Apolipoprotein E Genotype Predicts 24-Month Bayley Scales Infant Development Score

Total Page:16

File Type:pdf, Size:1020Kb

Apolipoprotein E Genotype Predicts 24-Month Bayley Scales Infant Development Score 0031-3998/03/5406-0819 PEDIATRIC RESEARCH Vol. 54, No. 6, 2003 Copyright © 2003 International Pediatric Research Foundation, Inc. Printed in U.S.A. Apolipoprotein E Genotype Predicts 24-Month Bayley Scales Infant Development Score ROBERT O. WRIGHT, HOWARD HU, EDWIN K. SILVERMAN, SHIRNG W. TSAIH, JOEL SCHWARTZ, DAVID BELLINGER, EDUARDO PALAZUELOS, SCOTT T. WEISS, AND MAURICIO HERNANDEZ-AVILA Departments of Pediatrics [R.O.W.] and Neurology [D.B.], Children’s Hospital Boston, Boston, Massachusetts 02115, U.S.A.; The Channing Laboratory [R.O.W., H.H., E.K.S., S.W.T., J.S., S.T.W.], Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, U.S.A.; Department of Environmental Health [R.O.W., H.H., S.W.T., J.S.], Harvard School of Public Health, Boston, Massachusetts 02115, U.S.A.; American British Cowdray Hospital [E.P.], 18901 México City, México; and Instituto Nacional de Salud Pública [E.P., M.H.-A.], Instituto Nacional de Perinatologia, 62508 Mexico City, Centro de Investigacion en Salud, Poblacional, National Institute of Public Health Mexico, 62508 Cuernavaca, México ABSTRACT Apolipoprotein E (APOE) regulates cholesterol and fatty acid confidence interval: 0.1-8.7; p ϭ 0.04) higher 24-mo MDI. In the metabolism, and may mediate synaptogenesis during neurode- stratified regression models, the negative effects for umbilical velopment. To our knowledge, the effects of APOE4 isoforms on cord blood lead level on 24-mo MDI score was approximately infant development have not been studied. This study was nested 4-fold greater among APOE3/APOE2 carriers than among within a cohort of mother-infant pairs living in and around APOE4 carriers. These results suggest that subjects with the E4 Mexico City. A multiple linear regression model was constructed isoform of APOE may have advantages over those with the E2 or using the 24-mo Mental Development Index (MDI) of the Bayley E3 isoforms with respect to early life neuronal/brain Scale as the primary outcome and infant APOE genotype as the development. (Pediatr Res 54: 819–825, 2003) primary risk factor of interest. Regression models stratified on APOE genotype were constructed to explore effect modification. Of 311 subjects, 53 (17%) carried at least one copy of the Abbreviations APOE4 allele. Mean (SD) MDI scores among carriers with at APOE, apolipoprotein E gene least one copy of APOE4 were 94.1 (14.3) and among E3/E2 ApoE, apolipoprotein E protein carriers were 91.2 (14.0). After adjustment for covariates, MDI, Mental Development Index APOE4 carrier status was associated with a 4.4 point (95% BSID, Bayley Scales of Infant Development Apolipoprotein E (ApoE, protein; APOE, gene) is an intra- is taken up by neurons via various ApoE receptors and incor- cellular cholesterol and fatty acid transport protein that plays porated into cell membrane structures and myelin (4, 5). The an important role in neuronal metabolism. The gene for this metabolism of cholesterol is believed to play a major role in protein has been localized on chromosome 19, and there are neurite outgrowth and synaptogenesis (1–3), processes that are three common alleles—E2, E3, and E4—which differ only on critical to neurodevelopment. Although the APOE4 isoform the basis of one or two amino acids on positions 112 and 158 has been demonstrated to be an important risk factor for (1, 2). ApoE is unique among lipoproteins in that it is involved neurodegeneration, the role of ApoE genetic variants in neu- in the recovery response of injured nerve tissue (3). In the rodevelopment is also becoming increasingly apparent (6–8). brain, ApoE is synthesized by astrocytes and secreted into the In conjunction with our understanding of the role of choles- extracellular space, where it then binds to cholesterol. There it terol and ApoE in neurodevelopment is an increasing recogni- tion that genetic factors that alter the host response to environ- Received November 8, 2002; accepted May 26, 2003. mental toxins may be