Activity 4: Sunspot Viewer ACTIVITY 4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solar Modulation Effect on Galactic Cosmic Rays
Solar Modulation Effect On Galactic Cosmic Rays Cristina Consolandi – University of Hawaii at Manoa Nov 14, 2015 Galactic Cosmic Rays Voyager in The Galaxy The Sun The Sun is a Star. It is a nearly perfect spherical ball of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process. 3 The Sun & The Heliosphere The heliosphere contains the solar system GCR may penetrate the Heliosphere and propagate trough it by following the Sun's magnetic field lines. 4 The Heliosphere Boundaries The Heliosphere is the region around the Sun over which the effect of the solar wind is extended. 5 The Solar Wind The Solar Wind is the constant stream of charged particles, protons and electrons, emitted by the Sun together with its magnetic field. 6 Solar Wind & Sunspots Sunspots appear as dark spots on the Sun’s surface. Sunspots are regions of strong magnetic fields. The Sun’s surface at the spot is cooler, making it looks darker. It was found that the stronger the solar wind, the higher the sunspot number. The sunspot number gives information about 7 the Sun activity. The 11-year Solar Cycle The solar Wind depends on the Sunspot Number Quiet At maximum At minimum of Sun Spot of Sun Spot Number the Number the sun is Active sun is Quiet Active! 8 The Solar Wind & GCR The number of Galactic Cosmic Rays entering the Heliosphere depends on the Solar Wind Strength: the stronger is the Solar wind the less probable would be for less energetic Galactic Cosmic Rays to overcome the solar wind! 9 How do we measure low energy GCR on ground? With Neutron Monitors! The primary cosmic ray has enough energy to start a cascade and produce secondary particles. -
Telescopes and Binoculars
Continuing Education Course Approved by the American Board of Opticianry Telescopes and Binoculars National Academy of Opticianry 8401 Corporate Drive #605 Landover, MD 20785 800-229-4828 phone 301-577-3880 fax www.nao.org Copyright© 2015 by the National Academy of Opticianry. All rights reserved. No part of this text may be reproduced without permission in writing from the publisher. 2 National Academy of Opticianry PREFACE: This continuing education course was prepared under the auspices of the National Academy of Opticianry and is designed to be convenient, cost effective and practical for the Optician. The skills and knowledge required to practice the profession of Opticianry will continue to change in the future as advances in technology are applied to the eye care specialty. Higher rates of obsolescence will result in an increased tempo of change as well as knowledge to meet these changes. The National Academy of Opticianry recognizes the need to provide a Continuing Education Program for all Opticians. This course has been developed as a part of the overall program to enable Opticians to develop and improve their technical knowledge and skills in their chosen profession. The National Academy of Opticianry INSTRUCTIONS: Read and study the material. After you feel that you understand the material thoroughly take the test following the instructions given at the beginning of the test. Upon completion of the test, mail the answer sheet to the National Academy of Opticianry, 8401 Corporate Drive, Suite 605, Landover, Maryland 20785 or fax it to 301-577-3880. Be sure you complete the evaluation form on the answer sheet. -
Activity - Sunspot Tracking
JOURNEY TO THE SUN WITH THE NATIONAL SOLAR OBSERVATORY Activity - SunSpot trAcking Adapted by NSO from NASA and the European Space Agency (ESA). https://sohowww.nascom.nasa.gov/classroom/docs/Spotexerweb.pdf / Retrieved on 01/23/18. Objectives In this activity, students determine the rate of the Sun’s rotation by tracking and analyzing real solar data over a period of 7 days. Materials □ Student activity sheet □ Calculator □ Pen or pencil bacKgrOund In this activity, you’ll observe and track sunspots across the Sun, using real images from the National Solar Observatory’s: Global Oscillation Network Group (GONG). This can also be completed with data students gather using www.helioviewer.org. See lesson 4 for instructions. GONG uses specialized telescope cameras to observe diferent layers of the Sun in diferent wavelengths of light. Each layer has a diferent story to tell. For example, the chromosphere is a layer in the lower solar atmosphere. Scientists observe this layer in H-alpha light (656.28nm) to study features such as flaments and prominences, which are clearly visible in the chromosphere. For the best view of sunspots, GONG looks to the photosphere. The photosphere is the lowest layer of the Sun’s atmosphere. It’s the layer that we consider to be the “surface” of the Sun. It’s the visible portion of the Sun that most people are familiar with. In order to best observe sunspots, scientists use photospheric light with a wavelength of 676.8nm. The images that you will analyze in this activity are of the solar photosphere. The data gathered in this activity will allow you to determine the rate of the Sun’s rotation. -
