Asteropeia Mcphersonii, a Potential Mycorrhizal Facilitator for Ecological Restoration in Madagascar Wet Tropical Rainforests

Total Page:16

File Type:pdf, Size:1020Kb

Asteropeia Mcphersonii, a Potential Mycorrhizal Facilitator for Ecological Restoration in Madagascar Wet Tropical Rainforests Forest Ecology and Management 358 (2015) 202–211 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Asteropeia mcphersonii, a potential mycorrhizal facilitator for ecological restoration in Madagascar wet tropical rainforests ⇑ Charline Henry a, , Jeanne-Françoise Raivoarisoa b, Angélo Razafimamonjy b, Heriniaina Ramanankierana c, Paul Andrianaivomahefa b, Marc-André Selosse d, Marc Ducousso e a AgroParisTech, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD/INRA/CIRAD/Montpellier SupAgro/Université Montpellier, TA10J, 34398 Montpellier Cedex 5, France b Ambatovy, Immeuble Tranofitaratra, 7ème étage, Rue Ravoninahitriniarivo, Ankorondrano, Antananarivo 101, Madagascar c Centre National de Recherches sur l’Environnement, Laboratoire de Microbiologie de l’environnement, Antananarivo, Madagascar d Institut de Systématique, Évolution, Biodiversité, ISYEB, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP50, 75005 Paris, France e CIRAD, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD/INRA/CIRAD/Montpellier SupAgro/Université Montpellier, TA10C, 34398 Montpellier Cedex 5, France article info abstract Article history: Ecological restoration in severely disturbed environments can fail because of lack of knowledge of the Received 21 April 2015 functioning of the original ecosystem. Nevertheless, facilitating establishment between plant species Received in revised form 10 September can help accelerate ecological succession, especially in stressful environments. Mycorrhizal symbiosis 2015 plays a key role in plant growth, particularly in harsh environments, and could also play a role in facilita- Accepted 11 September 2015 tion between plants, as mycorrhizal fungi can form a mycelial network that simultaneously interacts with the root systems of several plant species. In a high-elevation Malagasy tropical rainforest on acidic and iron-rich soil surrounding an active mining site, four genera of ectomycorrhizal plants are locally abun- Keywords: dant: Leptolaena, Sarcolaena, Uapaca and Asteropeia. A floristic survey showed that only Asteropeia seed- Ecological restoration Ectomycorrhizal community lings can grow on bare soil. Molecular analysis of ectomycorrhizal fungi ITS rDNA enabled us to Nurse plant describe ectomycorrhizal communities and their distribution among these four plant genera. Asteropeia Russulaceae, Boletales, Cortinariaceae and Thelephoraceae are abundant in these forests. There is exten- Madagascar sive sharing between ectomycorrhizal communities associated with Asteropeia mcphersonii and other ecto- mycorrhizal plants. There are also many mycorrhizal fungi species which are common to ectomycorrhizal communities of seedlings and adult trees. This abundance of generalist fungi allows us to envisage the use of A. mcphersonii in the ecological restoration of the mine site. Planting ectomycorrhizal fungi in the bare soil at the beginning of ecological restoration could allow them to grow, thereby establishing a source of inoculum to colonize other ectomycorrhizal plants and consequently facilitate their establishment. Ó 2015 Published by Elsevier B.V. 1. Introduction 1994; Callaway and Walker, 1997), suggests that interactions shift from mainly negative (i.e. competition) to mainly positive (i.e. Ecological restoration in environments disturbed by human facilitation) with increasing stress. This hypothesis has received activities, especially those where the substrate is bare and a suc- much observational support (e.g. Callaway et al., 2002) and may cession has to be restarted, is particularly challenging (Wong, apply in particular under conditions of extreme stress (He and 2003), and is often limited by insufficient knowledge of the pre- Bertness, 2014). disturbance ecosystem. In particular, the original community A particular form of facilitation which is useful in plant commu- may contain mechanisms that allow facilitation, i.e. the positive nity restoration is referred to as the ‘‘nurse effect” when an adult influence of one species on another that may be instrumental in plant (the nurse plant) promotes the establishment of seedlings restoration. Even though this assumption is under debate (e.g. (the target plants; Niering et al., 1963). It may be decisive for plant Bakker