particularly important during critical Correspondence: Robert O. Wright, MD, MPH, Division of Emergency Medicine, developmental windows that occur during fetal life (9, 10). Children’s Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, U.S.A.; email: Because cholesterol and fatty acids are critical to brain devel- [email protected] Supported in part by grants from the National Institute of Environmental Health opment, genetic factors that regulate their metabolism may Sciences: K23 ES 00381 and R01 ES 007821 influence development independently or may serve as modifi- DOI: 10.1203/01.PDR.0000090927.53818.DE ers of the response to maternal diet or maternal exposure to 819 820 WRIGHT ET AL. neurotoxins. Genetic susceptibility may account for a large Bayley Scales of Infant Development-II (BSID-II; Spanish proportion of the variance in response to environmental toxins, version). All participating mothers received a detailed expla- such as lead. Because ApoE is critical to synaptogenesis nation of the study and its procedures, as well as counseling on processes involved in brain development, this raises the ques- how to reduce environmental lead exposure. tion of whether genetic variants of APOE may also be associ- Blood lead measurements. Umbilical cord blood samples ated with differential effects on neurodevelopment. Given this were collected in trace metal-free tubes at delivery. Blood background, we studied the role of APOE genotypes on infant samples were analyzed using an atomic absorption spectrom- development and explored interactions between APOE geno- etry instrument (Perkin-Elmer 3000, Chelmsford, MA, USA) types and fetal exposure to the neurotoxin lead. at the metals laboratory of the American British Cowdray Hospital in Mexico City. External blinded quality-control sam- METHODS ples were provided throughout the study period by the Mater- nal and Child Health Bureau and the Wisconsin State Labora- Study population. The study protocol was approved by the tory of Hygiene Cooperative Blood Lead Proficiency Testing Human Subjects Committees of the National Institute of Public Program. These analyses demonstrated acceptable precision Health of Mexico, the participating hospitals, the Brigham and and accuracy with a correlation coefficient of 0.99 and a mean Women’s Hospital, and the Harvard School of Public Health difference of 0.17 ␮g/dL (SD ϭ 0.68). The detection limit for and was conducted under an established interinstitutional col- this assay is 1 ␮g/dL. laboration among Harvard University, the Center for Popula- Measurements of child development and potential con- tion Health Research of the National Institute of Public Health founders. The BSID-II is a revision and restandardization of in Mexico, the American British Cowdray Medical Center, and the BSID, one of the most widely used tests of infant devel- the National Institute of Perinatology of Mexico. The study opment. Scores have been shown to be sensitive to a variety of cohort was recruited from three maternity hospitals in Mexico prenatal, perinatal, and postnatal insults, including lead expo- City (Mexican Social Security Institute, Manuel Gea Gonzalez sure (11–14). A Spanish version of the BSID (BSID-IIS) was Hospital, and National Institute of Perinatology) and was developed by our research group before this study. The team designed to determine the effects of calcium supplementation administering the BSID-IIS was led and trained by Dr. Bell- during lactation on infant lead kinetics and neurodevelopment. inger, with standardization and quality control checks con- We have previously reported the effect of maternal bone lead in ducted through reviews of videotaped interviews. Mental De- predicting infant development in this cohort (11). velopment Index (MDI) scores at 24 mo of age were used as Between 1994 and 1995, 1382 women were found to be the primary outcome measure. eligible for the trial. Exclusion criteria included no intention to Maternal IQ, an important potential confounder, was as- breast-feed; factors that would interfere with data collection, sessed using the Vocabulary and Block Design components of such as living outside