Astronomical Binoculars
30˚E 15˚E OWNER’S MANUAL ASTRONOMICAL BINOCULARS ZHUMELL 20X80 SUPERGIANT ASTRONOMICAL BINOCULARS 0˚ 15˚W 75˚W 60˚W 30˚W 45˚W Zhumell customers know that there are plenty of ways to experience the world. They also understand that, however you choose to explore it, the best experience is one that fully immerses you in the world’s most striking details. That’s where our optics products come in. We strive to put high-performance products in the hands of our customers so that they can experience the world up close, with their own eyes. With Zhumell, you get field-tested, precision-crafted optics at the best possible value. So even if you’re just starting out as an amateur birder or astronomer, you don’t have to settle for entry-level products. Zhumell customers enjoy life’s pursuits, hobbies, and adventures in rich, colorful detail- the kind of detail that only high-performance optics can produce. At Zhumell, we design our binoculars, telescopes, and spotting scopes for discerning, price-conscious users who are uncompromising on quality. If you’re looking for accessibly priced optics that will bring your world within reach, you’re looking for Zhumell. Enjoy the view. 2 ENJOYING YOUR ZHUMELL ASTRONOMICAL BINOCULARS 1. Caring For Your Binoculars 2. Using Your Binoculars i. Tripod Mounting ii. Interpupillary Distance iii. Center and Diopter Focus 3. Terrestrial and Astronomical Viewing 4. Astronomical Observation Tips i. Selecting a Viewing Site ii. Seeing and Transparency iii. Dark-Adapting iv. Tracking Celestial Objects 5. Cool Views i. The Moon ii. -
Viewing an Eclipse Safely
ECLIPSES SOLAR an eclipse safely How to observe SOLAR ECLIPSE, OCTOBER 2014, BY LEMAN NORTHWAY Solar eclipses are quite rare and are often a major event. The SOLAR ECLIPSES Moon passes right in front of the Sun, blotting out its disc. Every time a solar eclipse occurs there are various things to look for. However, it is extremely dangerous to just go out and look up. The Sun is so bright that just looking at it can blind you, so you’ll need to prepare beforehand. There are various ways to observe eclipses safely, using both everyday materials and telescopes or binoculars. So read this leaflet Introduction to find out what happens during an eclipse and how you can see all the stages of the event safely. This booklet was written by the Royal Astronomical Society with The Society for Popular Astronomy and is endorsed by the British Astronomical Association The Royal Astronomical The Society for Popular Formed in 1890, the Society, founded in Astronomy is for British Astronomical 1820, encourages and beginners of all ages. Our Association has an promotes the study of aim is to make astronomy international reputation astronomy, solar-system fun, and our magazine, for the quality of science, geophysics and Popular Astronomy, is full its observational closely related branches of information to help and scientific work. of science. you get to know the Membership is open to www.ras.org.uk sky and get involved. We even have a special Young all persons interested in HIGGS-BOSON.COM JOHNSON: PAUL BY D Stargazers section, run by TV’s Lucie Green. -
Critical Thinking Activity: Getting to Know Sunspots
Student Sheet 1 CRITICAL THINKING ACTIVITY: GETTING TO KNOW SUNSPOTS Our Sun is not a perfect, constant source of heat and light. As early as 28 B.C., astronomers in ancient China recorded observations of the movements of what looked like small, changing dark patches on the surface of the Sun. There are also some early notes about sunspots in the writings of Greek philosophers from the fourth century B.C. However, none of the early observers could explain what they were seeing. The invention of the telescope by Dutch craftsmen in about 1608 changed astronomy forever. Suddenly, European astronomers could look into space, and see unimagined details on known objects like the moon, sun, and planets, and discovering planets and stars never before visible. No one is really sure who first discovered sunspots. The credit is usually shared by four scientists, including Galileo Galilei of Italy, all of who claimed to have noticed sunspots sometime in 1611. All four men observed sunspots through telescopes, and made drawings of the changing shapes by hand, but could not agree on what they were seeing. Some, like Galileo, believed that sunspots were part of the Sun itself, features like spots or clouds. But other scientists, believed the Catholic Church's policy that the heavens were perfect, signifying the perfection of God. To admit that the Sun had spots or blemishes that moved and changed would be to challenge that perfection and the teachings of the Church. Galileo eventually made a breakthrough. Galileo noticed the shape of the sunspots became reduced as they approached the edge of the visible sun. -
Can You Spot the Sunspots?
