MUSCLES Muscular System Muscle Tissue: Histology

Total Page:16

File Type:pdf, Size:1020Kb

MUSCLES Muscular System Muscle Tissue: Histology MUSCLES Muscular System Muscle Tissue: histology • 3 muscle types: skeletal muscle, cardiac muscle, and smooth muscle • All muscles show similarities and differences • All muscles composed of elongated cells called fibers • Muscle cytoplasm is sarcoplasm, and muscle cell membrane is sarcolemma • Muscle fibers contain myofibrils made of contractile proteins actin and myosin Skeletal Muscle Fibers are multinucleated cells with peripheral nuclei: multiple nuclei due to fusion of mesenchyme myoblasts during embryonic development Each muscle fiber is composed of myofibrils and myofilaments Skeletal Muscle Actin and myosin filaments form distinct cross-striation patterns Light I bands contain thin actin, and dark A bands contain thick myosin filaments Dense Z line bisects I bands; between Z lines is the contractile unit, the sarcomere Skeletal Muscle Accessory proteins align and stabilize actin and myosin filaments Titin protein anchors myosin filaments, and a-actinin binds actin filaments to Z lines Titin centers, positions, and acts like a spring between myosin and Z lines Skeletal Muscle Muscle is surrounded by connective tissue epimysium Muscle fascicles are surrounded by connective tissue perimysium Each muscle fiber is surrounded by connective tissue endomysium Skeletal Muscle Voluntary muscles are under conscious control Neuromuscular spindles are specialized stretch receptors in almost all skeletal muscles Intrafusal fibers and nerve endings are found in spindle capsules Stretching of muscle produces a stretch reflex and movement to shorten muscle Skeletal Muscle Skeletal Muscle Skeletal Muscle Skeletal Muscle Skeletal Muscle:Transmission Electron Microscopy ◊ Light bands = I bands, formed by thin actin filaments: are crossed by dense Z lines ◊ Between Z lines = smallest contractile unit = sarcomere ◊ Dark bands = A bands, located in the middle of sarcomere, formed by overlapping actin and myosin filaments ◊ M bands = in the middle of A bands represent linkage of myosin filaments ◊ H bands on each side of M bands contain only myosin filaments ◊ Sarcoplasmic reticulum and mitochondria surround each sarcomere Skeletal Muscle Skeletal Muscle Skeletal Muscle: functional correlation Skeletal muscles = voluntary (under conscious control), contracting only when stimulated Motor endplates = sites of nerve innervations and transmission of stimuli to muscle Axon terminals of motor endplates contain vesicles with the neurotransmitter acetylcholine (released into synaptic cleft by action potential and combined with its receptors on muscle membrane); acetylcholinesterase neutralizes acetylcholine and prevents further contraction Skeletal Muscle Skeletal Muscle: functional correlation Before arrival of impulse, Ca+ is stored in sarcoplasmic reticulum (SR) T tubules = sarcolemma invaginations into each myofiber, carrying stimulus for muscle contraction to every myofiber, myofibril, and SR membrane Triads = 2 expanded terminal cisternae of SR and T tubules, located at A–I junctions After stimulation, SR releases Ca+ into sarcomeres, activating binding of actin and myosin, causing muscle contraction and shortening After the end of stimulus, Ca+ is actively transported and stored in SR Cardiac Muscle • Located in heart and large vessels with cross-striations of actin and myosin forming similar I bands, A bands, and Z lines as in skeletal muscle • Characterized by dense junctional complexes called intercalated disks, containing gap junctions [coupling all fibers for rhythmic contraction, forming functional syncytium], one or two central nuclei, fibers shorter and showing branching • T tubules located at Z lines and larger + SR less well developed + mitochondria larger and more abundant than in skeletal muscles • For contraction, Ca+ is imported from outside cell and from SR • Exhibit autorhythmicity and spontaneously generate stimuli • Autonomic nervous system innervates heart and influences heart rate and blood pressure Cardiac Muscle Cardiac Muscle Cardiac Muscle Cardiac Muscle Cardiac Muscle Smooth Muscle • Fibers fusiform, containing single central nuclei, found in hollow organs and blood vessels, with actin and myosin filaments without cross-striation, not showing regular arrangement or striations, but forming lattice network, and inserting into dense bodies in sarcoplasm and cytoplasm • Zonula adherens binds muscle cells, whereas gap