxscholar.library.pdx.edu/naturalresources_pub Part of the Natural Resources and Conservation Commons, and the Soil Science Commons Citation Details Hickman, O. Eugene and John A. Christy. 2011. Historical Vegetation of Central Southwest Oregon Based on GLO Survey Notes. Final Report to USDI Bureau of Land Management. Medford District, Oregon. 124 pp. This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Institute for Natural Resources Publications by an authorized administrator of PDXScholar. For more information, please contact [email protected]. HISTORICAL VEGETATION OF CENTRAL SOUTHWEST OREGON, BASED ON GLO SURVEY NOTES Final Report to USDI BUREAU OF LAND MANAGEMENT Medford District October 31, 2011 By O. Eugene Hickman and John A. Christy Consulting Rangeland Ecologist Oregon Biodiversity Information Center Retired, USDA - NRCS Portland State University 61851 Dobbin Road PSU – INR, P.O. Box 751 Bend, Oregon 97702 Portland, Oregon 97207-0751 (541, 312-2512) (503, 725-9953) [email protected] [email protected] Suggested citation: Hickman, O. Eugene and John A. Christy. 2011. Historical Vegetation of Central Southwest Oregon Based on GLO Survey Notes. Final Report to USDI Bureau of Land Management. Medford District, Oregon. 124 pp. ______________________________________________________________________________ 1 TABLE OF CONTENTS SUMMARY ........................................................................................................................................................................ 4 ACKNOWLEDGEMENTS ............................................................................................................................................... 5 INTRODUCTION .............................................................................................................................................................. 7 SW OREGON PRE-GLO SURVEY HISTORY ....................................................................................................................... 7 THE GENERAL LAND OFFICE, ITS FUNCTION AND HISTORY............................................................................................ 10 Transition to Southern Oregon ................................................................................................................................. 10 SW Oregon GLO Survey Program ........................................................................................................................... 11 PROJECT OBJECTIVES ...................................................................................................................................................... 12 PRODUCTS ....................................................................................................................................................................... 12 Viewing GLO Data and Project Deliverables .......................................................................................................... 12 STUDY AREA .................................................................................................................................................................. 13 BLM FUNDED PROJECT .................................................................................................................................................. 13 OSU PROJECT AND COMBINED STUDY AREA ................................................................................................................. 16 ENVIRONMENTAL SETTING ............................................................................................................................................. 17 Ecological Divisions ................................................................................................................................................. 17 Geology .................................................................................................................................................................... 20 Topography .............................................................................................................................................................. 20 Climate ..................................................................................................................................................................... 21 Soils .......................................................................................................................................................................... 24 THE GLO SURVEY SYSTEM AND RECORDS ......................................................................................................... 26 LOCAL SURVEY PROCEDURE .......................................................................................................................................... 26 GLO RECORDS ............................................................................................................................................................ 27 Bearing or Witness Tree Data .................................................................................................................................. 27 Section Line Measurements, Intercepts and References ........................................................................................... 27 Descriptions of Section Lines ................................................................................................................................... 28 General Description of Townships ........................................................................................................................... 28 Township Plat ........................................................................................................................................................... 28 COMMENTS REGARDING THE USE AND INTERPRETATION OF GLO RECORDS ................................................................. 28 METHODS AND PROCEDURES ................................................................................................................................. 30 INTRODUCTION ............................................................................................................................................................... 30 PREPARATION OF ACCESS DATABASE ............................................................................................................................. 32 Overview ................................................................................................................................................................... 32 Township Table Preparation .................................................................................................................................... 32 Line Table Preparation ............................................................................................................................................ 32 Completed Line Tables ............................................................................................................................................. 33 PREPARATION OF HISTORICAL VEGETATION MAPS ........................................................................................................ 33 Overview ................................................................................................................................................................... 33 Development of Fine-Scale Map Units (Vegetation Subclasses) .............................................................................. 33 Development of Coarse-scale Map Units (Vegetation Classes) ............................................................................... 34 Forest. ..................................................................................................................................................................................... 35 Woodland. ............................................................................................................................................................................... 35 Savanna. .................................................................................................................................................................................. 35 Shrubland. ............................................................................................................................................................................... 35 Prairie. ..................................................................................................................................................................................... 35 2 RESULTS: GLO SURVEY, PRODUCTS AND DISCUSSION .................................................................................. 36 SOUTHWEST OREGON GLO SURVEYS ............................................................................................................................. 36 Surveyors .................................................................................................................................................................