Mexico City; and conditions related to the Wechsler Adult Intelligence Score, which has been trans- calcium metabolism and requirements, such as multiple fe- lated into Spanish and used in Mexico. Of the 424 subjects tuses, preeclampsia, or pregnancy-related hypertensive disor- with archived blood, 311 returned for a 24-mo BSID ders or cardiac disease, gestational diabetes, history of repeated assessment. urinary infections, history of kidney stone formation, seizure Genotyping. Although each subject had signed an approved disorder requiring daily medications, and ingestion of cortico- consent form signifying willingness to have blood archived for steroids. Also excluded from the study were premature neo- unspecified future testing, we took additional steps to protect nates (Ͻ37 wk) and newborns with birth weight Ͻ2000 g. the confidentiality of the APOE genotype data. To protect the Baseline information on health status and social and demo- subjects from any undue consequences that the results might graphic characteristics as well as written consent were obtained have with respect to employment or health coverage, we from all 1382 eligible participating mothers. One month post- created a new data file for the cohort, anonymized and kept partum, potential participants attended our research center. Of separate from the master data file. Data on all exposure vari- the 1382 initially eligible mother-infant pairs, 617 (44.6%) ables and covariates of interest were downloaded into this file, agreed to participate in the trial. For the purposes of this as were the APOE genotype data. All subject identifiers were analysis, 424 infants had archived blood available for geno- then deleted from the new anonymous file, and the APOE typing. This study was conducted in these 424 infants. genotype data were deleted from the master file. The genotyp- Anthropometric data from the mother and the newborn and ing and anonymization procedures were approved by the Hu- umbilical cord and maternal venous blood samples were gath- man Subjects Committee of Brigham and Women’s Hospital.
Recommended publications
  • Plasma Phospholipid Transfer Protein (PLTP) Modulates Adaptive Immune Functions Through Alternation of T Helper Cell Polarization
    Cellular & Molecular Immunology (2016) 13, 795–804 OPEN ß 2016 CSI and USTC. All rights reserved 1672-7681/16 $32.00 www.nature.com/cmi RESEARCH ARTICLE Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization Catherine Desrumaux1,2,3, Ste´phanie Lemaire-Ewing1,2,3,4, Nicolas Ogier1,2,3, Akadiri Yessoufou1,2,3, Arlette Hammann1,3,4, Anabelle Sequeira-Le Grand2,5, Vale´rie Deckert1,2,3, Jean-Paul Pais de Barros1,2,3, Naı¨g Le Guern1,2,3, Julien Guy4, Naim A Khan1,2,3 and Laurent Lagrost1,2,3,4 Objective: Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD41 Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood.
    [Show full text]
  • The Crucial Roles of Apolipoproteins E and C-III in Apob Lipoprotein Metabolism in Normolipidemia and Hypertriglyceridemia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sacks, Frank M. 2015. “The Crucial Roles of Apolipoproteins E and C-III in apoB Lipoprotein Metabolism in Normolipidemia and Hypertriglyceridemia.” Current Opinion in Lipidology 26 (1) (February): 56–63. doi:10.1097/mol.0000000000000146. Published Version doi:10.1097/MOL.0000000000000146 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30203554 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP HHS Public Access Author manuscript Author Manuscript Author ManuscriptCurr Opin Author Manuscript Lipidol. Author Author Manuscript manuscript; available in PMC 2016 February 01. Published in final edited form as: Curr Opin Lipidol. 2015 February ; 26(1): 56–63. doi:10.1097/MOL.0000000000000146. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia Frank M. Sacks Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA Abstract Purpose of review—To describe the roles of apolipoprotein C-III (apoC-III) and apoE in VLDL and LDL metabolism Recent findings—ApoC-III can block clearance from the circulation of apolipoprotein B (apoB) lipoproteins, whereas apoE mediates their clearance.