junctions provide functional coupling • In intestines, muscles are arranged in concentric layers, and in blood vessels in a circular pattern Smooth Muscle • SR not well developed for Ca+ storage and sarcolemma containing invaginations called caveolae (controlling influx of Ca+ into cell after stimulation) • Following stimulation, calcium enters sarcoplasm from caveolae and SR • Calmodulin, a calcium-binding protein, stimulates actin and myosin interaction, contract muscle by a sliding mechanism similar to skeletal muscle • Exhibit spontaneous activity and maintain tonus in hollow organs: peristaltic contractions propel contents in the organs; innervated by postganglionic neurons of sympathetic and parasympathetic divisions; involuntary muscles regulated by autonomic nervous system, hormones, and stretching Smooth Muscle Smooth Muscle Smooth Muscle Smooth Muscle Muscle tissues Muscular System system to name skeletal muscles: in some cases, the muscle is named by its shape, and in other cases it is named by its location or attachments to the skeleton. understanding meaning of the name of the muscle, often it will help you remember its location and/or what it does, to describe how skeletal muscles are arranged to accomplish movement, and how other muscles may assist, or be arranged on the skeleton to resist or carry out the opposite movement Interactions of Skeletal Muscles in the Body To move the skeleton, tension created by the contraction of the fibers in most skeletal muscles is transferred to the tendons = strong bands of dense, regular connective tissue connecting muscles to bones (bone connection muscle called skeletal muscle). Interactions of Skeletal Muscles in the Body To pull on a bone (=to change angle at synovial joint = moving the skeleton), a skeletal muscle must also be attached to a fixed part of the skeleton moveable end of the muscle that attaches to the bone being pulled is called the muscle’s insertion, and the end of the muscle attached to a fixed (stabilized) bone is called the origin. Interactions of Skeletal Muscles in the Body prime mover, or agonist = principal muscle involved in an action, although a number of muscles may be involved To lift a cup, a muscle called the biceps brachii is actually the prime mover; however, because it can be assisted by the brachialis, this is called a synergist in this action synergist can also be a fixator that stabilizes the bone that is the attachment for the prime mover’s origin. Interactions of Skeletal Muscles in the Body Antagonist = muscle with the opposite action of the prime mover play 2 important roles in muscle function: (1) maintain body or limb position, such as holding the arm out or standing erect (2) control rapid movement also be reversed for the opposing action Interactions of Skeletal Muscles in the Body Also skeletal muscles not pulling against skeleton for movements: • muscles that produce facial expressions. • skeletal muscles in the tongue, and the external urinary and anal sphincters that allow for voluntary regulation of urination and defecation, respectively. • diaphragm contracts and relaxes to change the volume of the pleural cavities but it does not move the skeleton to do this. Patterns of Fascicle Organization Skeletal muscle enclosed in connective tissue scaffolding at 3 levels: • each muscle fiber (cell) is covered by endomysium • entire muscle is covered by epimysium • when a group of muscle fibers is “bundled” as a unit within the whole muscle (= fascicle) by an additional covering of a connective tissue called perimysium Fascicle arrangement by perimysia is correlated to the force generated by a muscle; it also affects the range of motion of the muscle. Patterns of Fascicle Organization Based on the patterns of fascicle arrangement, skeletal muscles can be classified in several ways most common fascicle arrangements Parallel muscles = fascicles arranged in the same direction as the long axis of the muscle (majority of skeletal muscles): 1. some parallel muscles are flat sheets that expand at the ends to make broad attachments. 2. other parallel muscles are rotund with tendons at one or both ends. 3. muscles that seem to be plump have a large mass of tissue located in the middle of the muscle, between the insertion and the origin, which is known as the central body (= belly). When a parallel muscle has a central, large belly that is spindle-shaped, meaning it tapers as it extends to its origin and insertion, it sometimes is called fusiform. Patterns of Fascicle Organization Circular muscles = also called sphincters (= when they relax increase the size of the opening, and when they contract shrink to the point of closure) Convergent muscle = widespread expansion over a sizable area, but then the fascicles come to a single, common attachment point [that could be a tendon, an aponeurosis (=flat, broad tendon), or a raphe (= very slender tendon)]. Pennate muscles (= “feathers”) blend into a tendon that runs through the central region of the muscle for its whole length. Patterns of Fascicle Organization Due to this design, the muscle fibers in a pennate muscle can only pull at an angle,