Recommended publications
  • Thuja Plicata Has Many Traditional Uses, from the Manufacture of Rope to Waterproof Hats, Nappies and Other Kinds of Clothing
    photograph © Daniel Mosquin Culturally modified tree. The bark of Thuja plicata has many traditional uses, from the manufacture of rope to waterproof hats, nappies and other kinds of clothing. Careful, modest, bark stripping has little effect on the health or longevity of trees. (see pages 24 to 35) photograph © Douglas Justice 24 Tree of the Year : Thuja plicata Donn ex D. Don In this year’s Tree of the Year article DOUGLAS JUSTICE writes an account of the western red-cedar or giant arborvitae (tree of life), a species of conifers that, for centuries has been central to the lives of people of the Northwest Coast of America. “In a small clearing in the forest, a young woman is in labour. Two women companions urge her to pull hard on the cedar bark rope tied to a nearby tree. The baby, born onto a newly made cedar bark mat, cries its arrival into the Northwest Coast world. Its cradle of firmly woven cedar root, with a mattress and covering of soft-shredded cedar bark, is ready. The young woman’s husband and his uncle are on the sea in a canoe carved from a single red-cedar log and are using paddles made from knot-free yellow cedar. When they reach the fishing ground that belongs to their family, the men set out a net of cedar bark twine weighted along one edge by stones lashed to it with strong, flexible cedar withes. Cedar wood floats support the net’s upper edge. Wearing a cedar bark hat, cape and skirt to protect her from the rain and INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite, A grove of 80- to 100-year-old Thuja plicata in Queen Elizabeth Park, Vancouver.
    [Show full text]
  • July 2018 Newsletter FOUNDATION
    Bear Creek Greenway July 2018 Newsletter FOUNDATION Meet Board Member Shana Thomas Roxy Ann I grew up in a family where spending time outdoors was just the norm. We would camp and hike year round, and I developed a deep appreciation for green spaces. I continue On the Central Point Section of the Greenway Trail at this lifestyle today with my own children, fostering in them the same love for the outdoors. Mile 24 looking to the southeast, you’ll see a prominent, My family and I moved to the Rogue Valley in the summer of 2015 for my job at a co-op cone-shaped peak called “Roxy Ann” (elevation 3,756 where my personal and professional passions align. We were ecstatic at the opportunity feet). The upland Takelma (or Latgawa) Indians that lived to live so close to rivers, mountains, and trees. We often refer to our family as “the circus,” in the Table Rock/Central Point area called this mountain raising three rambunctious daughters, and we couldn’t wait for the outdoor adventures that “Alwiya.” They gathered acorns and hunted deer on its would ensue. Shortly after we arrived in Medford, our youngest daughter was diagnosed with Transverse Myelitis and Acute Flaccid Paralysis, a neuro-muscular condition with an slopes. The Rogue Valley’s first Euro-American settlers unknown prognosis. Once we wrapped our heads around our new reality of life with a dubbed the peak “Skinner’s Butte” for Alonzo A. Skinner special needs child, we made a commitment to continue to prioritize outdoor experiences (whose log cabin, the first settler’s house in the valley, as a family.