et al., 2013), stressful environments are likely to promote establishment in primary or secondary successions, especially in facilitation between plants. The so-called stress gradient hypothe- harsh environments (Walker and del Moral, 2003), and sometimes sis, which was proposed 20 years ago (Bertness and Callaway, involves microbial mediation (Duponnois et al., 2011). Mycorrhizal symbiosis, which concerns 80% of land plant species (van der ⇑ Corresponding author. Heijden et al., 2015; Wang and Qiu, 2006), is a mutualistic associ- E-mail address: [email protected] (C. Henry). ation between a fungus and the roots of a plant, which often http://dx.doi.org/10.1016/j.foreco.2015.09.017 0378-1127/Ó 2015 Published by Elsevier B.V. C. Henry et al. / Forest Ecology and Management 358 (2015) 202–211 203 depends on fungal colonization for its survival. This relationship is forest on sandy soil in southeast Madagascar; Tedersoo et al., crucial for both partners, since the plant supplies carbon to the soil 2011). Yet many mining projects require forest restoration on the fungus and, as a reward, receives nutrients and water from the fun- bare, hostile soils which remain after exploitation. Here we report gus through a symbiotic organ, the mycorrhiza (Smith and Read, a study conducted in the altitudinal tropical rain forests growing 2008). Mycorrhizal symbiosis plays a key role in plant nutrition on acidic and iron-rich soils at the foot of the Ambatovy mining and also in plant defence against soil biotic and abiotic aggression project, which will require restoration in the near future. In the (Selosse et al., 2004). For example, some ectomycorrhizal fungi mature forest, four species which are locally abundant as adults give the host plant resistance to heavy metals (Jourand et al., are ectomycorrhizal: Asteropeia mcphersonii (Asteropeiaceae; 2010), and, the absence of fungal partners in stressful environ- Ducousso et al., 2008), Leptolaena sp. and Sarcolaena sp. (Sarcolae- ments can thus seriously limit plant development (Cázares et al., naceae; Ducousso et al., 2004), and Uapaca densifolia (Phyllan- 2005; Feldhaar, 2011). taceae; Wang and Qiu, 2006). Seedlings of A. mcphersonii, One major reason why mycorrhizal symbiosis can help facilita- Leptolaena sp and U. densifolia are quite abundant, whereas tion is its network structure, by way of individual mycelia that col- Sarcolaena sp. seedlings are rare. We looked for species with a onize different plants, sometimes of different species (Selosse et al., potential nurse effect to help re-establish ectomycorrhizal tree 2006; Simard et al., 2012): one plant can thus provide fungal diversity by way of fungal partners. To locate an ideal nurse plant inoculum to another, in the form of already established and sup- to fulfil feature #1, a floristic survey was undertaken to identify ported mycelia. Such facilitation between plants where mycor- plants which spontaneously regenerate in the degraded environ- rhizas mediate a nurse effect has already been demonstrated in ment. Then, the ectomycorrhizal fungi spontaneously associated ectomycorrhizas (Horton et al., 1999; Richard et al., 2009), a kind with trees in different undisturbed sites were identified by molec- of mycorrhizal association common in trees and shrubs in most ular barcoding to check that the potential nurse species share fungi temperate and in some tropical regions (Smith and Read, 2008). with the seedlings (feature #2) and adults (feature #3a) of other This facilitation process implies that nurse and target plants are target species, or that the fungal communities in adults and seed- non-specific and share a large proportion of their ectomycorrhizal lings overlap (features #3b). We thus sought to determine if one of fungal partners. Indeed, this occurs in most cases (Smith and Read, the ectomycorrhizal trees combined all four features, which would 2008) and even host plants associating with a small number of facilitate the installation of other ectomycorrhizal genera in the ectomycorrhizal fungi do harbour generalist fungi, as exemplified framework of ecological restoration. by the genus Alnus (Bent et al., 2011; Bogar and Kennedy, 2013; Roy et al., 2013). Moreover, studies showing a preferential associ- 2. Materials and methods ation between certain fungi and certain plants (Ishida et al., 2007; Morris et al., 2008; Tedersoo et al., 2008, 2010) do not support 2.1. Study site strict specificity. Ectomycorrhizal fungal communities often dis- play fungal sharing between host species in temperate (e.g. Ambatovy mine extends over 1800 ha in Madagascar between Richard et al., 2005; Ryberg et al., 2009) and tropical environments latitudes 18°5201900S and 18°4904700S and between longitudes (Diédhiou et al., 2010; Smith et al., 2011, 2013). Still, the trend may 48°1902200E and 48°1700200E(Fig. 1), at an average altitude of vary among ecosystems, and in a wet Tasmanian sclerophyllous 1000 m above sea level. This is a mosaic of land locally disturbed forest, half the fungal species sampled more than once were only by human practice and primary forests in which 1759 plant species found on a single host species