Recommended publications
  • Chapter 9: the Muscular System Module 9.1 Overview of Skeletal Muscles
    CHAPTER 9: THE MUSCULAR SYSTEM MODULE 9.1 OVERVIEW OF SKELETAL MUSCLES STRUCTURE OF A SKELETAL MUSCLE • Skeletal muscles are not made of muscle cells alone • Skeletal muscle contains blood vessels that supply muscle cells with oxygen and glucose, and remove wastes, and nerves that coordinate muscle contraction • Skeletal muscle also contains connective tissue (next slide) STRUCTURE OF A SKELETAL MUSCLE . Each individual muscle cell (fiber) is surrounded by thin connective tissue called endomysium (Figure 9.1) . Several (between 10 and 100) muscle cells are bundled together into a fascicle by the connective tissue perimysium . All fascicles that make up a muscle are, in turn, enclosed in an outer fibrous connective tissue wrapping (epimysium) STRUCTURE OF A SKELETAL MUSCLE . Interconnected connective tissues taper down and connect to tendons or other connective tissues; attach muscle to bone or other structure to be moved . Example of Structure-Function Core Principle; makes sure muscle pulls as a unit even if some muscle cells are not pulling with same strength as others STRUCTURE OF A SKELETAL MUSCLE • Motor unit – describes motor neuron-muscle cell interaction; example of Cell-Cell Communication Core Principle . Consists of a single motor neuron and all muscle cells it connects to . Some motor units have only a few muscle cells, whereas others have many . Fewer muscle cells in a motor unit = more precise movements of that muscle when it contracts STRUCTURE OF A SKELETAL MUSCLE Shape, size, placement, and arrangement of fibers in a skeletal muscle contribute to function of that muscle; form follows function (Figures 9.2, 9.3; Table 9.1) STRUCTURE OF A SKELETAL MUSCLE Fascicles and Muscle Shapes • Fascicles – bundles of muscle cells whose specific arrangement affects both appearance and function of whole skeletal muscle • Following are different arrangements in which fascicles are found in human body (Figure 9.2) 1 STRUCTURE OF A SKELETAL MUSCLE Fascicles and Muscle Shapes (continued): .
    [Show full text]
  • Mathematical Model of Pennate Muscle (LIF043-15)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Lodz University of Technology Repository Mathematical model of pennate muscle (LIF043-15) Wiktoria Wojnicz, Bartłomiej Zagrodny, Michał Ludwicki, Jan Awrejcewicz, Edmund Wittbrodt Abstract: The purpose of this study is to create a new mathematical model of pennate striated skeletal muscle. This new model describes behaviour of isolated flat pennate muscle in two dimensions (2D) by taking into account that rheological properties of muscle fibres depend on their planar arrangement. A new mathematical model is implemented in two types: 1) numerical model of unipennate muscle (unipennate model); 2) numerical model of bipennate muscle (bipennate model). Applying similar boundary conditions and similar load, proposed numerical models had been tested. Obtained results were compared with results of numerical researches by applying a Hill-Zajac muscle model (this is a Hill type muscle model, in which the angle of pennation is taken into consideration) and a fusiform muscle model (a muscle is treated as a structure composed of serially linked different mechanical properties parts). 1. Introduction The human movement system consists of striated skeletal muscles that have different architectures. Among these muscles are fusiform muscles and pennate muscles (unipennate muscles, bipennate muscles and multipennate muscles) [7]. The fusiform muscle fibers run generally parallel to the muscle axis (it is line connecting the origin tendon and the insertion tendon). The unipennate muscle fibers run parallel to each other but at the pennation angle to the muscle axis [6]. The bipennate muscle consists of two unipennate muscles that run in two distinct directions (i.e.
