Ultrasonic Vocalizations of Leopard Seals (Hydrurga Leptonyx) I ___

Total Page:16

File Type:pdf, Size:1020Kb

Ultrasonic Vocalizations of Leopard Seals (Hydrurga Leptonyx) I ___ Ultrasonic vocalizations of leopard seals (Hydrurga leptonyx) I ___ JEANETTE A. THOMAS, SHELDON R. FISHER, and WILLIAM E. EVANS Hubbs Sea World Research Institute San Diego, California 92109 FRANK T. AWBREY :J San Diego State University San Diego, California 92182 The vocal repertoire of leopard seals (Hydrurga leptonyx) has been studied in the wild by Stirling and Siniff (1979) and by 0 10 20 30 40 Thomas and DeMaster (in press) using audio recording equip- ment. Using ultrasonic recording equipment, we conducted a series of studies on a captive leopard seal and found it capable of producing sounds of up to 164 kilohertz. 4) i Ij) 1 LA The leopard seal was a 4-year-old female, originally beached in Australia, that has been in captivity at Hubbs Sea World Research Institute since 1979. Live anchovies and striped bass MILLISECONDS were introduced into her tank, and her vocal activity in re- sponse to these prey was recorded. Recordings were made using a Racal Store-4 recorder and Bruel and Kjaer 8103 and 8104 Ultrasonic sounds produced by a leopard seal. a-e: frequency- hydrophones (system frequency response: 0.03 to 150 kilohertz modulated chirps; f: frequency-modulated buzz; and 9: click train. for the 8104 and to 200 kilohertz for the 8103 ± 3.0 decibels). Since ultrasonic vocalizations tend to be directional, the two hydrophones were placed on opposite sides of the 5-meter- diameter tank. and advice on training the leopard seals. Sandra Barnett from The leopard seal responded to both species of fish by produc- Hubbs Sea World Research Institute was the trainer of the ing a variety of low-amplitude sounds. Frequency-modulated leopard seal during these tests and provided invaluable support chirps, buzzes and frequency-modulated buzzes, and single in conducting this research. clicks, double clicks, and click trains were recorded (see figure). Peak frequencies were extremely variable, ranging from 4 to 164 kilohertz. The amount of frequency variability that can be at- tributed to directionality is unknown. The most common peak References frequencies were between 50 and 60 kilohertz. The highest frequency sounds were produced while the seal chased the Evans, W. E., and Haugen, R. 1963. An experimental study of the smaller target (anchovies). The FM chirps swept as much as 60 echolocation ability of the California sea lion Zalophus californianus kilohertz in 4 milliseconds and were only 4 to 10 milliseconds in (Lesson). Bulletin of Southern California Academy of Science, 62, 165-175. duration. Kooyman, C. 1968. An analysis of some behavioral and physiological Vocalizations of such extremely high frequencies have never characteristics related to diving in the Weddell seal. Antarctic Research Series, 11, 227-261. been reported in pinnipeds, perhaps because researchers rarely Poulter, T. C. 1963. Sonar signals of the sea lion. Science, 139, 753-755. have attempted recording at ultrasonic frequencies. These Poulter, T. C. 1967. Systems of echolocation. In R. G. Busnel (Ed.), sounds are similar to the ultrasonic echolocation sounds that Animal sonar systems: Biology and bionics (Vol. 1). Jouy-in-Josas, France: bats and dolphins use to find prey or to orient in their environ- Laboratoire de Physiologie Acoustique. ment. Echolocation abilities in polar pinnipeds have been pro- Schusterman, R. J. 1966. Underwater click vocalization by a California posed by Poulter (1963, 1967) and Kooyman (1968) because it sea lion: Effects of visibility. The Psychological Record, 16, 129-136. would help them find food or navigate during the dark austral Scronce, B. L., and Ridgway, S. H. 1980. Grey seal, Halichoerus: Echo- winter. All efforts to demonstrate this ability in pinnipeds ex- location not demonstrated. In R. C. Busnel and J. F. Fish (Eds.), perimentally have been unsuccessful (Evans and Haugen 1963; Animal sonar systems (NATO Advanced Study Institutes Series A, Life Schusterman 1966; Scronce and Ridgway 1980), but none of the sciences, Vol. 28). New York: Plenum Press. Stirling, I., and Siniff, D. 1979. Underwater vocalizations of leopard species studied are known to vocalize ultrasonically. We cannot seals (Hydrurga leptonyx) and crabeater seals (Lobodon carcinophagus) say yet if leopard seals produce these sounds routinely during near the South Shetland Islands, Antarctic. Canadian Journal of Zoolo- prey pursuit or if the sounds are merely a short-term response gy, 57, 1244-1248. to a novel situation. Thomas, J., and DeMaster, D. In press. An acoustic technique for We thank L. H. Cornell, D.V.M., and Bruce Stephens of Sea determining the haulout of leopard (Hydrurga leptonyx) and crabeater World, Inc., for their assistance and support in husbandry, care, (Lobodon carcinophagus) seals. Canadian Journal of Zoology. 186 ANTARCTIC JOURNAL.
