Unilateral Upper Cervical Posterior Spinal Artery Syndrome Following Sneezing

Total Page:16

File Type:pdf, Size:1020Kb

Unilateral Upper Cervical Posterior Spinal Artery Syndrome Following Sneezing Journal of Neurology, Neurosurgery, and Psychiatry 1992;55:841-843 841 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.55.9.841 on 1 September 1992. Downloaded from SHORT REPORT Unilateral upper cervical posterior spinal artery syndrome following sneezing N J Gutowski, R P Murphy, D J Beale Abstract settled to 120/80 mmHg. He had a left Hor- A 35 year old man experienced severe ner's syndrome with ipsilateral, trapezius transitory neck pain following a violent weakness, reduced facial sensation to pain and sneeze. This was followed by neurological temperature, C2 anaesthesia, posterior column symptoms and signs indicating a left sided loss and hemiparesis. There was right sided upper cervical cord lesion. MRI showed spinothalamic loss below T4. At presentation an infarct at this site in the territory ofthe he had a flaccid left sided weakness with a left posterior spinal artery. This discrete global reduction in power to 1/5 in the arm and infarct was probably due to partial left 2/5 in the leg and reduced reflexes. After 5 days vertebral artery dissection secondary to there was left sided increased tone, pyramidal sneezing. weakness with 2/5 power in the arm and 3/5 in the leg, brisk reflexes and an extensor plantar (J Neurol Neurosurg Psychiatry 1992;55:841-843) response. Normal investigations included CT head Infarction in the area supplied by the posterior scan, full myelogram and CSF examination. A spinal artery is rarely recognised clinically. We full vascular screen was normal except verte- report a discrete upper cervical posterior spinal bral dopplers which showed slower flow on the artery syndrome following a violent sneeze. left side. The MRI 7 days after admission revealed the presence of abnormal increased signal from C1 to C3 on the left side of the Case report cord on T2 and proton density weighted After a violent sneeze, a previously healthy 35 images. Axial Ti images before contrast year old man had severe left sided neck pain showed no evidence of increased signal or cord lasting 10 minutes. An hour later he developed expansion. After intravenous Gadolinium a left hemiparesis and hemisensory loss over 30 DTPA there was peripheral enhancement cor- minutes. These symptoms persisted. The next responding to the area of increased signal in day paraesthesiae ascended from the right foot keeping with acute infarction (fig 1). The left to the mid-trunk over half an hour and he also vertebral artery at this level was considerably developed urinary retention. There was no smaller than the right. No intracranial abnor- diplopia or dysphagia. He had not smoked for mality was seen. There was no evidence of http://jnnp.bmj.com/ seven years. hind-brain herniation, or of a cervical syrinx. On examination he was initially hypertensive Vertebral angiography was not felt to be at 160/120 mmHg, but after 12 hours this clinically justified. Neurology Department, North Staffordshire Royal on October 1, 2021 by guest. Protected copyright. Infirmary, Princes Road, Hartshill, Stoke-on-Trent, ST4 7LN, UK N J Gutowski R P Murphy X-Ray Department, Walsgrave Hospital, Walsgrave, Coventry, UK D J Beale Correspondence to: Dr Gutowski, Ludwig Institute for Cancer Research, (Middlesex Hospital/University College Branch), Courtauld Building, 91 Riding House Street, London WIP 8BT, UK MR Scan seven admission. Axial Ti SE 510/25 intravenous Received 6 August 1991 Figure I (OST) days after weighted image after and in revised form gadolinium contrast showing peripheral enhancement in the left postero-lateral aspect of the cord at C2 (left). Coronal Tl 2 December 1991. weighted post-contrast SE 320/25 image showing enhancement on the left lateral aspect of the cord between Cl and C3 Accepted 9 December 1991 (right). 842 Gutowski, Murphy, Beale overlapping but discrete (fig 2). The former J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.55.9.841 on 1 September 1992. Downloaded from was supplied entirely by the anterior spinal artery and the latter received supplies from both the anterior and posterior spinal arteries via the pial plexus. The lesion predicted anatomically corre- sponded both to the area supplied by the left posterior spinal artery,2 that is, the left postero- lateral rim ofthe cord (fig 2), and to the area of infarction seen on MRI (fig 1). Firstly, this demonstrates that cord infarction can be vis- ualised by MRI when myelography is normal. Secondly, that the lesion causing the neuro- logical signs was an infarct in the region Anteric Lateral S-,pinotharmic r vt a rtervB supplied by the left posterior spinal artery at c'. - Cervical -i- -- Thoracic the level of C1-3. L Lumbar S Sacral Posterior spinal artery syndrome is rarely recognised clinically though there are a few Figure 2 Cervical cord cross-section at C2. On the left showing