Recommended publications
  • Host Specificity, Mycorrhizal Compatibility and Genetic Variability of Pisolithus Tinctorius Hemavathi Bobbu
    International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-11, Nov- 2016] Infogain Publication (Infogainpublication.com) ISSN : 2454-1311 Host specificity, mycorrhizal compatibility and genetic variability of Pisolithus tinctorius Hemavathi Bobbu Department of Biology, IIIT RK Valley, RGUKT-AP, India Abstract– The reaction between the various hosts with fungi rely upon basidiospores, mycelial fragmentation, Pisolithus tinctorius shows the broad host range of this mitotic sporulation and, occasionally, sclerotia as their fungal species showing different degrees of host major, means of dispersal and reproduction (Dahlberg & compatibility. There is wide variation in both rate and Stenlid 1995). Each species exists, as a population of many extent of ECM formation by different isolates of Pisolithus genetic individuals, so-called genets, between which there is tinctorius of different geographical regions within a almost invariably some phenotypic variation. Each genet species. Thus Pisolithus tinctorius displays much arises in a unique mating event and then vegetatively intraspecific heterogeneity of host specificity and expands as a host root-connected mycelium throughout the interspecific compatibility. There are variable degrees of humus layer of forest soils (Debaud et al., 1999). The fact plant-fungal isolate compatibility, implying specificity, and that trees are exposed to genetically diverse mycobionts is this is an important factor influencing successful an important consideration in forest ecology. Genets vary in ectomycorrhiza formation and development. The molecular their ability to colonize different genotypes of host plant, data also suggested that the Pisolithus tinctorius isolates their ability to promote plant growth and adaptation to analyzed from different geographical regions belong to abiotic factors, such as organic/inorganic nitrogen distinct groups.
    [Show full text]
  • Mycorrhiza Helper Bacterium Streptomyces Ach 505 Induces
    Research MycorrhizaBlackwell Publishing, Ltd. helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria Silvia D. Schrey, Michael Schellhammer, Margret Ecke, Rüdiger Hampp and Mika T. Tarkka University of Tübingen, Faculty of Biology, Institute of Botany, Physiological Ecology of Plants, Auf der Morgenstelle 1, D-72076 Tübingen, Germany Summary Author for correspondence: • The interaction between the mycorrhiza helper bacteria Streptomyces nov. sp. Mika Tarkka 505 (AcH 505) and Streptomyces annulatus 1003 (AcH 1003) with fly agaric Tel: +40 7071 2976154 (Amanita muscaria) and spruce (Picea abies) was investigated. Fax: +49 7071 295635 • The effects of both bacteria on the mycelial growth of different ectomycorrhizal Email: [email protected] fungi, on ectomycorrhiza formation, and on fungal gene expression in dual culture Received: 3 May 2005 with AcH 505 were determined. Accepted: 16 June 2005 • The fungus specificities of the streptomycetes were similar. Both bacterial species showed the strongest effect on the growth of mycelia at 9 wk of dual culture. The effect of AcH 505 on gene expression of A. muscaria was examined using the suppressive subtractive hybridization approach. The responsive fungal genes included those involved in signalling pathways, metabolism, cell structure, and the cell growth response. • These results suggest that AcH 505 and AcH 1003 enhance mycorrhiza formation mainly as a result of promotion of fungal growth, leading to changes in fungal gene expression. Differential A. muscaria transcript accumulation in dual culture may result from a direct response to bacterial substances. Key words: acetoacyl coenzyme A synthetase, Amanita muscaria, cyclophilin, ectomycorrhiza, mycorrhiza helper bacteria, streptomycetes, suppression subtractive hybridization (SSH).