Recommended publications
  • Age-Specific Birth Rates of California Sea Lions
    MARINE MAMMAL SCIENCE, 24(3): 664–676 (July 2008) C 2008 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2008.00199.x Age-specific birth rates of California sea lions (Zalophus californianus) in the Gulf of California, Mexico CLAUDIA J. HERNANDEZ´ -CAMACHO Laboratorio de Ecologıa´ de Pinnıpedos´ “Burney J. Le Boeuf,” Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico´ Nacional, Ave. IPN s/n Colonia Playa Palo de Santa Rita, La Paz, Baja California Sur, Mexico 23096 and School of Life Sciences, Arizona State University, P. O. Box 874601, Tempe, Arizona 85287-4601, U.S.A. E-mail: [email protected] DAVID AURIOLES-GAMBOA Laboratorio de Ecologıa´ de Pinnıpedos´ “Burney J. Le Boeuf,” Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico´ Nacional, Ave. IPN s/n Colonia Playa Palo de Santa Rita, La Paz, Baja California Sur, Mexico 23096 LEAH R. GERBER School of Life Sciences, Arizona State University, P. O. Box 874601, Tempe, Arizona 85287-4601, U.S.A. ABSTRACT Estimates of demographic parameters are essential for assessing the status of populations and assigning conservation priority. In light of the difficulties associated with obtaining such estimates, vital rates are rarely available even for well-studied species. We present the first estimates of age-specific birth rates for female California sea lions (Zalophus californianus) >10 yr of age. These rates were estimated from the reproductive histories of five cohorts of animals branded as pups between 1980 and 1984 at Los Islotes colony in the Gulf of California, Mexico. Age-specific birth rates varied among age classes and ranged between 0.06 and 0.80.
    [Show full text]
  • 56. Otariidae and Phocidae
    FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig.
    [Show full text]
  • Hunting and Social Behaviour of Leopard Seals (Hydrurga Leptonyx) at Seal Island, South Shetland Islands, Antarctica
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 1999 Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica Lisa M. Hiruki National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, [email protected] Michael K. Schwartz National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Peter L. Boveng National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Hiruki, Lisa M.; Schwartz, Michael K.; and Boveng, Peter L., "Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica" (1999). Publications, Agencies and Staff of the U.S. Department of Commerce. 151. https://digitalcommons.unl.edu/usdeptcommercepub/151 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Zool., Lond. (1999) 249, 97±109 # 1999 The Zoological Society of London Printed in the United Kingdom Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica Lisa M. Hiruki*, Michael K. Schwartz{ and Peter L.
    [Show full text]
  • The Antarctic Ross Seal, and Convergences with Other Mammals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Servicio de Difusión de la Creación Intelectual Evolutionary biology Sensory anatomy of the most aquatic of rsbl.royalsocietypublishing.org carnivorans: the Antarctic Ross seal, and convergences with other mammals Research Cleopatra Mara Loza1, Ashley E. Latimer2,†, Marcelo R. Sa´nchez-Villagra2 and Alfredo A. Carlini1 Cite this article: Loza CM, Latimer AE, 1 Sa´nchez-Villagra MR, Carlini AA. 2017 Sensory Divisio´n Paleontologı´a de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina. CONICET, La Plata, Argentina anatomy of the most aquatic of carnivorans: 2Pala¨ontologisches Institut und Museum der Universita¨tZu¨rich, Karl-Schmid Strasse 4, 8006 Zu¨rich, Switzerland the Antarctic Ross seal, and convergences with MRS-V, 0000-0001-7587-3648 other mammals. Biol. Lett. 13: 20170489. http://dx.doi.org/10.1098/rsbl.2017.0489 Transitions to and from aquatic life involve transformations in sensory sys- tems. The Ross seal, Ommatophoca rossii, offers the chance to investigate the cranio-sensory anatomy in the most aquatic of all seals. The use of non-invasive computed tomography on specimens of this rare animal Received: 1 August 2017 reveals, relative to other species of phocids, a reduction in the diameters Accepted: 12 September 2017 of the semicircular canals and the parafloccular volume. These features are independent of size effects. These transformations parallel those recorded in cetaceans, but these do not extend to other morphological features such as the reduction in eye muscles and the length of the neck, emphasizing the independence of some traits in convergent evolution to aquatic life.