    [Show full text]
  • Guide Alaska Trees
    x5 Aá24ftL GUIDE TO ALASKA TREES %r\ UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE Agriculture Handbook No. 472 GUIDE TO ALASKA TREES by Leslie A. Viereck, Principal Plant Ecologist Institute of Northern Forestry Pacific Northwest Forest and Range Experiment Station ÜSDA Forest Service, Fairbanks, Alaska and Elbert L. Little, Jr., Chief Dendrologist Timber Management Research USD A Forest Service, Washington, D.C. Agriculture Handbook No. 472 Supersedes Agriculture Handbook No. 5 Pocket Guide to Alaska Trees United States Department of Agriculture Forest Service Washington, D.C. December 1974 VIERECK, LESLIE A., and LITTLE, ELBERT L., JR. 1974. Guide to Alaska trees. U.S. Dep. Agrie., Agrie. Handb. 472, 98 p. Alaska's native trees, 32 species, are described in nontechnical terms and illustrated by drawings for identification. Six species of shrubs rarely reaching tree size are mentioned briefly. There are notes on occurrence and uses, also small maps showing distribution within the State. Keys are provided for both summer and winter, and the sum- mary of the vegetation has a map. This new Guide supersedes *Tocket Guide to Alaska Trees'' (1950) and is condensed and slightly revised from ''Alaska Trees and Shrubs" (1972) by the same authors. OXFORD: 174 (798). KEY WORDS: trees (Alaska) ; Alaska (trees). Library of Congress Catalog Card Number î 74—600104 Cover: Sitka Spruce (Picea sitchensis)., the State tree and largest in Alaska, also one of the most valuable. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402—Price $1.35 Stock Number 0100-03308 11 CONTENTS Page List of species iii Introduction 1 Studies of Alaska trees 2 Plan 2 Acknowledgments [ 3 Statistical summary .
    [Show full text]
  • The Evolution of Inbreeding in Western Redcedar (Thuja Plicata: Cupressaceae)
    THE EVOLUTION OF INBREEDING IN WESTERN REDCEDAR (THUJA PLICATA: CUPRESSACEAE) by LISA MARIE O'CONNELL B.A. University of Ottawa, 1993 B.Sc. Dalhousie University, 1995 M.Sc. Queen's University, 1997 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Forest Sciences) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA 2003 © Lisa Marie O'Connell, 2003 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of forfs't Sci e rt c*5 The University of British Columbia Vancouver, Canada Date April H , 2^003 DE-6 (2/88) Abstract Long-lived woody plants usually show high levels of outcrossing, inbreeding depression and genetic diversity compared to other plants. A review of the literature showed a mean oucrossing rate of 83.5 in conifers, and a positive, but weak, correlation between outcrossing and genetic diversity. Among conifers, western redcedar (Thuja plicata, Cupressaceae) has one of the highest rates of self-fertilization and lowest amount of genetic diversity, and thus offers the opportunity to study the evolution of inbreeding in a predominantly outcrossing group of plants.