    [Show full text]
  • Respiratory Function of the Rib Cage Muscles
    Copyright @ERS Journals Ltd 1993 Eur Respir J, 1993, 6, 722-728 European Respiratory Journal Printed In UK • all rights reserved ISSN 0903 • 1936 REVIEW Respiratory function of the rib cage muscles J.N. Han, G. Gayan-Ramirez, A. Dekhuijzen, M. Decramer Respiratory function of the rib cage muscles. J.N. Han, G. Gayan-Ramirez, R. Respiratory Muscle Research Unit, Labo­ Dekhuijzen, M. Decramer. ©ERS Journals Ltd 1993. ratory of Pneumology, Respiratory ABSTRACT: Elevation of the ribs and expansion of the rib cage result from the Division, Katholieke Universiteit Leuven, co-ordinated action of the rib cage muscles. We wished to review the action and Belgium. interaction of the rib cage muscles during ventilation. Correspondence: M. Decramer The parasternal intercostal muscles appear to play a predominant role during Respiratory Division quiet breathing, both in humans and in anaesthetized dogs. In humans, the para­ University Hospital sternal intercostals act in concert with the scalene muscles to expand the upper rib Weligerveld 1 cage, and/or to prevent it from being drawn inward by the action of the diaphragm. B-3212 Pellenberg The external intercostal muscles are considered to be active mainly during inspira­ Leuven tion, and the internal intercostal muscles during expiration. Belgium The respiratory activity of the external intercostals is minimal during quiet breathing both in man and in dogs, but increases with increasing ventilation. In­ Keywords: Chest wall mechanics contractile properties spiratory activity in the external intercostals can be enhanced in anaesthetized ani­ rib cage muscles mals and humans by inspiratory mechanical loading and by col stimulation, rib displacement suggesting that the external intercostals may constitute a reserve system, that may be recruited when the desired expansion of the rib cage is increased.
    [Show full text]
  • Muscle-Tendon Length and Force Affect Human Tibialis Anterior Central
    Muscle-tendon length and force affect human tibialis PNAS PLUS anterior central aponeurosis stiffness in vivo Brent James Raiteria,b,1, Andrew Graham Cresswella, and Glen Anthony Lichtwarka aCentre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Brisbane, Australia; and bHuman Movement Science, Faculty of Sport Science, Ruhr-University Bochum, 44801 Bochum, Nordrhein-Westfalen, Germany Edited by Silvia Salinas Blemker, University of Virginia, Charlottesville, VA, and accepted by Editorial Board Member C. O. Lovejoy February 21, 2018 (received for review July 20, 2017) The factors that drive variable aponeurosis behaviors in active versus considering stress–strain relationships of tendinous tissues estimated passive muscle may alter the longitudinal stiffness of the aponeuro- from muscle fiber/fascicle length changes (7, 10, 24, 25). However, sis during contraction, which may change the fascicle strains for a there is a growing body of literature to suggest that the SEE stiffness given muscle force. However, it remains unknown whether these is dependent on contractile conditions (13, 15, 26–28), as well as factors can drive variable aponeurosis behaviors across different suggestions that the aponeurosis cannot be a simple in-series spring muscle-tendon unit (MTU) lengths and influence the subsequent (29). The potential variable nature of aponeurosis elastic function is fascicle strains during contraction. Here, we used ultrasound and likely to impact our understanding of how this tissue contributes to elastography techniques to examine in vivo muscle fascicle behavior energy savings and/or power amplification during animal or human and central aponeurosis deformations of human tibialis anterior (TA) locomotion (30), as well as our understanding of the strains expe- during force-matched voluntary isometric dorsiflexion contractions rienced by muscles and connective tissues during such contractions at three MTU lengths.