the areas supplied by the clinico-pathological reports of mainly bilateral peripheral and central arterial systems. On the right showing the main tracts, and the cases.34 The cardinal feature is posterior col- grey tone area indicating the projected lesion in the present case. umn involvement. In the presence of damage to the posterior horns there is suspended global anaesthesia. This posterior spinal artery syndrome cannot occur in a pure form since A diagnosis of upper cervical infarction in the posterior spinal arteries do not supply an the region supplied by the left posterior spinal area with clear cut boundaries and the pyra- artery was made, probably secondary to partial midal and antero-lateral tracts are often left vertebral artery dissection. involved.5 The cause of posterior spinal artery He was treated with aspirin and physio- occlusion is rarely ascertained. In early cases therapy. He recovered continence after a fort- syphilitic arteritis was suspected. In single night. By 9 weeks the left hemiparesis had cases indirect trauma, atheromatous embolisa- virtually resolved and dorsal column sensation tion and intrathecal phenol have been the had returned in the left arm. cause.3 Considerable neurological improve- At 14 weeks the MRI showed some resolu- ment can occur after infarction, as in the tion of the signal change and a lack of post- present case, if the patient survives the initial contrast enhancement, this was consistent with period of swelling and oedema. a previous episode of infarction. The inequality It is probable that this unusual left posterior in size of the vertebral arteries remained. spinal artery syndrome was due to partial left vertebral artery dissection secondary to sneez- ing. Vertebral artery dissection would have Discussion occluded a posterior radicular artery arising The combination of neurological signs could from it at the upper cervical level, in turn only be explained anatomically by a single infarcting the area supplied by the posterior lesion on the periphery of the left side of the spinal artery.2 MRI showed the left vertebral http://jnnp.bmj.com/ cord postero-laterally between Cl and C3. At artery to be smaller than the right, and this level the left dorsal column and pyramidal although this may be a normal variant it was tracts were affected below their decussations in felt to be compatible with a dissection, though the lower medulla. In addition at the postero- the definitive investigation of angiography was lateral aspect of the cord, the left C2 sensory not thought to be clinically justified. As our root and the descending tract and nucleus ofV patient started to improve before a definitive were damaged. The most caudal part of the diagnosis was made, he was treated with nucleus and tract ofV extends to C3. aspirin and was not anticoagulated. on October 1, 2021 by guest. Protected copyright. Twenty four hours after the first neurological Most cases of vertebral artery dissection signs he developed right sided spinothalamic have been triggered by cervical manipulation.6 loss to a level of T5 and a left Horner's Abnormal neck movements during other activ- syndrome due to involvement of the posterior ities -l0 including nose blowing," can cause two-thirds of the left lateral spinothalamic dissection of the cervicocerebral arteries. We tract,' (fig 2). Left trapezius weakness was propose that in this case, neck movement caused by damage to the motor axons of the during sneezing caused vertebral dissection. spinal accessory nerve and anterior cervical Two cases of left upper cervical cord infarc- roots coursing through the left antero-lateral tion associated with left sided medullary part of the cord, which also contained the infarction, secondary to left vertebral artery posterior two thirds of the left lateral spino- dissection documented on angiography, have thalamic tract. been reported.78 In neither case was the The history of abrupt onset of signs follow- infarct visualised. ing a violent sneeze suggested a vascular cause. It is unlikely that the cause of this unusual Turnbull et al2 in a detailed microangiographic left posterior spinal artery syndrome was a study of the cervical cord blood supply showed fibrocartilaginous embolus to the spinal arter- that the cord itself was supplied by two arterial ies for the following reasons. In fibrocartilagi- systems, central and peripheral, which were nous embolism most of the emboli are found Unilateral upper cervical posterior spinal artery syndrome following sneezing 843 5 Lazorthes G. Pathology, classification and clinical aspects of J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.55.9.841 on 1 September 1992. Downloaded from in vessels in the anterior part of the sub- vascular diseases of the spinal cord. In: Vinken PJ, Bruyn arachnoid space, usually in the distribution GW, eds. Handbook of clinical neurology. Oxford: North- Holland, 1972;12:492-506. of the anterior spinal artery.'2 13 Also, the 6 Sherman DG, Hart RG, Easton JD.
