Assignment of Homology to Genome

Total Page:16

File Type:pdf, Size:1020Kb

Assignment of Homology to Genome doi:10.1006/jmbi.2001.5080availableonlineathttp://www.idealibrary.comon J. Mol. Biol. (2001) 313, 903±919 AssignmentofHomologytoGenomeSequences using a Library of Hidden Markov Models that Represent all Proteins of Known Structure JulianGough1*,KevinKarplus2,RichardHughey2andCyrusChothia1 1MRC, Laboratory of Molecular Of the sequence comparison methods, pro®le-based methods perform Biology, Hills Road, Cambridge with greater selectively than those that use pairwise comparisons. Of the CB2 2QH, UK pro®le methods, hidden Markov models (HMMs) are apparently the best. The ®rst part of this paper describes calculations that (i) improve 2Department of Computer the performance of HMMs and (ii) determine a good procedure for creat- Engineering, Jack Baskin School ing HMMs for sequences of proteins of known structure. For a family of of Engineering, University of related proteins, more homologues are detected using multiple models California, Santa Cruz built from diverse single seed sequences than from one model built from CA 95064, USA a good alignment of those sequences. A new procedure is described for detecting and correcting those errors that arise at the model-building stage of the procedure. These two improvements greatly increase selectiv- ity and coverage. The second part of the paper describes the construction of a library of HMMs, called SUPERFAMILY, that represent essentially all proteins of known structure. The sequences of the domains in proteins of known structure, that have identities less than 95 %, are used as seeds to build the models. Using the current data, this gives a library with 4894 models. The third part of the paper describes the use of the SUPERFAMILY model library to annotate the sequences of over 50 genomes. The models match twice as many target sequences as are matched by pairwise sequence comparison methods. For each genome, close to half of the sequences are matched in all or in part and, overall, the matches cover 35 % of eukaryotic genomes and 45 % of bacterial genomes. On average roughly 15% of genome sequences are labelled as being hypothetical yet homologous to proteins of known structure. The annotations derived from these matches are available from a public web server at: http://stash.mrc-lmb.cam.ac.uk/SUPERFAMILY.Thisserveralsoenables users to match their own sequences against the SUPERFAMILY model library. # 2001 Academic Press Keywords: genome; superfamily; hidden Markov model; structure; *Corresponding author homology Introduction analysis for many years, and with the growth in the experimental determination of new sequences Protein structure prediction, to discover the fold following Moore's law (largely due to the genome and hence information about the probable function projects), they are of increasing value. There are of the sequence of a gene about which nothing is more than 50 completely sequenced genomes at known, is possible via homology to a sequence of the time of writing, including ®ve eukaryotes. known structure. Protein homology searching They comprise approximately a quarter of a methods have been the central tool in sequence million sequences. Improvements in the speed of homology methods enables larger-scale studies, Abbreviations used: HMM, hidden Markov model; and improvements in their selectivity leads to dis- FIM, free insertion module; PDB, Protein Data Bank. covery of novel relationships. The system pre- E-mail address of the corresponding author: sented here probably offers the best selectivity [email protected] currently available for genomic-scale studies. 0022-2836/01/040903±17 $35.00/0 # 2001 Academic Press 904 Sequence Homology Assignment Of the sequence comparison methods available, SCOP database pairwise searches perform much less selectively 10 than pro®le-based, of which hidden Markov Thisdatabase containsastructuralandevol- 11 models1±4(HMMs)areapparentlythebest.The utionaryclassi®cationoftheproteinsinthePDB workbyParketal.5whichisthebasisofthisasser- and usually keeps up to date to within two to six tion,issupportedbyourmorerecentcalculations.6 months. In SCOP, a multi-domain protein is split TheSAMHMMpackage(http://www.cse.ucsc. up into its constituent domains, which are then edu/research/compbio/sam.html)includesan considered separately. These protein domains are iterative model building procedure called T99,7 evolutionary units in that for a protein to be which improves remote homology detection. Of divided into domains they must be observed in the HMM procedures available, SAM T99 is the isolation or in different combinations in nature. most effective. The fundamental units used in the work described The implementation of HMMs is not entirely here are the protein domains as classi®ed by straightforward. In the ®rst part of this paper we SCOP. Note that a domain which has another describe calculations that (i) improve the perform- domain inserted within it will comprise multiple ance of SAM HMMs and (ii) determine a good pro- chains or regions of sequence. cedure for creating SAM HMM for sequences of SCOP is a hierarchical classi®cation, and the proteins of known structure. level of classi®cation relevant to this work is the In the second part of the paper we describe the ``superfamily''. A superfamily is de®ned as a construction of a library of HMMs called SUPER- group of domains which have structural and func- FAMILY, that represent essentially all proteins of tional evidence for their descent from a common known structure. This library of models extends evolutionary ancestor. The level below superfamily both aspects of performance: speed and selectivity. is the ``family'' level which groups together those A sequence can be