    [Show full text]
  • Vegetation Unit Summaries for Springwater Corridor (SCOR)
    Vegetation Unit Summaries for Springwater Corridor (SCOR) Report date: 3/27/2007 '*' = non-native invasive species Visit data as of: 3/27/2007 Unit rSCOR*104 Size: 0.16 Acres NVCS Subclass: Deciduous forest % Tree canopy: 60% % Non-Native Cover: 90 Slope: na Aspect: na Visit date: 8/2/2006 Wetland indicators: Streams, Hydrophilic Vegetation. (Surface water was present) Dominant Trees: red alder (Alnus rubra). Dominant Shrubs: Himalayan blackberry (Rubus discolor*). Shrubs > 20% cover: red-osier dogwood (Cornus sericea ssp. sericea). Dominant Grasses: reed canarygrass (Phalaris arundinacea* > 50% cover). Additional Invasives: yellow flag iris (Iris pseudacorus*), bittersweet nightshade (Solanum dulcamara*). Ecological Health: Fair. Primary Management concerns: heavy level of invasive species, Stream Bank Erosion. Unit rSCOR*105 Size: 7.54 Acres NVCS Subclass: Deciduous woodland % Tree canopy: 55% % Non-Native Cover: 90 Slope: na Aspect: na Visit date: 8/2/2006 Wetland indicators: Streams, Hydrophilic Vegetation. (Surface water was present) Dominant Trees: red alder (Alnus rubra). Dominant Shrubs: Himalayan blackberry (Rubus discolor*). Shrubs > 20% cover: red-osier dogwood (Cornus sericea ssp. sericea). Dominant Grasses: reed canarygrass (Phalaris arundinacea* > 50% cover). Additional Invasives: yellow flag iris (Iris pseudacorus*), bittersweet nightshade (Solanum dulcamara*). Ecological Health: Fair. Primary Management concerns: heavy level of invasive species, Stream Bank Erosion. Unit rSCOR*108 Size: 0.32 Acres NVCS Subclass: Deciduous woodland % Tree canopy: 40% % Non-Native Cover: 90 Slope: na Aspect: na Visit date: 8/2/2006 Wetland indicators: Streams, Hydrophilic Vegetation. (Surface water was present) Dominant Trees: red alder (Alnus rubra). Dominant Shrubs: Himalayan blackberry (Rubus discolor*). Dominant Grasses: reed canarygrass (Phalaris arundinacea* > 50% cover).
    [Show full text]
  • Case Study of Anatomy, Physical and Mechanical Properties of the Sapwood and Heartwood of Random Tree Platycladus Orientalis (L.) Franco from South-Eastern Poland
    Article Case Study of Anatomy, Physical and Mechanical Properties of the Sapwood and Heartwood of Random Tree Platycladus orientalis (L.) Franco from South-Eastern Poland Agnieszka Laskowska * , Karolina Majewska, Paweł Kozakiewicz , Mariusz Mami ´nskiand Grzegorz Bryk The Institute of Wood Sciences and Furniture, 159 Nowoursynowska St., 02-776 Warsaw, Poland; [email protected] (K.M.); [email protected] (P.K.); [email protected] (M.M.); [email protected] (G.B.) * Correspondence: [email protected] Abstract: Oriental arborvitae is not fully characterized in terms of its microscopic structure or physical or mechanical properties. Moreover, there is a lot of contradictory information in the literature about oriental arborvitae, especially in terms of microscopic structure. Therefore, the sapwood (S) and heartwood (H) of Platycladus orientalis (L.) Franco from Central Europe were subjected to examinations. The presence of helical thickenings was found in earlywood tracheids (E). Latewood tracheids (L) were characterized by a similar thickness of radial and tangential walls and a similar diameter in the tangential direction in the sapwood and heartwood zones. In the case of earlywood tracheids, such a similarity was found only in the thickness of the tangential walls. The volume swelling (VS) of sapwood and heartwood after reaching maximum moisture content (MMC) was 12.8% (±0.5%) and 11.2% (±0.5%), respectively. The average velocity of ultrasonic Citation: Laskowska, A.; Majewska, waves along the fibers (υ) for a frequency of 40 kHz was about 6% lower in the heartwood zone K.; Kozakiewicz, P.; Mami´nski,M.; than in the sapwood zone. The dynamic modulus of elasticity (MOED) was about 8% lower in the Bryk, G.