Recommended publications
  • Brain Death and the Cervical Spinal Cord: a Confounding Factor for the Clinical Examination
    Spinal Cord (2010) 48, 2–9 & 2010 International Spinal Cord Society All rights reserved 1362-4393/10 $32.00 www.nature.com/sc REVIEW Brain death and the cervical spinal cord: a confounding factor for the clinical examination AR Joffe, N Anton and J Blackwood Department of Pediatrics, Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada Study design: This study is a systematic review. Objectives: Brain death (BD) is a clinical diagnosis, made by documenting absent brainstem functions, including unresponsive coma and apnea. Cervical spinal cord dysfunction would confound clinical diagnosis of BD. Our objective was to determine whether cervical spinal cord dysfunction is common in BD. Methods: A case of BD showing cervical cord compression on magnetic resonance imaging prompted a literature review from 1965 to 2008 for any reports of cervical spinal cord injury associated with brain herniation or BD. Results: A total of 12 cases of brain herniation in meningitis occurred shortly after a lumbar puncture with acute respiratory arrest and quadriplegia. In total, nine cases of acute brain herniation from various non-meningitis causes resulted in acute quadriplegia. The cases suggest that direct compression of the cervical spinal cord, or the anterior spinal arteries during cerebellar tonsillar herniation cause ischemic injury to the cord. No case series of brain herniation specifically mentioned spinal cord injury, but many survivors had severe disability including spastic limbs. Only two pathological series of BD examined the spinal cord; 56–100% of cases had upper cervical spinal cord damage, suggesting infarction from direct compression of the cord or its arterial blood supply.
    [Show full text]
  • 17 Blood Supply of the Central Nervous System
    17 Blood supply of the central nervous system Brain Lateral aspect of cerebral hemisphere showing blood supply Central sulcus Motor and sensory strip Visual area Broca area Circle of Willis Anterior cerebral artery Anterior communicating artery Optic chiasm IIIrd cranial nerve Middle cerebral artery IVth cranial Internal carotid artery nerve Pons Posterior communicating artery Posterior cerebral artery Auditory area and Vth cranial Wernicke's area in left nerve Superior cerebellar artery dominant hemisphere VIth cranial Pontine branches nerve Basilar artery Anterior cerebral Posterior cerebral artery supply artery supply VII and Anterior inferior cerebellar artery Middle cerebral VIII cranial artery supply nerves Vertebral artery Coronal section of brain showing blood supply IX, X, XI Anterior spinal artery cranial nerves Posterior inferior cerebellar artery XII cranial nerve Caudate Globus Cerebellum nucleus pallidus Lateral ventricle C3/C4 Branch of left Spinal cord cord thyrocervical trunk Thalamus Cervical Red nucleus Subthalamic T5/T6 Intercostal nucleus cord branch area of damage Thoracic ischaemic Watershed T10 Great-anterior L2 Anterior choroidal medullary artery artery (branch of of Adamkiewicz internal carotid cord Hippocampus Lumbar artery to lower two thirds of Reinforcing internal capsule, cord inputs globus pallidus and Penetrating branches of Blood supply to Sacral limbic system) middle cerebral artery spinal cord Posterior spinal arteries Dorsal columns Corticospinal tract supply Anterior Spinothalamic tract spinal artery Medullary artery— Anterior spinal artery replenishing anterior spinal artery directly 42 The anatomical and functional organization of the nervous system Blood supply to the brain medulla and cerebellum. Occlusion of this vessel gives rise to the The arterial blood supply to the brain comes from four vessels: the right lateral medullary syndrome of Wallenberg.