    [Show full text]
  • Inter-Year Variation in Pup Production of Caspian Seals Pusa Caspica 2005–2012 Determined from Aerial Surveys
    Vol. 28: 209–223, 2015 ENDANGERED SPECIES RESEARCH Published online October 7 doi: 10.3354/esr00689 Endang Species Res OPEN ACCESS Inter-year variation in pup production of Caspian seals Pusa caspica 2005–2012 determined from aerial surveys Lilia Dmitrieva1,*, Tero Härkönen2, Mirgaliy Baimukanov3, Anders Bignert2, Ivar Jüssi4, Mart Jüssi4, Yesbol Kasimbekov3, Mikhail Verevkin5, Vadim Vysotskiy6, Susan Wilson7, Simon J. Goodman1,* 1School of Biology, University of Leeds, Leeds LS2 9JT, UK 2Swedish Museum of Natural History, Box 50007, Stockholm 10405, Sweden 3Institute of Hydrobiology & Ecology, Karasaysky Raion, Almaty 040916, Kazakhstan 4Estonian Fund for Nature, PO Box 245, Tartu 50002, Estonia 5St. Petersburg State University, Universitetskaya nab.7/9, St. Petersburg 199034, Russia 6Zoological Institute, RAS, Universitetskaja nab. 1, St. Petersburg 199034, Russia 7Tara Seal Research, Killyleagh, Co. Down BT30 9QN, UK ABSTRACT: Assessing species abundance and reproductive output is crucial for evaluations of population dynamics, conservation status and the development of management objectives. The Caspian seal Pusa caspica is a key predator in the Caspian Sea ecosystem and is listed as Endan- gered by the IUCN. Here we report on fixed-wing aerial strip transect surveys of the breeding population on the Caspian Sea winter ice field carried out in February, 2005−2012. Potential detection biases were estimated by applying a Petersen mark–recapture estimator to the counts from double photographic observations. We also tested for effects of weather conditions on count results, and for correlations between pup production and ice conditions and net primary produc- tivity (npp). Fluctuations in pup production estimates were observed among years, ranging from 8200 pups (95% CI: 7130−9342) in 2010 to 34 000 (95% CI: 31 275−36 814) in 2005.
    [Show full text]
  • Current Status of Pinniped Conservation Research in KOREA
    Current status of Pinniped conservation research in KOREA Seong Oh Im1), Hye-min Park1), InSeo Hwang1), Sang Heon Lee2), Younggeun Oh2) , Hyun-Woo Kim3), Eun-Bi Kim3) 1)Korea Marine Environment Management Corporation, 2)Pusan National University, 3)Pukyong National University * Correspondence: Korea Marine Environment Management Corporation / * E-mail: [email protected] 1. Introduction Six pinniped species are currently designated as Marine protected species (MPS) in KOREA. Their main breeding grounds are known to be China and Russia, and the waters along the Korean peninsula are considered as the marginal region for those species with extremely low individuals. Among them, Researches have been limited to the spotted seals (Phoca largha), the most abundant pinniped species in the Yellow Sea, Korea. Most of their studies have been mainly dependent on the traditional monitoring methods from visual surveys to count individuals of air-breathing vertebrates, which required a high-degree of labors and costs. As one of promising novel alternative tools for the traditional surveys, molecular biological analyses using environmental DNA (eDNA) has been paid attention for marine ecological studies due to its low cost and labors and high sensitivity in taxon recovery. We here introduce current status of research for pinniped conservation in Republic of Korea using both traditional and novel molecular tools. In addition, satellite monitoring results and environmental conditions around breeding grounds are compared and analyzed. Current status of Pinniped conservation research in KOREA (A) Donghae (A) Donghae 2. Materials & Methods (B) Ulleung ① Visual surveys 3 times of field survey (May, (C) Dokdo August, October, 2020) in the East Sea of Korea (B) Ulleung (Donghae, Ulleung Island, and Dokdo).