searched against it at over an domains that have clear sequence similarities. The order of magnitude faster than building a model level above superfamily is the ``fold'' which groups from a query sequence and searching an equivalent domains that have the same major secondary struc- database of target sequences. Expert creation and ture with the same chain topology. Superfamilies selection of the models, coupled with consensus clustered at this level have either no evidence to information, has greatly improved the selectivity of suggest an evolutionary relationship or only very the library. weak evidence that requires conformation. In the third part of the paper we describe the The superfamily level contains the most distantly use of the SUPERFAMILY library to annotate the related domains and so is the highest level for use- sequences of over 50 genomes. For each genome, ful remote homology detection. Proteins in the matches are made to sequences that form roughly same superfamily often have the same function, half the cytoplasmic proteins. These annotations and usually but not always have related functions. areavailablefromapublicwebserverat:http:// Since SCOP classi®es protein domains separately, a stash.mrc-lmb.cam.ac.uk/SUPERFAMILY/cgi-bin/ multi-domain protein may have contributions to gen_list.cgi. it's overall function from the different domains. This server also enables users to match their own sequences again the SUPERFAMILY model ASTRAL database library. Filesinthisdatabase12providesequencescorre- sponding to the SCOP domain de®nitions and are derived from the SEQRES entries in PDB ®les. Sequences, Domains and Homologies Domains which are non-contiguous in sequence, i.e. parts of the domain separated by the insertion of the Proteins of Known Structure of another domain, are treated as a whole. Their Many small proteins contain single domains, sequences are marked with separators between the whereas nearly all large proteins contain two or fragments representing regions belonging to other more that have linked by recombination and domains. All PDB entries with sequences shorter which occur in other proteins in isolation, in than 20 residues, or with poor quality or no combination with different partners, or in both sequence information are omitted. thesestates.8±10Thismeansthattosearchfor ASTRAL also has available sequence ®les ®ltered homologies in large sets of sequences, it is more to different levels of residue identity. The ASTRAL effective to use HMMs that represent protein entries are generated entirely automatically and domains (whole small proteins or the evolution- hence have a small number of documented errors. ary units of large proteins). Thus to build HMMs representing all proteins of known struc- SUPERFAMILY database ture we must ®rst have the sequences of repre- sentative sets of proteins, the de®nition of their The sequences which are used for the work pre- domain structure and a description of their hom- sented here are available from the SUPERFAMILY ologies. These data are available from the SCOP server, described in a later section, and are gener- and ASTRAL databases. ated from the ASTRAL sequences yet differ in the Sequence Homology Assignment 905 following ways: (1) SUPERFAMILY sequence ®les Performance of a model from an alignment of have any sequence shorter than 30 residues multiple homologous sequences versus removed rather than 20 in ASTRAL. Domains multiple models from single which are split across more than one chain had homologous sequences separate entries in ASTRAL which had to be joined to make a single entry in SUPERFAMILY. The Previouspracticebythisgroup14andothers15 ordering of the chains was obtained from NRDB has been to build one HMM model for each pro- andNRDB90.13SubsequentreleasesofASTRAL tein family or superfamily using an accurate align- however now include these joined
Recommended publications
  • The SUPERFAMILY 2.0 Database: a Significant Proteome Update and a New Webserver Arun Prasad Pandurangan 1,*, Jonathan Stahlhacke2, Matt E
    D490–D494 Nucleic Acids Research, 2019, Vol. 47, Database issue Published online 16 November 2018 doi: 10.1093/nar/gky1130 The SUPERFAMILY 2.0 database: a significant proteome update and a new webserver Arun Prasad Pandurangan 1,*, Jonathan Stahlhacke2, Matt E. Oates2, Ben Smithers 2 and Julian Gough1 1MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK and 2Computer Science, University of Bristol, Bristol BS8 1UB, UK Received September 24, 2018; Revised October 23, 2018; Editorial Decision October 23, 2018; Accepted October 25, 2018 ABSTRACT level, most homologous proteins cluster together with high sequence similarity suggesting clear evolutionary relation- Here, we present a major update to the SUPERFAM- ship and functional consistency (3). The SUPERFAMILY ILY database and the webserver. We describe the ad- database provides domain annotations at both Superfamily dition of new SUPERFAMILY 2.0 profile HMM library and Family levels (4). containing a total of 27 623 HMMs. The database SUPERFAMILYprovides various analysis tools to facil- now includes Superfamily domain annotations for itate better analysis and interpretation of the database con- millions of protein sequences taken from the Uni- tent. They include the identification of under- and overrep- versal Protein Recourse Knowledgebase (UniPro- resentation of domains between genomes (5), construction tKB) and the National Center for Biotechnology In- of phylogenetic trees (6), analysis of the domain distribution formation (NCBI). This addition constitutes about 51 of superfamilies and families across the tree of life (7)aswell and 45 million distinct protein sequences obtained as providing ontology based annotations for SUPERFAM- ILY domains and architectures (8,9).