    [Show full text]
  • Common Genetic Variations Involved in the Inter-Individual Variability Of
    nutrients Review Common Genetic Variations Involved in the Inter-Individual Variability of Circulating Cholesterol Concentrations in Response to Diets: A Narrative Review of Recent Evidence Mohammad M. H. Abdullah 1 , Itzel Vazquez-Vidal 2, David J. Baer 3, James D. House 4 , Peter J. H. Jones 5 and Charles Desmarchelier 6,* 1 Department of Food Science and Nutrition, Kuwait University, Kuwait City 10002, Kuwait; [email protected] 2 Richardson Centre for Functional Foods & Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada; [email protected] 3 United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; [email protected] 4 Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] 5 Nutritional Fundamentals for Health, Vaudreuil-Dorion, QC J7V 5V5, Canada; [email protected] 6 Aix Marseille University, INRAE, INSERM, C2VN, 13005 Marseille, France * Correspondence: [email protected] Abstract: The number of nutrigenetic studies dedicated to the identification of single nucleotide Citation: Abdullah, M.M.H.; polymorphisms (SNPs) modulating blood lipid profiles in response to dietary interventions has Vazquez-Vidal, I.; Baer, D.J.; House, increased considerably over the last decade. However, the robustness of the evidence-based sci- J.D.; Jones, P.J.H.; Desmarchelier, C. ence supporting the area remains to be evaluated. The objective of this review was to present Common Genetic Variations Involved recent findings concerning the effects of interactions between SNPs in genes involved in cholesterol in the Inter-Individual Variability of metabolism and transport, and dietary intakes or interventions on circulating cholesterol concen- Circulating Cholesterol trations, which are causally involved in cardiovascular diseases and established biomarkers of Concentrations in Response to Diets: cardiovascular health.
    [Show full text]
  • Apoe Lipidation As a Therapeutic Target in Alzheimer's Disease
    International Journal of Molecular Sciences Review ApoE Lipidation as a Therapeutic Target in Alzheimer’s Disease Maria Fe Lanfranco, Christi Anne Ng and G. William Rebeck * Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA; [email protected] (M.F.L.); [email protected] (C.A.N.) * Correspondence: [email protected]; Tel.: +1-202-687-1534 Received: 6 August 2020; Accepted: 30 August 2020; Published: 1 September 2020 Abstract: Apolipoprotein E (APOE) is the major cholesterol carrier in the brain, affecting various normal cellular processes including neuronal growth, repair and remodeling of membranes, synaptogenesis, clearance and degradation of amyloid β (Aβ) and neuroinflammation. In humans, the APOE gene has three common allelic variants, termed E2, E3, and E4. APOE4 is considered the strongest genetic risk factor for Alzheimer’s disease (AD), whereas APOE2 is neuroprotective. To perform its normal functions, apoE must be secreted and properly lipidated, a process influenced by the structural differences associated with apoE isoforms. Here we highlight the importance of lipidated apoE as well as the APOE-lipidation targeted therapeutic approaches that have the potential to correct or prevent neurodegeneration. Many of these approaches have been validated using diverse cellular and animal models. Overall, there is great potential to improve the lipidated state of apoE with the goal of ameliorating APOE-associated central nervous system impairments. Keywords: apolipoprotein E; cholesterol; lipid homeostasis; neurodegeneration 1. Scope of This Review In this review, we will first consider the role of apolipoprotein E (apoE) in lipid homeostasis in the central nervous system (CNS).
    [Show full text]
  • Additive Effects of LPL, APOA5 and APOE Variant Combinations On
    Ariza et al. BMC Medical Genetics 2010, 11:66 http://www.biomedcentral.com/1471-2350/11/66 RESEARCH ARTICLE Open Access AdditiveResearch article effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study María-José Ariza*1, Miguel-Ángel Sánchez-Chaparro1,2,3, Francisco-Javier Barón4, Ana-María Hornos2, Eva Calvo- Bonacho2, José Rioja1, Pedro Valdivielso1,3, José-Antonio Gelpi2 and Pedro González-Santos1,3 Abstract Background: Hypertriglyceridemia (HTG) is a well-established independent risk factor for cardiovascular disease and the influence of several genetic variants in genes related with triglyceride (TG) metabolism has been described, including LPL, APOA5 and APOE. The combined analysis of these polymorphisms could produce clinically meaningful complementary information. Methods: A subgroup of the ICARIA study comprising 1825 Spanish subjects (80% men, mean age 36 years) was genotyped for the LPL-HindIII (rs320), S447X (rs328), D9N (rs1801177) and N291S (rs268) polymorphisms, the APOA5- S19W (rs3135506) and -1131T/C (rs662799) variants, and the APOE polymorphism (rs429358; rs7412) using PCR and restriction analysis and TaqMan assays. We used regression analyses to examine their combined effects on TG levels (with the log-transformed variable) and the association of variant combinations with TG levels and hypertriglyceridemia (TG ≥ 1.69 mmol/L), including the covariates: gender, age, waist circumference, blood glucose, blood pressure, smoking and alcohol consumption. Results: We found a significant lowering effect of the LPL-HindIII and S447X polymorphisms (p < 0.0001). In addition, the D9N, N291S, S19W and -1131T/C variants and the APOE-ε4 allele were significantly associated with an independent additive TG-raising effect (p < 0.05, p < 0.01, p < 0.001, p < 0.0001 and p < 0.001, respectively).