    [Show full text]
  • Relation of Roots and Trunks of Brachial Plexus to Scalenus Anterior Muscle and Its Clinical Significance
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861. Volume 11, Issue 4 (Nov.- Dec. 2013), PP 03-05 www.iosrjournals.org Relation of roots and trunks of brachial plexus to scalenus anterior muscle and its clinical significance Yogesh1, Viveka S2, Sudha M J3, Santosh Kumar S.C4, Sanjay Revankar5 1Assistant Professor, Department of Anatomy, Shridevi Institute of Medical Sciences & Research Hospital, Tumkur 2Assistant Professor, Department of Anatomy, Azeezia Institute of Medical Sciences, Kollam 3Assistant Professor, Department of Pharmacology, Azeezia Institute of Medical Sciences, Kollam 4 Department of Pharmacology, Shridevi Institute of Medical Sciences & Research Hospital, Tumkur 5Post graduate, Department of Anatomy, A J Institute of Medical Sciences, Mangalore. Abstract: Variations in the structures at the root of neck are important in understanding many clinical and surgical conditions. Scalenus anterior, the key muscle in the neck, usually related to the roots of brachial plexus in its posterior aspect. This study was designed to evaluate the relations of roots of brachial plexus to the scalene muscles. Posterior triangles of neck on both sides were studied in 24 cadavers. In two cases C5 and C6 pierced scalenus anterior muscle and emerged from its anterior surface. In other specimen roots of C5, C6 and C7 entered scalenus muscle and exited anterolateraly in a sequential manner. Knowledge of such variations is important for anaesthetists and surgeons. Key words: Scalenus anterior; Scalenus medius; roots of brachial plexus; variations I. Introduction Brachial plexus is formed by union of ventral rami of lower four cervical nerves and first thoracic nerve.
    [Show full text]
  • Hyperfunctional Laryngeal Conditions: Muscle Tension
    Karen Drake MA, CCC-SLP Linda Bryans MA, CCC-SLP Jana Childes MS, CCC-SLP Identify disorders that can be classified as hyperfunctional laryngeal conditions Describe how laryngeal hyperfunction can contribute to dysphonia, chronic cough and paradoxical vocal fold motion (PVFM) Describe how treatment may be modified to better address these interrelationships 2 3 “MTD can be described as the pathological condition in which an excessive tension of the (para)laryngeal musculature, caused by a diverse number of etiological factors, leads to a disturbed voice.” ◦ Van Houtte, Van Lierde & Claeys (2011) Descriptive label Multiple etiological factors Diagnosed by specific findings on videostroboscopy Voice therapy is the treatment of choice – supported by a joint statement of the AAO and ASHA in 2005 Hoarseness Poor vocal quality Vocal fatigue Increase voicing effort/strain Difficulty with projection Inability to be understood over background noise or the telephone Voice breaks Periods of voice loss Sore throat Globus sensation Throat clearing Pressure, tightness or tension Tenderness Difficulty getting a full breath Running out of air with speaking Difficulty swallowing secretions Disturbed Altered tension of Changed position inclination of extrinsic muscles of larynx in neck cartilaginous structures Tension of intrinsic Voice disturbance musculature Van Houtte, Van Lierde & Claeys (2011) Excess jaw tension Lingual posture and/or tension Altered resonance focus Breath holding Poor coordination of breath and voice Pharyngeal
    [Show full text]
  • Variable Gearing in Pennate Muscles
    Variable gearing in pennate muscles Emanuel Azizi*, Elizabeth L. Brainerd, and Thomas J. Roberts Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 Edited by Ewald R. Weibel, University of Bern, Bern, Switzerland, and approved December 3, 2007 (received for review September 27, 2007) Muscle fiber architecture, i.e., the physical arrangement of fibers within a muscle, is an important determinant of a muscle’s me- chanical function. In pennate muscles, fibers are oriented at an angle to the muscle’s line of action and rotate as they shorten, becoming more oblique such that the fraction of force directed along the muscle’s line of action decreases throughout a contrac- tion. Fiber rotation decreases a muscle’s output force but increases output velocity by allowing the muscle to function at a higher gear ratio (muscle velocity/fiber velocity). The magnitude of fiber rota- tion, and therefore gear ratio, depends on how the muscle changes shape in the dimensions orthogonal to the muscle’s line of action. Here, we show that gear ratio is not fixed for a given muscle but decreases significantly with the force of contraction (P < 0.0001). We find that dynamic muscle-shape changes promote fiber rota- tion at low forces and resist fiber rotation at high forces. As a result, gearing varies automatically with the load, to favor velocity output during low-load contractions and force output for contractions against high loads. Therefore, muscle-shape changes act as an automatic transmission system allowing a pennate muscle to shift Fig. 1. A 17th century geometric examination of muscle architecture (5).