    [Show full text]
  • PINNIPEDS (Seals, Sea Lions and Fur Seals) of NEW ZEALAND
    PINNIPEDS (seals, sea lions and fur seals) OF NEW ZEALAND Subantarctic Fur Seal New Zealand Fur Seal Arctocephalis tropicalis Arctocephalus forsteri New Zealand Sea Lion Phocarctos hookeri Leopard Seal Hydrurga leptonyx Southern Elephant Seal Mirounga leonina © Emma Scheltema, 2015 PINNIPEDS OF NEW ZEALAND What are Pinnipeds? Pinnipeds are fin-footed (pinna = fin and pedis = foot) carnivorous marine mammals, commonly known as seals. They make up the largest group of native mammals that breed on land, in New Zealand. There are two living families of pinnipeds- theOtariidae (eared seals- which are the fur seals and sea lions) and Phocidae (earless or true seals). Otariidae can be identified by theirexternal ears (Phocidae have none)and their mobile hind flippers, giving them the ability to move around quickly on land. In contrast Phocidae have trouble moving on land as they cannot turn their hind flippers forward. There are eight pinniped species that are native to the New Zealand region. The five species highlighted in this coloring sheet are the species that are regular or occasional visitors to our mainland shores and subantarctic islands. OTARIIDAE (eared seals) (1) New Zealand Fur Seal (Kekeno) (2) Subantarctic Fur Seal (3) New Zealand Sea Lion (Whakahao) Native, Protected Vagrant Endemic, Protected The New Zealand Fur Seal is the most common Characteristics: very similar to The NZ Sealion is one of the rarest species of sea seal spotted on NZ coastlines NZ Fur Seal, dark grey-brown lion in the world. fur on back, with a yellow-cream Characteristics: dark grey-brown fur, with chest. Males have a head crest Characteristics: Males are dark brown to black distinguishing pointed snout, and under-eyes are which is visible when agitated.
    [Show full text]
  • THE PINNIPEDS of the CALIFORNIA CURRENT California
    ANTONELIS AND FISCUS: PINNIPEDS OF THE CALIFORNIA CURRENT CalCOFI Rep., Vol. XXI, 1980 THE PINNIPEDS OF THE CALIFORNIA CURRENT GEORGE A. ANTONELIS. JR. AND CLIFFORD H. FISCUS Marine Mammal Division Northwest and Alaska Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 7600 Sand Point Way, N.E. Seattle, WA 981 15 ABSTRACT 10s pequenos peces en 10s cardumenes y peces ana- There are six species of pinnipeds-California sea dromos. Los dos focidos, otra vez con ciertas excep- lion, Zalophus californianus; northern sea lion, Eume- ciones, predan especies diferentes. Aparentemente, el topias jubatus; northern fur seal, Callorhinus ursinus; elefante marino se alimenta en aguas mas profundas que Guadalupe fur seal, Arctocephalus townsendi; harbor la foca peluda, alimentindose de especies demersales seal, Phoca uitulina richardsi; and northern elephant y benticas, y la foca peluda se alimenta de especiesdemer- seal, Mirounga angustirostris-that inhabit the study sales costeras y neriticas, entrando ocasionalmente en rios area of the California Cooperative Oceanic Fisheries y aguas estuarinas haciendopresa de 10s peces anadromos Investigations (CalCOFI). y otros pequeiios peces que entran regularmente en estas The numbers of animals in each population are given; aguas. the size, distribution, and seasonal movements are de- scribed. The known prey species of the pinnipeds are INTRODUCTION listed for each species. The otariids, with certain excep- The California Current, its components, and the Cali- tions, consume the same kinds of prey, although in slight- fornia Cooperative Oceanic Fisheries Investigations ly different amounts. In general they feed most commonly (CalCOFI) station plan have been described many times on the smaller schooling fishes and squids of the epi- in the past and are well known (Kramer et al.