    [Show full text]
  • Genetic Association of APOA5 and APOE with Metabolic Syndrome And
    Son et al. Lipids in Health and Disease (2015) 14:105 DOI 10.1186/s12944-015-0111-5 RESEARCH Open Access Genetic association of APOA5 and APOE with metabolic syndrome and their interaction with health-related behavior in Korean men Ki Young Son1,6†, Ho-Young Son2†, Jeesoo Chae3, Jinha Hwang3, SeSong Jang3, Jae Moon Yun1,6, BeLong Cho1,6, Jin Ho Park1,6* and Jong-Il Kim2,3,4,5* Abstract Background: Genome-wide association studies have been used extensively to identify genetic variants linked to metabolic syndrome (MetS), but most of them have been conducted in non-Asian populations. This study aimed to evaluate the association between MetS and previously studied single nucleotide polymorphisms (SNPs), and their interaction with health-related behavior in Korean men. Methods: Seventeen SNPs were genotyped and their association with MetS and its components was tested in 1193 men who enrolled in the study at Seoul National University Hospital. Results: We found that rs662799 near APOA5 and rs769450 in APOE had significant association with MetS and its components. The SNP rs662799 was associated with increased risk of MetS, elevated triglyceride (TG) and low levels of high-density lipoprotein, while rs769450 was associated with a decreased risk of TG. The SNPs showed interactions between alcohol drinking and physical activity, and TG levels in Korean men. Conclusions: We have identified the genetic association and environmental interaction for MetS in Korean men. These results suggest that a strategy of prevention and treatment should be tailored to personal genotype and the population. Keywords: APOA5, APOE, Health behavior, Metabolic syndrome, Triglyceride Background MetS is caused by multiple genetic and environmental According to a World Health Organization report, car- risk factors, and an interaction between the factors has diovascular diseases were the cause of 30 % of all deaths been widely postulated.
    [Show full text]
  • The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation
    International Journal of Molecular Sciences Review The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation Virginia Actis Dato 1,2 and Gustavo Alberto Chiabrando 1,2,* 1 Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; [email protected] 2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba X5000HUA, Argentina * Correspondence: [email protected]; Tel.: +54-351-4334264 (ext. 3431) Received: 6 May 2018; Accepted: 13 June 2018; Published: 15 June 2018 Abstract: Metabolic syndrome (MetS) is a highly prevalent disorder which can be used to identify individuals with a higher risk for cardiovascular disease and type 2 diabetes. This metabolic syndrome is characterized by a combination of physiological, metabolic, and molecular alterations such as insulin resistance, dyslipidemia, and central obesity. The low-density lipoprotein receptor-related protein 1 (LRP1—A member of the LDL receptor family) is an endocytic and signaling receptor that is expressed in several tissues. It is involved in the clearance of chylomicron remnants from circulation, and has been demonstrated to play a key role in the lipid metabolism at the hepatic level. Recent studies have shown that LRP1 is involved in insulin receptor (IR) trafficking and intracellular signaling activity, which have an impact on the regulation of glucose homeostasis in adipocytes, muscle cells, and brain. In addition, LRP1 has the potential to inhibit or sustain inflammation in macrophages, depending on its cellular expression, as well as the presence of particular types of ligands in the extracellular microenvironment.