    [Show full text]
  • Muscular and Skeletal Changes in Cervical Dysphonic in Women
    Original Article Muscular and Skeletal Changes in Cervical Dysphonic in Women Alterações Musculares e Esqueléticas Cervicais em Mulheres Disfônicas Laiza Carine Maia Menoncin*, Ari Leon Jurkiewicz**, Kelly Cristina A. Silvério***, Paulo Monteiro Camargo****, Nathália Martii Monti Wolff*****. * Master in Communication Disorders at the University Tuiuti. Physiotherapist. ** PhD, UNIFESP. Professor of the Masters Program in Communication Disorders at the University Tuiuti. *** Doctor Unicamp. Professor, Master’s and Doctoral Program in Communication Disorders at the University Tuiuti. **** PhD in Clinical - Surgical UFPR. Head of the Department of Laryngology of the Hospital Angelina Caron. ***** Medical. ENT resident. Institution: University of Tuiuti Curitiba. Curitiba / PR - Brazil. Mail Address: Nathan Wolff Monti Martini - Sector Master Program in Communication Disorders - Rua Sydnei A. Rangel Santos, 238 - Curitiba / PR - Brazil - Zip code: 82010-330 - Telephone: (+55 41) 3331-7700 - E-mail: [email protected] Article received on June 14, 2010. Approved on 1 October 2010. SUMMARY Introduction: The vocal and neck are associated with the presence of tension and cervical muscle contraction. These disorders compromise the vocal tract and musculoskeletal cervical region and, thus, can cause muscle shortening, pain and fatigue in the neck and shoulder girdle. Objective: To evaluate and identify cervical abnormalities in women with vocal disorders, and neck pains comparing them to women without vocal complaints independent of the neck. Method: This prospective study of 32 subjects studied in the dysphonic group and 18 subjects in the control group, aged between 25 and 55 year old female. The subjects underwent assessments, ENT, orthopedic, physical therapy and voice recording. Results: At Rx cervical region more patients in the control group had this normal, however, with regard to the reduction of spaces interdiscal dysphonic patients prevailed.
    [Show full text]
  • Levator Scapulae Muscle Asymmetry Presenting As a Palpable Neck Mass: CT Evaluation
    Levator Scapulae Muscle Asymmetry Presenting as a Palpable Neck Mass: CT Evaluation Barry A. Shpizner1 and Roy A . Hollida/ PURPOSE: To define the normal CT anatomy of the levator scapulae muscle and to report on a series of five patients who presented with a palpable mass in the posterior triangle due to asymmetry of the levator scapulae muscles. PATIENTS AND METHODS: The contrast-enhanced CT examinations of the neck in 25 patients without palpable masses were reviewed to es tablish the normal CT appearance of the levator scapulae muscle. We retrospectively reviewed the contrast-enhanced CT examinations of the neck in five patients who presented with a palpable mass secondary to asymmetric levator scapulae muscles . RESULTS: In three patients who had undergone unilateral radical neck dissection, hypertrophy of the ipsi lateral levator scapulae muscle was found. In one patient, the normal levator scapulae muscle produced a fa ctitious "mass" due to atrophy of the contralateral levator scapulae muscle. One patient had an intramuscular neoplasm of the levator scapulae. CONCLUSION: Asymmetry of the levator scapulae muscles , an unusual cause of a posterior triangle mass, can be diagnosed using CT. Index terms: Neck, muscles; Neck, computed tomography AJNR 14:461-464, Mar/ Apr 1993 The levator scapulae muscle can be identified between January 1987 and March 1991 were reviewed. A ll readily on axial images by its characteristic ap­ patients presented with a palpable mass in the posterior pearance and its relationship to the other muscles triangle of the infrahyoid neck. The patients, three men forming the boundaries of the posterior triangle.
    [Show full text]
  • Prevertebral Muscles (A, B) Scalene Muscles (A, B)
    80 Trunk Prevertebral Muscles (A, B) lift the first two pairs of ribs and thus the superior part of the thorax. Their action is The prevertebral muscles include the rec- increased when the head is bent backward. tus capitis anterior, longus capitis, and lon- Unilateral contraction tilts the cervical gus colli. column to one side. Occasionally there is a The rectus capitis anterior (1) extends scalenus minimus which arises from the from the lateral mass of the atlas (2) to the seventh cervical vertebra and joins the basal part of the occipital bone (3). It helps scalenus medius. It is attached to the apex to flex the head. of the pleura. Nerve supply: cervical plexus (C1). The scalenus anterior (17) arises from the The longus capitis (4) arises from the ante- anterior tubercles of the transverse Trunk rior tubercles of the transverse processes of processes of the (third) fourth to sixth cervi- the third to sixth cervical vertebrae (5). It cal vertebrae (18) and is inserted on the runs upward and is attached to the basal anterior scalene tubercle (19) of the first rib. part of the occipital bone (6). The two longi Nerve supply: brachial plexus (C5 –C7). capitis muscles bend the head forward. The scalenus medius (20) arises from the pos- Unilateral action of the muscle helps to tilt terior tubercles of the transverse processes the head sideways. of the (first) second to seventh cervical Nerve supply: cervical plexus (C1 –C4). vertebrae (21). It is inserted into the 1st rib The longus colli (7) is roughly triangular in behind the subclavian artery groove and shape because it consists of three groups of into the external intercostal membrane of fibers.