    [Show full text]
  • Mants Availability Shrubs
    FooterDate Co ProdCategory BotPlant A2 Price1 Price2 Price3 Perennials 1 to 24 25 to 49 50 & Up Achellia fillipendulina 'Coronation Gold' 1 Gal 286.00 5.00 4.25 3.50 Achellia fillipendulina 'Coronation Gold' Flat 54.00 26.00 23.00 20.00 Achillea millefolium 'Strawberry Seduction' 1 Gal 10.00 5.00 4.25 3.50 Andropogon ternarius 1 Gal 1,422.00 5.50 4.75 4.00 Asclepias tuberosa 1 Gal 473.00 5.00 4.25 3.50 Asclepias tuberosa Flat 30.00 26.00 23.00 20.00 Aster novae-angliae 'Purple Dome' 1 Gal 1,314.00 5.00 4.25 3.50 Aster novae-angliae 'Purple Dome' Flat 34.00 26.00 23.00 20.00 Athyrium 'Ghost' 1 Gal 368.00 5.50 4.75 4.00 Calamagrostis sp. 1 Gal 242.00 5.50 4.75 4.00 Calamagrostis x acutiflora 'Karl Foerester' 3 Gal 598.00 10.75 9.50 8.25 Carex comans Marginata 'Snowline' 1 Gal 898.00 6.25 5.50 4.75 Carex hachijoensis 'Evergold' 1 Gal 926.00 6.25 5.50 4.75 Carex morrovii 'Ice Dance' 1 Gal 1,197.00 6.25 5.50 4.75 Carex pensylvanica 1 Gal 91.00 6.25 5.50 4.75 Chasmanthium latifolium 1 Gal 1,550.00 5.50 4.75 4.00 Convallaria majalis 1 Gal 17.00 5.50 4.75 4.00 Coreopsis 'Moonbeam' 1 Gal 1,326.00 5.00 4.25 3.50 Crocosmia x crocosmiiflora 'Emily McKenzie' 1 Gal 10.00 5.00 4.25 3.50 Dicentra spectabilis 3 Gal 21.00 13.50 12.00 10.00 Dryopteris marginalis 1 Gal 854.00 5.50 4.75 4.00 Echinacea 'Pow Wow White' 1 Gal 220.00 5.00 4.25 3.50 Echinacea 'Pow wow Wild Berry' 1 Gal 1,920.00 5.00 4.25 3.50 Echinacea 'Pow wow Wild Berry' 2 Gal 72.00 8.50 7.25 6.00 Echinacea 'Pow wow Wild Berry' Flat 9.00 26.00 23.00 20.00 Echinacea purpurea 1 Gal 125.00 5.00
    [Show full text]
  • Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part II Cupressoideae
    1 2 Bull. CCP 4 (2): 51-78. (10.2015) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part II Cupressoideae Summary The cone morphology of the Cupressoideae genera Calocedrus, Thuja, Thujopsis, Chamaecyparis, Fokienia, Platycladus, Microbiota, Tetraclinis, Cupressus and Juniperus are presented in young stages, at pollination time as well as at maturity. Typical cone diagrams were drawn for each genus. In contrast to the taxodiaceous Cupressaceae, in Cupressoideae outgrowths of the seed-scale do not exist; the seed scale is completely reduced to the ovules, inserted in the axil of the cone scale. The cone scale represents the bract scale and is not a bract- /seed scale complex as is often postulated. Especially within the strongly derived groups of the Cupressoideae an increased number of ovules and the appearance of more than one row of ovules occurs. The ovules in a row develop centripetally. Each row represents one of ascending accessory shoots. Within a cone the ovules develop from proximal to distal. Within the Cupressoideae a distinct tendency can be observed shifting the fertile zone in distal parts of the cone by reducing sterile elements. In some of the most derived taxa the ovules are no longer (only) inserted axillary, but (additionally) terminal at the end of the cone axis or they alternate to the terminal cone scales (Microbiota, Tetraclinis, Juniperus). Such non-axillary ovules could be regarded as derived from axillary ones (Microbiota) or they develop directly from the apical meristem and represent elements of a terminal short-shoot (Tetraclinis, Juniperus).