    [Show full text]
  • Early Growth Improvement on Endemic Tree Species by Soil Mycorrhizal Management in Madagascar
    In: From Seed Germination to Young Plants: Ecology, Growth and Environmental Influences Editor: Carlos Alberto Busso (Universidad Nacional del Sur, Buenos Aires, Argentina) 2013 Nova Science Publishers, Inc. ISBN: 978-1-62618-676-7 Chapter 15 EARLY GROWTH IMPROVEMENT ON ENDEMIC TREE SPECIES BY SOIL MYCORRHIZAL MANAGEMENT IN MADAGASCAR H. Ramanankierana1, R. Baohanta1, J. Thioulouse2, Y. Prin3, H. Randriambanona1, E. Baudoin4, N. Rakotoarimanga1, A. Galiana3, E. Rajaonarimamy1, M. Lebrun4 and Robin Duponnois4,5,* 1Laboratoire de Microbiologie de l’Environnement. Centre National de Recherches sur l’Environnement. BP 1739 Antananarivo. Madagascar; 2Université de Lyon, F-69000, Lyon ; Université Lyon 1 ; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France; 3CIRAD. Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR 113 CIRAD/INRA/IRD/SupAgro/UM2, Campus International de Baillarguet, TA A-82/J, Montpellier, France; 4IRD. Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR 113 CIRAD/INRA/IRD/SupAgro/UM2, Campus International de Baillarguet, TA A-82/J, Montpellier, France; 5Laboratoire Ecologie & Environnement (Unité associée au CNRST, URAC 32). Faculté des Sciences Semlalia. Université Cadi Ayyad. Marrakech. Maroc Abstract Mycorrhizal fungi are ubiquitous components of most ecosystems throughout the world and are considered key ecological factors in (1) governing the cycles of major plant nutrients and (2) sustaining the vegetation cover. Two major forms of mycorrhizas are usually recognized: the arbuscular mycorrhizas (AM) and the ectomycorrhizas (ECM). The lack of mycorrhizal fungi on root systems is a leading cause of poor plant establishment and growth in a variety of forest landscapes. Numerous studies have shown that mycorrhizal fungi are * E-mail address: [email protected] Ramanankierana et al.
    [Show full text]
  • Ectomycorrhizal Community Structure and Fi,Mction 2000
    Ectomycorrhizal community structure and fi,mction in relation to forest residue harvesting and wood ash applications Shahid Mahmood LUND UNIVERSITY Dissertation 2000 A doctoral thesis at a university in Sweden is produced either as a monograph or as a collection of papers. In the latter case, the introducto~ part constitutes the formal thesis, which summarises the accompanying papers. These have either already been published or are manuscripts at various stages (in press, submitted or in ins). ISBN9!-7105-138-8 sE-LuNBDs/NBME-oo/lo14+l10pp 02000 Shahid Mahmood Cover drawing: Peter Robemtz I DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Organhtion Documentname LUND UNIVERSITY I DOCTORALDISSERTATION Department of Ecology- Mtcrobial Ecology I “eda fday16,20@ Ecology Building, S-223 62 Lund, Sweden I coDfw SE-LUNBDSINBME-OOI1 OI4+I 10 pp Author(a) sponsoringOrgmiration Shahid Mahmood T&feandsubtitls Eotomycorhkal community structure and function in relation to forest residue hawesting and wood ash applications Ectomycorrhizal fungi form symbiotic associations with tree roots and assist in nutrient-uptake and -cycling in forest ecosystems, thereby constitutinga most significantpart of the microbial community. The aims of the studies described in this thesis were to evaluate the potential of DNA-baeed molecular methods in below-ground ectomycorrhizal community studies and to investigate changes in actomycortilzal communities on spruce roots in sites with different N deposition, and in sites subjected to harvesting of forest rasidues or application of wood ash. The ability of selected ectomycorrhizal fungi to mobilise nutriente from wood ash and to colonise root systems in the presence and absence of ash was also studied.