    [Show full text]
  • Apolipoprotein E in Synaptic Plasticity and Alzheimer’S Disease: Potential Cellular and Molecular Mechanisms
    Mol. Cells 2014; 37(11): 767-776 http://dx.doi.org/10.14348/molcells.2014.0248 Molecules and Cells http://molcells.org Established in 1990 Apolipoprotein E in Synaptic Plasticity and Alzheimer’s Disease: Potential Cellular and Molecular Mechanisms Jaekwang Kim1, Hyejin Yoon1,2, Jacob Basak3, and Jungsu Kim1,2,* Alzheimer’s disease (AD) is clinically characterized with mentia in the elderly. Two neuropathological hallmarks of AD progressive memory loss and cognitive decline. Synaptic are extracellular A aggregation and intraneuronal neurofibrilla- dysfunction is an early pathological feature that occurs ry tangles, mainly composed of hyperphosphorylated tau (Golde prior to neurodegeneration and memory dysfunction. et al., 2010). Although the exact pathogenic mechanism of AD Mounting evidence suggests that aggregation of amyloid- is still debated, accumulating evidence supports that abnormal (A) and hyperphosphorylated tau leads to synaptic defi- aggregation of A in the brain is an early event that triggers cits and neurodegeneration, thereby to memory loss. pathogenic cascades. A species, including the most abundant Among the established genetic risk factors for AD, the 4 A40 and more toxic A42, are produced by two sequential allele of apolipoprotein E (APOE) is the strongest genetic proteolytic cleavages of amyloid precursor protein (APP) by - risk factor. We and others previously demonstrated that and γ-secretases (Kim et al., 2007; McGowan et al., 2005). apoE regulates A aggregation and clearance in an iso- Genetic mutations responsible for dominant early-onset familial form-dependent manner. While the effect of apoE on A AD are found in APP and presenilin 1 and 2, essential compo- may explain how apoE isoforms differentially affect AD nents of γ-secretase complex.
    [Show full text]
  • Apolipoprotein E Gene in Frontotemporal Dementia: an Association Study and Meta-Analysis
    European Journal of Human Genetics (2002) 10, 399 – 405 ª 2002 Nature Publishing Group All rights reserved 1018 – 4813/02 $25.00 www.nature.com/ejhg ARTICLE Apolipoprotein E gene in frontotemporal dementia: an association study and meta-analysis Patrice Verpillat*,1,2, Agne`s Camuzat3, Didier Hannequin4,5, Catherine Thomas-Anterion6, Miche`le Puel7, Serge Belliard8, Bruno Dubois9, Mira Didic10,11, Lucette Lacomblez12,13, Olivier Moreaud14,Ve´ronique Golfier8, Dominique Campion4, Alexis Brice3,9,15 and Franc¸oise Clerget-Darpoux1 1INSERM U535, Le Kremlin Biceˆtre, France; 2De´partement d’Epide´miologie, de Biostatistique et de Recherche Clinique, Centre Hospitalier Universitaire Bichat-Claude Bernard, AP-HP/Universite´ Paris VII, Paris, France; 3INSERM U289, Centre Hospitalier Universitaire Pitie´-Salpeˆtrie`re, Paris, France; 4INSERM EPI 9906, Rouen, France; 5Service de Neurologie, Centre Hospitalier Universitaire, Rouen, France; 6Service de Neurologie, Centre Hospitalier Universitaire, Saint-Etienne, France; 7Service de Neurologie, Centre Hospitalier Universitaire Purpan, Toulouse, France; 8Service de Neurologie, Centre Hospitalier Universitaire Pontchaillou, Rennes, France; 9Fe´de´ration de Neurologie, Centre Hospitalier Universitaire Pitie´-Salpeˆtrie`re, Paris, France; 10Service de Neurologie et Neuropsychologie, Centre Hospitalier Universitaire de la Timone, Marseille, France; 11INSERM EMI U9926, Marseille, France; 12Fe´de´ration de Neurologie Mazarin, Centre Hospitalier Universitaire Pitie´-Salpeˆtrie`re, Paris, France; 13De´partement de Pharmacologie, Centre Hospitalier Universitaire Pitie´-Salpeˆtrie`re, Paris, France; 14Service de Neurologie, Centre Hospitalier Universitaire, Grenoble, France; 15De´partement de Ge´ne´tique, Cytoge´ne´tique et Embryologie, Centre Hospitalier Universitaire Pitie´-Salpeˆtrie`re, Paris, France No definite genetic risk factor of non-monogenic frontotemporal dementia (FTD) has yet been identified.