    [Show full text]
  • Plant Palette - Trees 50’-0”
    50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Zelkova Serrata “Greenvase” Metasequoia glyptostroboides Cladrastis kentukea Chamaecyparis obtusa ‘Gracilis’ Ulmus parvifolia “Emer I” Green Vase Zelkova Dawn Redwood American Yellowwood Slender Hinoki Falsecypress Athena Classic Elm • Vase shape with upright arching branches • Narrow, conical shape • Horizontally layered, spreading form • Narrow conical shape • Broadly rounded, pendulous branches • Green foliage • Medium green, deciduous conifer foliage • Dark green foliage • Evergreen, light green foliage • Medium green, toothed leaves • Orange Fall foliage • Rusty orange Fall foliage • Orange to red Fall foliage • Evergreen, no Fall foliage change • Yellowish fall foliage Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Quercus coccinea Acer freemanii Cercidiphyllum japonicum Taxodium distichum Thuja plicata Scarlet Oak Autumn Blaze Maple Katsura Tree Bald Cyprus Western Red Cedar • Pyramidal, horizontal branches • Upright, broad oval shape • Pyramidal shape • Pyramidal shape, develops large flares at base • Pyramidal, buttressed base with lower branches • Long glossy green leaves • Medium green fall foliage • Bluish-green, heart-shaped foliage • Leaves are needle-like, green • Leaves green and scale-like • Scarlet red Fall foliage • Brilliant orange-red, long lasting Fall foliage • Soft apricot Fall foliage • Rich brown Fall foliage • Sharp-pointed cone scales Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Thuja plicata “Fastigiata” Sequoia sempervirens Davidia involucrata Hogan
    [Show full text]
  • Native Plant List CITY of OREGON CITY 320 Warner Milne Road , P.O
    Native Plant List CITY OF OREGON CITY 320 Warner Milne Road , P.O. Box 3040, Oregon City, OR 97045 Phone: (503) 657-0891, Fax: (503) 657-7892 Scientific Name Common Name Habitat Type Wetland Riparian Forest Oak F. Slope Thicket Grass Rocky Wood TREES AND ARBORESCENT SHRUBS Abies grandis Grand Fir X X X X Acer circinatumAS Vine Maple X X X Acer macrophyllum Big-Leaf Maple X X Alnus rubra Red Alder X X X Alnus sinuata Sitka Alder X Arbutus menziesii Madrone X Cornus nuttallii Western Flowering XX Dogwood Cornus sericia ssp. sericea Crataegus douglasii var. Black Hawthorn (wetland XX douglasii form) Crataegus suksdorfii Black Hawthorn (upland XXX XX form) Fraxinus latifolia Oregon Ash X X Holodiscus discolor Oceanspray Malus fuscaAS Western Crabapple X X X Pinus ponderosa Ponderosa Pine X X Populus balsamifera ssp. Black Cottonwood X X Trichocarpa Populus tremuloides Quaking Aspen X X Prunus emarginata Bitter Cherry X X X Prunus virginianaAS Common Chokecherry X X X Pseudotsuga menziesii Douglas Fir X X Pyrus (see Malus) Quercus garryana Garry Oak X X X Quercus garryana Oregon White Oak Rhamnus purshiana Cascara X X X Salix fluviatilisAS Columbia River Willow X X Salix geyeriana Geyer Willow X Salix hookerianaAS Piper's Willow X X Salix lucida ssp. lasiandra Pacific Willow X X Salix rigida var. macrogemma Rigid Willow X X Salix scouleriana Scouler Willow X X X Salix sessilifoliaAS Soft-Leafed Willow X X Salix sitchensisAS Sitka Willow X X Salix spp.* Willows Sambucus spp.* Elderberries Spiraea douglasii Douglas's Spiraea Taxus brevifolia Pacific Yew X X X Thuja plicata Western Red Cedar X X X X Tsuga heterophylla Western Hemlock X X X Scientific Name Common Name Habitat Type Wetland Riparian Forest Oak F.