    [Show full text]
  • Ectomycorrhizal Fungal Communities at Forest Edges 93, 244–255 IAN A
    Journal of Blackwell Publishing, Ltd. Ecology 2005 Ectomycorrhizal fungal communities at forest edges 93, 244–255 IAN A. DICKIE and PETER B. REICH Department of Forest Resources, University of Minnesota, St Paul, MN, USA Summary 1 Ectomycorrhizal fungi are spatially associated with established ectomycorrhizal vegetation, but the influence of distance from established vegetation on the presence, abundance, diversity and community composition of fungi is not well understood. 2 We examined mycorrhizal communities in two abandoned agricultural fields in Minnesota, USA, using Quercus macrocarpa seedlings as an in situ bioassay for ecto- mycorrhizal fungi from 0 to 20 m distance from the forest edge. 3 There were marked effects of distance on all aspects of fungal communities. The abundance of mycorrhiza was uniformly high near trees, declined rapidly around 15 m from the base of trees and was uniformly low at 20 m. All seedlings between 0 and 8 m distance from forest edges were ectomycorrhizal, but many seedlings at 16–20 m were uninfected in one of the two years of the study. Species richness of fungi also declined with distance from trees. 4 Different species of fungi were found at different distances from the edge. ‘Rare’ species (found only once or twice) dominated the community at 0 m, Russula spp. were dominants from 4 to 12 m, and Astraeus sp. and a Pezizalean fungus were abundant at 12 m to 20 m. Cenococcum geophilum, the most dominant species found, was abundant both near trees and distant from trees, with lowest relative abundance at intermediate distances. 5 Our data suggest that seedlings germinating at some distance from established ecto- mycorrhizal vegetation (15.5 m in the present study) have low levels of infection, at least in the first year of growth.
    [Show full text]
  • Dry Forest Trees of Madagascar
    The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats.
    [Show full text]
  • Boletus Edulis and Cistus Ladanifer: Characterization of Its Ectomycorrhizae, in Vitro Synthesis, and Realised Niche
    UNIVERSIDAD DE MURCIA ESCUELA INTERNACIONAL DE DOCTORADO Boletus edulis and Cistus ladanifer: characterization of its ectomycorrhizae, in vitro synthesis, and realised niche. Boletus edulis y Cistus ladanifer: caracterización de sus ectomicorrizas, síntesis in vitro y área potencial. Dª. Beatriz Águeda Hernández 2014 UNIVERSIDAD DE MURCIA ESCUELA INTERNACIONAL DE DOCTORADO Boletus edulis AND Cistus ladanifer: CHARACTERIZATION OF ITS ECTOMYCORRHIZAE, in vitro SYNTHESIS, AND REALISED NICHE tesis doctoral BEATRIZ ÁGUEDA HERNÁNDEZ Memoria presentada para la obtención del grado de Doctor por la Universidad de Murcia: Dra. Luz Marina Fernández Toirán Directora, Universidad de Valladolid Dra. Asunción Morte Gómez Tutora, Universidad de Murcia 2014 Dª. Luz Marina Fernández Toirán, Profesora Contratada Doctora de la Universidad de Valladolid, como Directora, y Dª. Asunción Morte Gómez, Profesora Titular de la Universidad de Murcia, como Tutora, AUTORIZAN: La presentación de la Tesis Doctoral titulada: ‘Boletus edulis and Cistus ladanifer: characterization of its ectomycorrhizae, in vitro synthesis, and realised niche’, realizada por Dª Beatriz Águeda Hernández, bajo nuestra inmediata dirección y supervisión, y que presenta para la obtención del grado de Doctor por la Universidad de Murcia. En Murcia, a 31 de julio de 2014 Dra. Luz Marina Fernández Toirán Dra. Asunción Morte Gómez Área de Botánica. Departamento de Biología Vegetal Campus Universitario de Espinardo. 30100 Murcia T. 868 887 007 – www.um.es/web/biologia-vegetal Not everything that can be counted counts, and not everything that counts can be counted. Albert Einstein Le petit prince, alors, ne put contenir son admiration: -Que vous êtes belle! -N´est-ce pas, répondit doucement la fleur. Et je suis née meme temps que le soleil..