    [Show full text]
  • ABCA1) in Human Disease
    International Journal of Molecular Sciences Review The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease Leonor Jacobo-Albavera 1,† , Mayra Domínguez-Pérez 1,† , Diana Jhoseline Medina-Leyte 1,2 , Antonia González-Garrido 1 and Teresa Villarreal-Molina 1,* 1 Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; [email protected] (L.J.-A.); [email protected] (M.D.-P.); [email protected] (D.J.M.-L.); [email protected] (A.G.-G.) 2 Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein- cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the Citation: Jacobo-Albavera, L.; pathophysiology of a broad array of diseases. This review describes evidence obtained from animal Domínguez-Pérez, M.; Medina-Leyte, models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, D.J.; González-Garrido, A.; Villarreal- coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related Molina, T.
    [Show full text]
  • Apolipoprotein A1 Genotype Affects the Change in High Density Lipoprotein Cholesterol Subfractions with Exercise Training
    Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training Authors: G. Ruaño, R. L. Seip, A. Windemuth, S. Zöllner, G. J. Tsongalis, J. Ordovas, J. Otvos, C. Bilbie, M. Miles, R. Zoeller, P. Visich, P. Gordon, T. J. Angelopoulos, L. Pescatello, N. Moyna, and P. D. Thompson NOTICE: this is the author’s postprint version of a work that was accepted for publication in Atherosclerosis. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Atherosclerosis, Volume 185, Issue 1, March 2006. DOI# 10.1016/j.atherosclerosis.2005.05.02. Ruaño G, R. L. Seip, A. Windemuth, S. Zöllner, G. J. Tsongalis, J. Ordovas, J. Otvos, C. Bilbie, M. Miles, R. Zoeller, P. Visich, P. Gordon, T. J. Angelopoulos, L. Pescatello, N. Moyna, and P. D. Thompson. Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training. Atherosclerosis, 185:65-69, 2006. http://dx.doi.org/10.1016/j.atherosclerosis.2005.05.029 Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training Richard L. Seip, Gregory J. Tsongalis, Paul D. Thompson, Cherie Bilbie; Hartford Hospital, Hartford CT 06102 Gualberto Ruaño, Andreas Windemuth, Stefan Zöllner; Genomas, Inc., 67 Jefferson Street, Hartford, CT 06106, USA Jose Ordovas; Tufts University, Boston, MA, USA James Otvos ; North Carolinia State University, Raleigh, NC, USA Mary Miles; Montana State University, Bozeman, MT, USA Robert Zoeller; Florida Atlantic University, Davie, FL, USA Paul Visich; Central Michigan University, Mt.
    [Show full text]
  • Apolipoprotein E Levels in Cerebrospinal Fluid and the Effects
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2007 Apolipoprotein E levels in cerebrospinal fluid nda the effects of ABCA1 polymorphisms Suzanne E. Wahrle Washington University School of Medicine in St. Louis Aarti R. Shah Washington University School of Medicine in St. Louis Anne M. Fagan Washington University School of Medicine in St. Louis Scott meS mo Washington University School of Medicine in St. Louis John SK Kauwe Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Part of the Medicine and Health Sciences Commons Recommended Citation Wahrle, Suzanne E.; Shah, Aarti R.; Fagan, Anne M.; Smemo, Scott; Kauwe, John SK; Grupe, Andrew; Hinrichs, Anthony; Mayo, Kevin; Jiang, Hong; Thal, Leon J.; Goate, Alison M.; and Holtzman, David M., ,"Apolipoprotein E levels in cerebrospinal fluid nda the effects of ABCA1 polymorphisms." Molecular Neurodegeneration.,. 7. (2007). https://digitalcommons.wustl.edu/open_access_pubs/186 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Suzanne E. Wahrle, Aarti R. Shah, Anne M. Fagan, Scott meS mo, John SK Kauwe, Andrew Grupe, Anthony Hinrichs, Kevin Mayo, Hong Jiang, Leon J. Thal, Alison M. Goate, and David
    [Show full text]