Spot the Sunspots Can you spot the sunspots? Description Use binoculars or a telescope to identify and track sunspots. You’ll need a bright sunny day. Age Level: 10 and up Materials • two sheets of bright • Do not use binoculars whose white paper larger, objective lenses are 50 • a book mm or wider in diameter. • tape • Binoculars are usually described • binoculars or a telescope by numbers like 7 x 35; the larger • tripod number is the diameter in mm of • pencil the objective lenses. • piece of cardboard, • Some binoculars cannot be easily roughly 30 cm x 30 cm attached to a tripod. • scissors • You might need to use rubber • thick piece of paper, roughly bands or tape to safely hold the 10 cm x 10 cm (optional) binoculars on the tripod. • rubber bands (optional) Time Safety Preparation: 5 minutes Do not look directly at the sun with your eyes, Activity: 15 minutes through binoculars, or through a telescope! Do not Cleanup: 5 minutes leave binoculars or a telescope unattended, since the optics can be damaged by too much Sun exposure. 1 If you’re using binoculars, cover one of the objective (larger) lenses with either a lens cap or thick piece of folded paper (use tape, attached to the body of the binoculars, to hold the paper in position). If using a telescope, cover the finderscope the same way. This ensures that only a single image of the Sun is created. Next, tape one piece of paper to a book to make a stiff writing surface. If using binoculars, trace both of the larger, objective lenses in the middle of the piece of cardboard. -
Our Sun Has Spots.Pdf
THE A T M O S P H E R I C R E S E R V O I R Examining the Atmosphere and Atmospheric Resource Management Our Sun Has Spots By Mark D. Schneider Aurora Borealis light shows. If you minima and decreased activity haven’t seen the northern lights for called The Maunder Minimum. Is there actually weather above a while, you’re not alone. The end This period coincides with the our earth’s troposphere that con- of Solar Cycle 23 and a minimum “Little Ice Age” and may be an cerns us? Yes. In fact, the US of sunspot activity likely took place indication that it’s possible to fore- Department of Commerce late last year. Now that a new 11- cast long-term temperature trends National Oceanic and over several decades or Atmospheric Administra- centuries by looking at the tion (NOAA) has a separate sun’s irradiance patterns. division called the Space Weather Prediction Center You may have heard (SWPC) that monitors the about 22-year climate weather in space. Space cycles (two 11-year sun- weather focuses on our sun spot cycles) in which wet and its’ cycles of solar activ- periods and droughts were ity. Back in April of 2007, experienced in the Mid- the SWPC made a predic- western U.S. The years tion that the next active 1918, 1936, and 1955 were sunspot or solar cycle would periods of maximum solar begin in March of this year. forcing, but minimum Their prediction was on the precipitation over parts of mark, Solar Cycle 24 began NASA TRACE PROJECT, OF COURTESY PHOTO the U.S. -
Nikon Binocular Handbook
THE COMPLETE BINOCULAR HANDBOOK While Nikon engineers of semiconductor-manufactur- FINDING THE ing equipment employ our optics to create the world’s CONTENTS PERFECT BINOCULAR most precise instrumentation. For Nikon, delivering a peerless vision is second nature, strengthened over 4 BINOCULAR OPTICS 101 ZOOM BINOCULARS the decades through constant application. At Nikon WHAT “WATERPROOF” REALLY MEANS FOR YOUR NEEDS 5 THE RELATIONSHIP BETWEEN POWER, Sport Optics, our mission is not just to meet your THE DESIGN EYE RELIEF, AND FIELD OF VIEW The old adage “the better you understand some- PORRO PRISM BINOCULARS demands, but to exceed your expectations. ROOF PRISM BINOCULARS thing—the more you’ll appreciate it” is especially true 12-14 WHERE QUALITY AND with optics. Nikon’s goal in producing this guide is to 6-11 THE NUMBERS COUNT QUANTITY COUNT not only help you understand optics, but also the EYE RELIEF/EYECUP USAGE LENS COATINGS EXIT PUPIL ABERRATIONS difference a quality optic can make in your appre- REAL FIELD OF VIEW ED GLASS AND SECONDARY SPECTRUMS ciation and intensity of every rare, special and daily APPARENT FIELD OF VIEW viewing experience. FIELD OF VIEW AT 1000 METERS 15-17 HOW TO CHOOSE FIELD FLATTENING (SUPER-WIDE) SELECTING A BINOCULAR BASED Nikon’s WX BINOCULAR UPON INTENDED APPLICATION LIGHT DELIVERY RESOLUTION 18-19 BINOCULAR OPTICS INTERPUPILLARY DISTANCE GLOSSARY DIOPTER ADJUSTMENT FOCUSING MECHANISMS INTERNAL ANTIREFLECTION OPTICS FIRST The guiding principle behind every Nikon since 1917 product has always been to engineer it from the inside out. By creating an optical system specific to the function of each product, Nikon can better match the product attri- butes specifically to the needs of the user. -