    [Show full text]
  • Molecular Marker Genes for Ectomycorrhizal Symbiosis
    Int J Pharm Bio Sci 2013 Jan; 4(1): (B) 1075 - 1088 Research Article Molecular biology International Journal of Pharma and Bio Sciences ISSN 0975-6299 MOLECULAR MARKER GENES FOR ECTOMYCORRHIZAL SYMBIOSIS SHIV HIREMATH*1, CAROLYN MCQUATTIE1, GOPI PODILA2 AND JENISE BAUMAN3 1USDA Forest Service, Northern Research Station, Delaware, OH. 2Department of Biological Sciences, University of Alabama, Huntsville, AL. 3Miami University, Oxford, OH. ABSTRACT Mycorrhizal symbiosis is a mutually beneficial association very commonly found among most vascular plants. Formation of mycorrhiza happens only between compatible partners and predicting this is often accomplished through a trial and error process. We investigated the possibility of using expression of symbiosis specific genes as markers to predict the formation of ectomycorrhiza. We used antibodies and cDNA probes corresponding to PF6.2 and Lbras genes of Laccaria bicolor to detect presence and expression of similar genes in other ectomycorrhiza fungi during their association with the red pine. Analyses using transmission electron microscopy and northern hybridization showed that such genes were expressed in several other fungi forming mycorrhiza with red pine. The results suggest that these genes may have a role in many ectomycorrhizal symbiosis systems and may serve as molecular markers for monitoring symbiosis development. KEYWORDS: Ectomycorrhizal fungi, symbiosis, Laccaria bicolor, molecular markers. SHIV HIREMATH USDA Forest Service, Northern Research Station, Delaware, OH. *Corresponding author This article can be downloaded from www.ijpbs.net B - 1075 Int J Pharm Bio Sci 2013 Jan; 4(1): (B) 1075 - 1088 INTRODUCTION Most vascular plants, including a variety of identified several factors from the fungus that are conifers, establish mutually beneficial symbiotic involved in the initiation and establishment of relationships with ectomycorrhizal fungi that ectomycorrhizae16,17,18,19.
    [Show full text]
  • A Brief Nomenclatural Review of Genera and Tribes in Theaceae Linda M
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 24 | Issue 1 Article 8 2007 A Brief Nomenclatural Review of Genera and Tribes in Theaceae Linda M. Prince Rancho Santa Ana Botanic Garden, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Prince, Linda M. (2007) "A Brief Nomenclatural Review of Genera and Tribes in Theaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 24: Iss. 1, Article 8. Available at: http://scholarship.claremont.edu/aliso/vol24/iss1/8 Aliso 24, pp. 105–121 ᭧ 2007, Rancho Santa Ana Botanic Garden A BRIEF NOMENCLATURAL REVIEW OF GENERA AND TRIBES IN THEACEAE LINDA M. PRINCE Rancho Santa Ana Botanic Garden, 1500 North College Ave., Claremont, California 91711-3157, USA ([email protected]) ABSTRACT The angiosperm family Theaceae has been investigated extensively with a rich publication record of anatomical, cytological, paleontological, and palynological data analyses and interpretation. Recent developmental and molecular data sets and the application of cladistic analytical methods support dramatic changes in circumscription at the familial, tribal, and generic levels. Growing interest in the family outside the taxonomic and systematic fields warrants a brief review of the recent nomenclatural history (mainly 20th century), some of the classification systems currently in use, and an explanation of which data support various classification schemes. An abridged bibliography with critical nomen- clatural references is provided. Key words: anatomy, classification, morphology, nomenclature, systematics, Theaceae. INTRODUCTION acters that were restricted to the family and could be used to circumscribe it.