    [Show full text]
  • Fraxinus Spp. Family: Oleaceae American Ash
    Fraxinus spp. Family: Oleaceae American Ash Ash ( Fraxinus sp.) is composed of 40 to 70 species, with 21 in Central and North America and 50 species in Eurasia. All species look alike microscopically. The name fraxinus is the classical Latin name for ash. Fraxinus americana*- American White Ash, Biltmore Ash, Biltmore White Ash, Canadian Ash, Cane Ash, Green Ash, Ground Ash, Mountain Ash, Quebec Ash, Red Ash, Smallseed White Ash, White Ash , White River Ash, White Southern Ash Fraxinus anomala-Dwarf Ash, Singleleaf Ash Fraxinus berlandierana-Berlandier Ash , Mexican Ash Fraxinus caroliniana-Carolina Ash , Florida Ash, Pop Ash, Swamp Ash, Water Ash Fraxinus cuspidata-Flowering Ash, Fragrant Ash Fraxinus dipetala-California Flwoering Ash, California Shrub Ash, Foothill Ash, Flowering Ash, Fringe- flowering Ash, Mountain Ash, Two-petal Ash Fraxinus gooddingii-Goodding Ash Fraxinus greggii-Dogleg Ash, Gregg Ash, Littleleaf Ash Fraxinus latifolia*-Basket Ash, Oregon Ash, Water Ash, White Ash Fraxinus nigra*-American Black Ash, Basket Ash, Black Ash , Brown Ash, Canadian Ash, Hoop Ash, Splinter Ash, Swamp Ash, Water Ash Fraxinus papillosa-Chihuahua Ash Fraxinus pennsylvanica*-Bastard Ash, Black Ash, Blue Ash, Brown Ash, Canadian Ash, Darlington Ash, Gray Ash, Green Ash , Piss Ash, Pumpkin Ash, Red Ash, Rim Ash, River Ash, Soft Ash,Swamp Ash, Water Ash, White Ash Fraxinus profunda*-Pumpkin Ash, Red Ash Fraxinus quadrangulata*-Blue Ash , Virginia Ash Fraxinus texensis-Texas Ash Fraxinus velutina-Arizona Ash, Desert Ash, Leatherleaf Ash, Modesto Ash, Smooth Ash, Toumey Ash, Velvet Ash (* commercial species) Distribution The north temperate regions of the globe. The Tree Ashes are trees or shrubs with large, opposite, pinnately compound leaves, which are shed in the fall.
    [Show full text]
  • 15-1119 Project Overview
    #15-1119 Project Overview McCormick Creek Riparian Restoration Bank & Riparian Vegetation 1.2 acres Floodplain Terrace 15 acres Species Common name Density Species Common name Density Cornus sericea Red-osier dogwood Cornus sericea Red-osier dogwood Lonicera involucrata Black twinberrry Lonicera involucrata Black twinberrry Physocarpus captitatus Pacific ninebark Physocarpus captitatus Pacific ninebark 1,500/acre 700/acre Salix lasiandra Pacific willow Salix lasiandra Pacific willow Salix sitchensis Sitka willow Salix sitchensis Sitka willow Spirea douglasii Douglas' spirea Spirea douglasii Douglas' spirea Alnus rubra Red alder Acer macrophyllum Bigleaf maple Crataegus douglasii Douglas hawthorn Alnus rubra Red alder Fraxinus latifolia Oregon ash 800/acre Crataegus douglasii Douglas hawthorn Populus trichocarpa Black cottonwood Fraxinus latifolia Oregon ash 900/acre Pyrus fusca Pacific crabapple Populus trichocarpa Black cottonwood Pyrus fusca Pacific crabapple Thuja plicata Western red-cedar McCormick Creek 01 (Tier 2) ◦ Received highest score - Lower EF Lewis Assessment ◦ Coho ◦ Steelhead – upper reaches ◦ Chinook – juvenile usage ◦ Chum? Create resilient riparian and floodplain plant communities Create in-stream habitat Improve floodplain function Improve water quality impairments impacting salmonids and other aquatic species 16+ acres Beaver ½ mile of stream corridor Targeted species High density – 1,600 to Long term strategy 2,300 stems/acre Replicate Lockwood Maintenance Creek successes McCormick Creek Riparian Restoration
    [Show full text]