    [Show full text]
  • Brain Herniation S54 (1)
    BRAIN HERNIATION S54 (1) Brain Herniation Last updated: April 12, 2020 PATHOPHYSIOLOGY ................................................................................................................................. 1 TYPES OF HERNIATION ............................................................................................................................ 2 SUPRATENTORIAL MASSES .................................................................................................................... 2 Central (s. downward transtentorial) herniation ............................................................................... 2 Uncal (s. Lateral Mass) herniation ................................................................................................... 2 Cingulate (s. Subfalcine) herniation ................................................................................................. 8 INFRATENTORIAL MASSES ..................................................................................................................... 9 Cerebellar Tonsillar herniation ......................................................................................................... 9 Upward Transtentorial herniation .................................................................................................. 10 HERNIATION AFTER LUMBAR PUNCTURE ............................................................................................. 10 INVESTIGATIONS ...................................................................................................................................
    [Show full text]
  • Notably the Posterior Cerebral Artery, Do Not Develop Fully Until the Embryo
    THE EMBRYOLOGY OF THE ARTERIES OF THE BRAIN Arris and Gale Lecture delivered at the Royal College of Surgeons of England on 27th February 1962 by D. B. Moffat, M.D., F.R.C.S. Senior Lecturer in Anatomy, University College, Cardiff A LITTLE OVER 300 years ago, Edward Arris donated to the Company of Barbers and Surgeons a sum of money " upon condicion that a humane Body be once in every yeare hearafter publiquely dissected and six lectures thereupon read in this Hall if it may be had with conveniency, and the Charges to be borne by this Company ". Some years later, Dr. Gale left an annuity to the Company for a similar purpose and it is interesting to note that the first Gale lecturer was a Dr. Havers, whose name is still associated with the Haversian canals in bone. The study of anatomy has changed in many ways since those days and it must be a long time since an Arris and Gale lecturer actually took his text from the cadaver. However, in deference to the wishes of our benefactors, I should like at least to com- mence this lecture by showing you part of a dissection (Fig. 1) which a colleague, Dr. E. D. Morris, and I prepared some years ago for use in an oral examination. We found that in this subject the left internal carotid artery in the neck gave off a. large branch which passed upwards and back- wards to enter the skull through the hypoglossal canal. In the posterior cranial fossa this artery looped caudally and then passed forwards in the midline to form the basilar artery which was joined by a pair of very small vertebral arteries.
    [Show full text]
  • Stroke Intracranial Hypertension Cerebral Edema Roman Gardlík, MD, Phd
    Stroke Intracranial hypertension Cerebral edema Roman Gardlík, MD, PhD. Institute of Pathological Physiology Institute of Molecular Biomedicine [email protected] Books • Silbernagl 356 • Other book 667 Brain • The most complex structure in the body • Anatomically • Functionally • Signals to and from various part of the body are controlled by very specific areas within the brain • Brain is more vulnerable to focal lesions than other organs • Renal infarct does not have a significant effect on kidney function • Brain infarct of the same size can produce complete paralysis on one side of the body Brain • 2% of body weight • Receives 1/6 of resting cardiac output • 20% of oxygen consumption Blood-brain barrier Mechanisms of brain injury • Various causes: • trauma • tumors • stroke • metabolic dysbalance • Common pathways of injury: • Hypoxia • Ischemia • Cerebral edema • Increased intracranial pressure Hypoxia • Deprivation of oxygen with maintained blood flow • Causes: • Exposure to reduced atmospheric pressure • Carbon monoxide poisoning • Severe anemia • Failure to ogygenate blood • Well tolerated, particularly if chronic • Neurons capable of anaerobic metabolism • Euphoria, listlessness, drowsiness, impaired problem solving • Acute and severe hypoxia – unconsciousness and convulsions • Brain anoxia can result to cardiac arrest Ischemia • Reduced blood flow • Focal / global ischemia • Energy sources (glucose and glycogen) are exhausted in 2 to 4 minutes • Cellular ATP stores are depleted in 4 to 5 minutes • 50% - 75% of energy is