    [Show full text]
  • Evolution of Angiosperm Pollen. 5. Early Diverging Superasteridae
    Evolution of Angiosperm Pollen. 5. Early Diverging Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales, and Santalales) Plus Dilleniales Author(s): Ying Yu, Alexandra H. Wortley, Lu Lu, De-Zhu Li, Hong Wang and Stephen Blackmore Source: Annals of the Missouri Botanical Garden, 103(1):106-161. Published By: Missouri Botanical Garden https://doi.org/10.3417/2017017 URL: http://www.bioone.org/doi/full/10.3417/2017017 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. EVOLUTION OF ANGIOSPERM Ying Yu,2 Alexandra H. Wortley,3 Lu Lu,2,4 POLLEN. 5. EARLY DIVERGING De-Zhu Li,2,4* Hong Wang,2,4* and SUPERASTERIDAE Stephen Blackmore3 (BERBERIDOPSIDALES, CARYOPHYLLALES, CORNALES, ERICALES, AND SANTALALES) PLUS DILLENIALES1 ABSTRACT This study, the fifth in a series investigating palynological characters in angiosperms, aims to explore the distribution of states for 19 pollen characters on five early diverging orders of Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales, and Santalales) plus Dilleniales.
    [Show full text]
  • Ethnobotanical Survey in Tampolo Forest (Fenoarivo Atsinanana, Northeastern Madagascar)
    Article Ethnobotanical Survey in Tampolo Forest (Fenoarivo Atsinanana, Northeastern Madagascar) Guy E. Onjalalaina 1,2,3,4 , Carole Sattler 2, Maelle B. Razafindravao 2, Vincent O. Wanga 1,3,4,5, Elijah M. Mkala 1,3,4,5 , John K. Mwihaki 1,3,4,5 , Besoa M. R. Ramananirina 6, Vololoniaina H. Jeannoda 6 and Guangwan Hu 1,3,4,* 1 CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; [email protected] (G.E.O.); [email protected] (V.O.W.); [email protected] (E.M.M.); [email protected] (J.K.M.) 2 AVERTEM-Association de Valorisation de l’Ethnopharmacologie en Régions Tropicales et Méditerranéennes, 3 rue du Professeur Laguesse, 59000 Lille, France; [email protected] (C.S.); maellerazafi[email protected] (M.B.R.) 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China 5 East African Herbarium, National Museums of Kenya, P. O. Box 451660-0100, Nairobi, Kenya 6 Department of Plant Biology and Ecology, Faculty of Sciences, University of Antananarivo, BP 566, Antananarivo 101, Madagascar; [email protected] (B.M.R.R.); [email protected] (V.H.J.) * Correspondence: [email protected] Abstract: Abstract: BackgroundMadagascar shelters over 14,000 plant species, of which 90% are endemic. Some of the plants are very important for the socio-cultural and economic potential. Tampolo forest, located in the northeastern part of Madagascar, is one of the remnant littoral forests Citation: Onjalalaina, G.E.; Sattler, hinged on by the adjacent local communities for their daily livelihood.
    [Show full text]
  • Litter Decomposition and Ectomycorrhiza in Amazonian Forests
    Litter decomposition and Ectomycorrhiza in Amazonian forests 1. A comparison of litter decomposing and ectomycorrhizal Basidiomycetes in latosol­ terra-firme rain forest and whité podzol campinarana Rolf Singer ( *) lzonete de Jesus da Silva Araujo (*) Abstract lNTRODUCTION Application of a mycosociological method (adaptation of the Lange method) in Central lt had been assumed that ectomycorrhiza Amazonia produced the following results: In the in the neotropics ls restricted to 1) secondary­ white-sand podzol campinarana type of forests the forest and partially destroyed or damaged dominant trees are oblígatorily ectotrophically tropical and subtropical forests (cicatrizing mycorrhizal; litter is accumulatea as raw humus mycorrhiza), 2) to the natural vegetation above as a consequence of ectotroph dominance; fewer a certain altitude in the Andes and pre-Andine leaf inhabiting litter fungi occur in the dry as tropical-montane zone, 3) plantations of intro­ well as the wet seasons tha..'1 are counted in the latosol terra-firme rain forest, and the fungi duced ectomycorrhizal trees, inoculated with of that category are most strongly represented eccomycorrh1za or carryng spores or mycelium ("F-dominance") by other species here than in the with seeds or seedlings, 4) possible scattered terra-finne stands tested. The ectomycorrhizal trees occurrences restricted to certain genera of and !ungi are enumerated. On the other hand, in Cormophyta [Salíx was suggested), not being the terra-finne forest, ectotrophically mycorrhizal dominant in the tropical
    [Show full text]