    [Show full text]
  • Characterization and Analysis of Phoca Vitulina, Zalophus Californianus, and Mirounga Angustirostris Vibrissae
    NASA/TM—2018-219919 Characterization and Analysis of Phoca Vitulina, Zalophus Californianus, and Mirounga Angustirostris Vibrissae Vikram Shyam and Phillip Poinsatte Glenn Research Center, Cleveland, Ohio Douglas Thurman U.S. Army Research Laboratory, Glenn Research Center, Cleveland, Ohio Emily DeArmon Bowling Green State University, Bowling Green, Cleveland, Ohio Mark Stone Princeton University, Princeton, New Jersey, Ohio Elizabeth Rogenski Youngstown State University, Youngstown, Ohio July 2018 NASA STI Program . in Profi le Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientifi c and to the advancement of aeronautics and space science. technical fi ndings by NASA-sponsored The NASA Scientifi c and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain this important role. • CONFERENCE PUBLICATION. Collected papers from scientifi c and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientifi c, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world. Results are published in both non-NASA • TECHNICAL TRANSLATION. English- channels and by NASA in the NASA STI Report language translations of foreign scientifi c and Series, which includes the following report types: technical material pertinent to NASA’s mission.
    [Show full text]
  • Migration Patterns of Adult Male California Sea Lions (Zalophus Californianus)
    NOAA Technical Memorandum NMFS-AFSC-346 doi:10.7289/V5/TM-AFSC-346 Migration Patterns of Adult Male California Sea Lions (Zalophus californianus) P. J. Gearin, S. R. Melin, R. L. DeLong, M. E. Gosho, and S. J. Jeffries U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center March 2017 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Gearin, P. J., S. R. Melin, R. L. DeLong, M. E. Gosho, and S. J. Jeffries. 2017. Migration patterns of adult male California sea lions (Zalophus californianus). U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-346, 29 p. Document available: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-346.pdf Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-346 doi:10.7289/V5/TM-AFSC-346 Migration Patterns of Adult Male California Sea Lions (Zalophus californianus) P. J.
    [Show full text]
  • Issues Paper for the Australian Sea Lion(Neophoca Cinerea)
    Issues Paper for the Australian Sea Lion (Neophoca cinerea) 2013 The recovery plan linked to this issues paper is obtainable from: www.environment.gov.au/coasts/species/seals/index.html © Commonwealth of Australia 2013 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to Department of Sustainability, Environment, Water, Population and Communities, Public Affairs, GPO Box 787 Canberra ACT 2601 or email [email protected]. Disclaimer While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Images credits Front cover left to right: entangled Australian sea lion, close up image of Australian sea lion, colony of Australian sea lions, Australian sea lion on the water’s surface – Derek Hamer, Australian sea lion underwater – David Muirhead Back cover left to right: Australian sea lion on a rocky shore, close up image of Australian sea lion, Australian sea lion on the water’s surface – Derek Hamer 2 |
    [Show full text]
  • The Role of Pinnipeds in the Eeosystem Dr
    The Role of Pinnipeds in the EEosystem Dr. Andrew W. Trites, Marine Mammal Research Unit, Fisheries Centre, University of British Columbia, Vancouver, British Columbia Abstract The proximate role played by seals and sea lions is obvious: they are predators and consumers of fish and invertebrates. Less intuitive is their ultimate role (dynamic and structural) within the ecosystem. The limited information available suggests that some pinnipeds perform a dynamic role by transferring nutrients and energy, or by regulating the abundance of other species. Others may play a structural role by influencing the physical complexity of their environment; or they may synthesize the marine environment and serve as indicators of ecosystem change. Field observations suggest the ultimate role thatpinnipedsfill is species specific and a function of the type of habitat and ecosystem they occupy. Their functional and structural roles appear to be most evident in simple short-chained food webs, and are least obvious and tractable in complex long-chained food webs due perhaps to high variability in the recruitment offish or nonlinear interactions and responses of predators and prey. The impact of historic removals of whales, sea otters and seals are consistent with these observations. Many of these removals produced unexpected changes in other components of the ecosystem. Better insights into the role that pinnipeds play and the effect of removing them will come as better data on diets and predator-prey functional responses are included in ecosystem models. Introduction What role do pinnipeds play in the ecosystem? Are they at all-important to the ecosystem or is the ecosystem more important to them? These questions are not easily answered, but are important to those concerned with fisheries, marine mammals, and the health of the marine environment.
    [Show full text]