    [Show full text]
  • Applied Category Theory for Genomics – an Initiative
    Applied Category Theory for Genomics { An Initiative Yanying Wu1,2 1Centre for Neural Circuits and Behaviour, University of Oxford, UK 2Department of Physiology, Anatomy and Genetics, University of Oxford, UK 06 Sept, 2020 Abstract The ultimate secret of all lives on earth is hidden in their genomes { a totality of DNA sequences. We currently know the whole genome sequence of many organisms, while our understanding of the genome architecture on a systematic level remains rudimentary. Applied category theory opens a promising way to integrate the humongous amount of heterogeneous informations in genomics, to advance our knowledge regarding genome organization, and to provide us with a deep and holistic view of our own genomes. In this work we explain why applied category theory carries such a hope, and we move on to show how it could actually do so, albeit in baby steps. The manuscript intends to be readable to both mathematicians and biologists, therefore no prior knowledge is required from either side. arXiv:2009.02822v1 [q-bio.GN] 6 Sep 2020 1 Introduction DNA, the genetic material of all living beings on this planet, holds the secret of life. The complete set of DNA sequences in an organism constitutes its genome { the blueprint and instruction manual of that organism, be it a human or fly [1]. Therefore, genomics, which studies the contents and meaning of genomes, has been standing in the central stage of scientific research since its birth. The twentieth century witnessed three milestones of genomics research [1]. It began with the discovery of Mendel's laws of inheritance [2], sparked a climax in the middle with the reveal of DNA double helix structure [3], and ended with the accomplishment of a first draft of complete human genome sequences [4].
    [Show full text]
  • Functional Effects Detailed Research Plan
    GeCIP Detailed Research Plan Form Background The Genomics England Clinical Interpretation Partnership (GeCIP) brings together researchers, clinicians and trainees from both academia and the NHS to analyse, refine and make new discoveries from the data from the 100,000 Genomes Project. The aims of the partnerships are: 1. To optimise: • clinical data and sample collection • clinical reporting • data validation and interpretation. 2. To improve understanding of the implications of genomic findings and improve the accuracy and reliability of information fed back to patients. To add to knowledge of the genetic basis of disease. 3. To provide a sustainable thriving training environment. The initial wave of GeCIP domains was announced in June 2015 following a first round of applications in January 2015. On the 18th June 2015 we invited the inaugurated GeCIP domains to develop more detailed research plans working closely with Genomics England. These will be used to ensure that the plans are complimentary and add real value across the GeCIP portfolio and address the aims and objectives of the 100,000 Genomes Project. They will be shared with the MRC, Wellcome Trust, NIHR and Cancer Research UK as existing members of the GeCIP Board to give advance warning and manage funding requests to maximise the funds available to each domain. However, formal applications will then be required to be submitted to individual funders. They will allow Genomics England to plan shared core analyses and the required research and computing infrastructure to support the proposed research. They will also form the basis of assessment by the Project’s Access Review Committee, to permit access to data.