    [Show full text]
  • Raised Intracranial Pressure Syndrome: a Stepwise Approach Swagata Tripathy1, Suma Rabab Ahmad2
    NEUROCRITICAL CARE Raised Intracranial Pressure Syndrome: A Stepwise Approach Swagata Tripathy1, Suma Rabab Ahmad2 ABSTRACT Raised intracranial pressure (rICP) syndrome is seen in various pathologies. Appropriate and systematic management is important for favourable patient outcome. This review describes the stepwise approach to control the raised ICP in a tiered manner, with increasing aggressiveness. The role of ICP measurement in the assessment of cerebral autoregulation and individualised management is discussed. Although a large amount of research has been undertaken for the management of raised ICP, there still remain unanswered questions. This review tries to put together the best evidence in a succinct manner. Keywords: Complications, Cerebrospinal fluid, Hypertonic saline, Intracranial pressure, Management, Steroids Indian Journal of Critical Care Medicine (2019): 10.5005/jp-journals-10071-23190 INTRODUCTION 1,2Department of Anesthesia and Intensive Care, All India Institute of Raised intracranial pressure (rICP) syndrome is a constellation of Medical Sciences, Bhubaneswar, Odisha, India clinical symptoms and signs associated with a rise in intracranial Corresponding Author: Swagata Tripathy, Department of Anesthesia pressure. Various pathologies may lead to a rise in intracranial and Intensive Care, All India Institute of Medical Sciences, Bhubaneswar, pressure (ICP). The realm of management of raised ICP has Odisha, India, Phone: 8763400534, e-mail: tripathyswagata@gmail. progressed over time with the development of new monitoring com technology and treatment modalities. There is more clarity now How to cite this article: Tripathy S, Ahmad SR. Raised Intracranial in the understanding of the management; however, there are still Pressure Syndrome: A Stepwise Approach. Indian J Crit Care Med some gaps. Here we attempt to review the systematic approach to 2019;23(Suppl 2):S129–S135.
    [Show full text]
  • Current Strategies in the Surgical Management of Ischemic Stroke
    RECENT ADVANCES IN NEUROSURGERY Current Strategies in the Surgical Management of Ischemic Stroke CODY A. DOBERSTEIN, BS; RADMEHR TORABI, MD; SANDRA C. YAN, BS, BA; RYAN MCTAGGART, MD; CURTIS DOBERSTEIN, MD; MAHESH JAYARAMAN, MD ABSTRACT vessel occlusion (LVO) involving a major proximal intracra- Stroke is a major cause of death and disability in the Unit- nial artery and the efficacy of IV-tPA is significantly reduced ed States and rapid evaluation and treatment of stroke in these cases.4 Furthermore, many patients do not fit the patients are critical to good outcomes. Effective surgical strict time window and inclusion criteria for the admin- treatments aim to restore adequate cerebral blood flow, istration of IV-tPA and therefore are ineligible to receive prevent secondary brain injury, or reduce the likelihood treatment. of recurrent stroke. Patient evaluation in centers with a The recent refinement of endovascular catheter-based comprehensive stroke program and a dedicated neuro- surgical techniques, which use a stent-retriever device to vascular team is recommended. directly remove clots from occluded vessels and restore KEYWORDS: stroke, embolectomy, cerebrovascular blood flow, have proven effective in reducing morbidity occlusion and mortality in stroke patients with LVO. Several recent randomized studies have demonstrated a significant benefit of embolectomy compared to standard medical treatment alone.5,6 Due to improved outcomes, embolectomy in com- bination with IV-tPA has now become the standard of care INTRODUCTION for patients with LVO stroke. Figure 1 demonstrates pre- and Stroke is the leading cause of long-term adult disability post-angiographic images in a patient who underwent emer- in North America and the fifth leading cause of death.1,2 gent embolectomy and shows the dramatic improvement of Although some strokes are hemorrhagic, the majority (87%) cerebral perfusion following recanalization.