Hide & Seek Moon
Hide & Seek Moon Children use binoculars to search for small items that an astronaut lost while walking on the Moon. The Moon is pictured on a banner hanging a short distance away. 15 minutes Drop-in 1–4 children at a time Content Learning Goals Materials • Children notice that binoculars make distant objects • Moon Banner appear closer/bigger. • Child-friendly binoculars* • Children begin to understand that binoculars help us • Small black & white images of items to tape see more detail in distant objects. to the Moon (page 7) • Astronaut sign (page 8) Optional: • Photo of the Moon (page 9) • Markers Science Practices • Children observe changes in how objects appear (bigger/closer) when using binoculars. • Children use a tool to better see the small images. SET-UP • Hang the Moon banner on a wall. • Cut out the pictures of the ten items the astronaut lost (page 7). Tape them to the Moon on the banner. • Place a short table or bench with one or more sets of binoculars about 10–12 feet from the wall with nothing obstructing the view of the Moon. Try to choose a distance such that it is difficult to recognize the items with the unaided eye, but easy with the binoculars, keeping in mind young children have sharper eyesight than adults. The ideal distance will depend on the lighting in the room. • For a drop-in program, place the astronaut sign (see page 8) on the table for parents to read to their children. * We recommend using binoculars that are visually appealing to children, properly sized for their small faces, intuitive to use, and have quality optics for a clear view. -
4.4 Total Internal Reflection
n 1:33 sin θ = water sin θ = sin 35◦ ; air n water 1:00 air i.e. ◦ θair = 49:7 : Thus, the height above the horizon is ◦ ◦ θ = 90 θair = 40:3 : (4.7) − Because the sun is far away from the fisherman and the diver, the fisherman will see the sun at the same angle above the horizon. 4.4 Total Internal Reflection Suppose that a light ray moves from a medium of refractive index n1 to one in which n1 > n2, e.g. glass-to-air, where n1 = 1:50 and n2 = 1:0003. ◦ If the angle of incidence θ1 = 10 , then by Snell's law, • n 1:50 θ = sin−1 1 sin θ = sin−1 sin 10◦ 2 n 1 1:0003 2 = sin−1 (0:2604) = 15:1◦ : ◦ If the angle of incidence is θ1 = 50 , then by Snell's law, • n 1:50 θ = sin−1 1 sin θ = sin−1 sin 50◦ 2 n 1 1:0003 2 = sin−1 (1:1487) =??? : ◦ So when θ1 = 50 , we have a problem: Mathematically: the angle θ2 cannot be computed since sin θ2 > 1. • 142 Physically: the ray is unable to refract through the boundary. Instead, • 100% of the light reflects from the boundary back into the prism. This process is known as total internal reflection (TIR). Figure 8672 shows several rays leaving a point source in a medium with re- fractive index n1. Figure 86: The refraction and reflection of light rays with increasing angle of incidence. The medium on the other side of the boundary has n2 < n1. -
Statistical Signatures of Nanoflare Activity. I. Monte Carlo Simulations
DRAFT VERSION FEBRUARY 28, 2019 Typeset using LATEX twocolumn style in AASTeX62 Statistical Signatures of Nanoflare Activity. I. Monte Carlo Simulations and Parameter-space Exploration D. B. JESS,1, 2 C. J. DILLON,1 M. S. KIRK,3 F. REALE,4, 5 M. MATHIOUDAKIS,1 S. D. T. GRANT,1 D. J. CHRISTIAN,2 P. H. KEYS,1 S. KRISHNA PRASAD,1 AND S. J. HOUSTON1 1Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, UK 2Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, USA 3NASA Goddard Space Flight Center, Code 670, Greenbelt, MD 20771, USA 4Dipartimento di Fisica & Chimica, Universita` di Palermo, Piazza del Parlamento 1, I-90134 Palermo, Italy 5INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo, Italy (Received December 12, 2017; Revised February 28, 2019; Accepted February 28, 2019) ABSTRACT Small-scale magnetic reconnection processes, in the form of nanoflares, have become increasingly hypoth- esized as important mechanisms for the heating of the solar atmosphere, for driving propagating disturbances along magnetic field lines in the Sun’s corona, and for instigating rapid jet-like bursts in the chromosphere. Un- fortunately, the relatively weak signatures associated with nanoflares places them below the sensitivities of cur- rent observational instrumentation. Here, we employ Monte Carlo techniques to synthesize realistic nanoflare intensity time series from a dense grid of power-law indices and decay timescales. Employing statistical tech- niques, which examine the modeled intensity fluctuations with more than 107 discrete measurements, we show how it is possible to extract and quantify nanoflare characteristics throughout the solar atmosphere, even in the presence of significant photon noise.