    [Show full text]
  • Levator Claviculae: a Case Report and Review of the Literature
    Folia Morphol. Vol. 67, No. 4, pp. 307–310 Copyright © 2008 Via Medica C A S E R E P O R T ISSN 0015–5659 www.fm.viamedica.pl Levator claviculae: a case report and review of the literature M. Loukas1, A. Sullivan1, R.S. Tubbs2, M.M. Shoja3 1Department of Anatomical Sciences, School of Medicine, St. George’s University, Grenada, West Indies 2Section of Pediatric Neurosurgery, Children’s Hospital, Birmingham, AL, USA 3Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran [Received 3 April 2008; Accepted 29 August 2008] The levator claviculae is an uncommon anatomical variant found in the poste- rior cervical triangle. In this report we present a 78-year-old man with this muscular variation, which was found during gross anatomical dissection. While sites of insertion and origin have been variable, in the present case the muscle originated from the left transverse processes of C3 and C4, and inserted onto the lateral third of the ipsilateral clavicle. Clinical considerations of this variant anatomy are of interest, as they may present in patients as a supraclavicular mass and may also mimic pathology on cross-sectional imaging. (Folia Morphol 2008; 67: 307–310) Key words: anatomy, neck, cervical, clavicle INTRODUCTION reports have been documented as well, although The levator claviculae is a very rare variation of these are much less common [3, 14]. The nerve sup- the cervical musculature, although it is observed reg- ply of the levator claviculae has been described as ularly in certain mammalian species [7, 14, 17]. It arising from a branch of the fourth cervical nerve lies in the posterior cervical triangle of the neck, usually and its blood supply as stemming from the ascend- arising from the transverse processes of the upper ing cervical artery [8, 11].
    [Show full text]
  • Effect of Strength Training on Muscle Architecture (Review) Javid Mirzayev Mediland Hospital, Republic of Azerbaijan Tula State University, Russian Federation
    60 SPORTO MOKSLAS / 2017, Nr. 1(87), ISSN 1392-1401 / eISSN 2424-3949 Sporto mokslas / Sport Science 2017, Nr. 1(87), p. 60–64 / No. 1(87), pp. 60–64, 2017 DOI: http://dx.doi.org/10.15823/sm.2017.9 Effect of strength training on muscle architecture (review) Javid Mirzayev Mediland hospital, Republic of Azerbaijan Tula State University, Russian Federation Summary Muscle architecture is among the most important factors that determine the function of muscles. Muscle architecture is the “organizer” of muscle fibres in muscle strength generating relative line and includes several important aspects: 1) normalized fibre length, 2) pennation angle, and 3) physiological cross-sectional area. Architectural changes in muscles immediately respond to resistance training, but it is not entirely dependent on muscle contraction mode. To the date, we very poorly understand architectural parameters for each muscle; thus, further studies are needed to explore the architecture of individual muscles and further to expand our understanding of this important organizer of muscle fibres. The purpose of the article is to examine the relationship between strength training and muscle structures. Method chosen: analysis of scientific literature. Results and conclusions. In general, contemporary scientific research confirms in the 80-ies identified circumstantial evidence in favour of muscle architecture changes with the help of strength training. Hypertrophy of the muscle increases the angles of pennate muscles. The more muscle hypertrophy evolves, the less specific voltage occurs. Increased muscle volume in the eccentric training is closely related to increasing length of the beams, but pennation angle is not changed. The level of tension is responsible for the change in maximal voluntary contraction.
    [Show full text]