    [Show full text]
  • A Dictionary of Neurological Signs
    FM.qxd 9/28/05 11:10 PM Page i A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION FM.qxd 9/28/05 11:10 PM Page iii A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION A.J. LARNER MA, MD, MRCP(UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. FM.qxd 9/28/05 11:10 PM Page iv A.J. Larner, MA, MD, MRCP(UK), DHMSA Walton Centre for Neurology and Neurosurgery Liverpool, UK Library of Congress Control Number: 2005927413 ISBN-10: 0-387-26214-8 ISBN-13: 978-0387-26214-7 Printed on acid-free paper. © 2006, 2001 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dis- similar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to propri- etary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omis- sions that may be made.
    [Show full text]
  • THE SYNDROMES of the ARTERIES of the BRAIN AND, SPINAL CORD Part II by LESLIE G
    I19 Postgrad Med J: first published as 10.1136/pgmj.29.329.119 on 1 March 1953. Downloaded from - N/ THE SYNDROMES OF THE ARTERIES OF THE BRAIN AND, SPINAL CORD Part II By LESLIE G. KILOH, M.D., M.R.C.P., D.P.M. First Assistant in the Joint Department of Psychological Medicine, Royal Victoria Infirmary and University of Durham The Vertebral Artery (See also Cabot, I937; Pines and Gilensky, Each vertebral artery enters the foramen 1930.) magnum in front of the roots of the hypoglossal nerve, inclines forwards and medially to the The Posterior Inferior Cerebellar Artery anterior aspect of the medulla oblongata and unites The posterior inferior cerebellar artery arises with its fellow at the lower border of the pons to from the vertebral artery at the level of the lower form the basilar artery. border of the inferior olive and winds round the The posterior inferior cerebellar and the medulla oblongata between the roots of the hypo- Protected by copyright. anterior spinal arteries are its principal branches glossal nerve. It passes rostrally behind the root- and it sometimes gives off the posterior spinal lets of the vagus and glossopharyngeal nerves to artery. A few small branches are supplied directly the lower border of the pons, bends backwards and to the medulla oblongata. These are in line below caudally along the inferolateral boundary of the with similar branches of the anterior spinal artery fourth ventricle and finally turns laterally into the and above with the paramedian branches of the vallecula. basilar artery. Branches: From the trunk of the artery, In some cases of apparently typical throm- twigs enter the lateral aspect of the medulla bosis of the posterior inferior cerebellar artery, oblongata and supply the region bounded ventrally post-mortem examination has demonstrated oc- by the inferior olive and medially by the hypo- clusion of the entire vertebral artery (e.g., Diggle glossal nucleus-including the nucleus ambiguus, and Stcpford, 1935).
    [Show full text]
  • Guidelines for the Management of Severe Traumatic Brain Injury 4Th Edition
    Guidelines for the Management of Severe Traumatic Brain Injury 4th Edition Nancy Carney, PhD Oregon Health & Science University, Portland, OR Annette M. Totten, PhD Oregon Health & Science University, Portland, OR Cindy O'Reilly, BS Oregon Health & Science University, Portland, OR Jamie S. Ullman, MD Hofstra North Shore-LIJ School of Medicine, Hempstead, NY Gregory W. J. Hawryluk, MD, PhD University of Utah, Salt Lake City, UT Michael J. Bell, MD University of Pittsburgh, Pittsburgh, PA Susan L. Bratton, MD University of Utah, Salt Lake City, UT Randall Chesnut, MD University of Washington, Seattle, WA Odette A. Harris, MD, MPH Stanford University, Stanford, CA Niranjan Kissoon, MD University of British Columbia, Vancouver, BC Andres M. Rubiano, MD El Bosque University, Bogota, Colombia; MEDITECH Foundation, Neiva, Colombia Lori Shutter, MD University of Pittsburgh, Pittsburgh, PA Robert C. Tasker, MBBS, MD Harvard Medical School & Boston Children’s Hospital, Boston, MA Monica S. Vavilala, MD University of Washington, Seattle, WA Jack Wilberger, MD Drexel University, Pittsburgh, PA David W. Wright, MD Emory University, Atlanta, GA Jamshid Ghajar, MD, PhD Stanford University, Stanford, CA Reviewed for evidence-based integrity and endorsed by the American Association of Neurological Surgeons and the Congress of Neurological Surgeons. September 2016 TABLE OF CONTENTS PREFACE ...................................................................................................................................... 5 ACKNOWLEDGEMENTS .............................................................................................................................................
    [Show full text]
  • Temporal Encephalocele Into Transverse Sinus in an Adult with Partial Seizures
    Published online: 2021-07-14 CASE REPORT Temporal encephalocele into transverse sinus in an adult with partial seizures: MRI evaluation of a rare site of brain herniation Taruna Yadav, Minhaj Shaikh, Samhita Panda1, Pushpinder Khera Departments of Diagnostic and Interventional Radiology and 1Neurology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India Correspondence: Dr. Minhaj Shaikh, Department of Diagnostic and Interventional Radiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India. E‑mail: [email protected] Abstract Herniation of brain parenchyma outside its normal enclosure (also known as encephalocele) has long been known to occur at certain classic sites and is classified accordingly. With widespread use of modern neuroimaging, the previously unknown atypical and rare sites of encephalocele have now been identified. Brain herniation into a dural venous sinus is one such recently described entity with case reports extending only upto the earlier part of this decade. With no definite clinical symptomatology, imaging is crucial to diagnose this lesion accurately and differentiate it from the more familiar entity in this region of the brain, the arachnoid granulations. Also known as occult encephalocele, focal brain herniation into dural venous sinus has few specific imaging features and characteristic sites. We report a case of a 21‑year‑old man with partial seizures in whom MRI of the brain revealed focal herniation of the normal temporal lobe parenchyma into the left transverse sinus and discuss the key imaging features and pathophysiology of this entity. Key words: Arachnoid granulation; brain herniation; dural venous sinus; occult encephalocele Introduction on the structural weak points in the dura lining a venous sinus.
    [Show full text]
  • Blood Supply to the Human Spinal Cord. I. Anatomy and Hemodynamics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUPUIScholarWorks Clinical Anatomy 00:00–00 (2013) REVIEW Blood Supply to the Human Spinal Cord. I. Anatomy and Hemodynamics 1 1 2 1 ANAND N. BOSMIA , ELIZABETH HOGAN , MARIOS LOUKAS , R. SHANE TUBBS , AND AARON A. COHEN-GADOL3* 1Pediatric Neurosurgery, Children’s Hospital of Alabama, Birmingham, Alabama 2Department of Anatomic Sciences, St. George’s University School of Medicine, St. George’s, Grenada 3Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana The arterial network that supplies the human spinal cord, which was once thought to be similar to that of the brain, is in fact much different and more extensive. In this article, the authors attempt to provide a comprehensive review of the literature regarding the anatomy and known hemodynamics of the blood supply to the human spinal cord. Additionally, as the medical litera- ture often fails to provide accurate terminology for the arteries that supply the cord, the authors attempt to categorize and clarify this nomenclature. A com- plete understanding of the morphology of the arterial blood supply to the human spinal cord is important to anatomists and clinicians alike. Clin. Anat. 00:000–000, 2013. VC 2013 Wiley Periodicals, Inc. Key words: spinal cord; vascular supply; anatomy; nervous system INTRODUCTION (segmental medullary) arteries and posterior radicular (segmental medullary) arteries, respectively (Thron, Gillilan (1958) stated that Adamkiewicz carried out 1988). The smaller radicular arteries branch from the and published in 1881 and 1882 the first extensive spinal branch of the segmental artery (branch) of par- study on the blood vessels of the spinal cord, and that ent arteries such as the vertebral arteries, ascending his work and a study of 29 human spinal cords by and deep cervical arteries, etc.
    [Show full text]