    [Show full text]
  • Tum1 Is Involved in the Metabolism of Sterol Esters in Saccharomyces Cerevisiae Katja Uršič1,4, Mojca Ogrizović1,Dušan Kordiš1, Klaus Natter2 and Uroš Petrovič1,3*
    Uršič et al. BMC Microbiology (2017) 17:181 DOI 10.1186/s12866-017-1088-1 RESEARCHARTICLE Open Access Tum1 is involved in the metabolism of sterol esters in Saccharomyces cerevisiae Katja Uršič1,4, Mojca Ogrizović1,Dušan Kordiš1, Klaus Natter2 and Uroš Petrovič1,3* Abstract Background: The only hitherto known biological role of yeast Saccharomyces cerevisiae Tum1 protein is in the tRNA thiolation pathway. The mammalian homologue of the yeast TUM1 gene, the thiosulfate sulfurtransferase (a.k.a. rhodanese) Tst, has been proposed as an obesity-resistance and antidiabetic gene. To assess the role of Tum1 in cell metabolism and the putative functional connection between lipid metabolism and tRNA modification, we analysed evolutionary conservation of the rhodanese protein superfamily, investigated the role of Tum1 in lipid metabolism, and examined the phenotype of yeast strains expressing the mouse homologue of Tum1, TST. Results: We analysed evolutionary relationships in the rhodanese superfamily and established that its members are widespread in bacteria, archaea and in all major eukaryotic groups. We found that the amount of sterol esters was significantly higher in the deletion strain tum1Δ than in the wild-type strain. Expression of the mouse TST protein in the deletion strain did not rescue this phenotype. Moreover, although Tum1 deficiency in the thiolation pathway was complemented by re-introducing TUM1, it was not complemented by the introduction of the mouse homologue Tst. We further showed that the tRNA thiolation pathway is not involved in the regulation of sterol ester content in S. cerevisiae,asoverexpressionofthetEUUC,tKUUU and tQUUG tRNAs did not rescue the lipid phenotype in the tum1Δ deletion strain, and, additionally, deletion of the key gene for the tRNA thiolation pathway, UBA4, did not affect sterol ester content.
    [Show full text]
  • Hmms Representing All Proteins of Known Structure. SCOP Sequence Searches, Alignments and Genome Assignments Julian Gough* and Cyrus Chothia
    268–272 Nucleic Acids Research, 2002, Vol. 30, No. 1 © 2002 Oxford University Press SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments Julian Gough* and Cyrus Chothia MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK Received September 28, 2001; Revised and Accepted October 30, 2001 ABSTRACT (currently 59) covering approximately half of the The SUPERFAMILY database contains a library of soluble protein domains. The assignments, super- family breakdown and statistics on them are available hidden Markov models representing all proteins of from the server. The database is currently used by known structure. The database is based on the SCOP this group and others for genome annotation, structural ‘superfamily’ level of protein domain classification genomics, gene prediction and domain-based genomic which groups together the most distantly related studies. proteins which have a common evolutionary ancestor. There is a public server at http://supfam.org which provides three services: sequence searching, INTRODUCTION multiple alignments to sequences of known structure, The SUPERFAMILY database is based on the SCOP (1) and structural assignments to all complete genomes. classification of protein domains. SCOP is a structural domain- Given an amino acid or nucleotide query sequence based heirarchical classification with several levels including the server will return the domain architecture and the ‘superfamily’ level. Proteins grouped together at the super- SCOP classification. The server produces alignments family level are defined as having structural, functional and sequence evidence for a common evolutionary ancestor. It is at of the query sequences with sequences of known this level, as the name suggests, that SUPERFAMILY operates structure, and includes multiple alignments of because it is the level with the most distantly related protein genome and PDB sequences.
    [Show full text]
  • Smurflite: Combining Simplified Markov Random Fields With
    SMURFLite: combining simplified Markov random fields with simulated evolution improves remote homology detection for beta-structural proteins into the twilight zone Noah M. Daniels 1, Raghavendra Hosur 2, Bonnie Berger 2∗, and Lenore J. Cowen 1∗ 1Department of Computer Science, Tufts University, Medford, MA 02155 2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 ABSTRACT are limited in their power to recognize remote homologs because of Motivation: One of the most successful methods to date for their inability to model statistical dependencies between amino-acid recognizing protein sequences that are evolutionarily related has residues that are close in space but far apart in sequence (Lifson and been profile Hidden Markov Models (HMMs). However, these models Sander (1980); Zhu and Braun (1999); Olmea et al. (1999); Cowen do not capture pairwise statistical preferences of residues that are et al. (2002); Steward and Thorton (2002)). hydrogen bonded in beta sheets. These dependencies have been For this reason, many have suggested (White et al. (1994); partially captured in the HMM setting by simulated evolution in the Lathrop and Smith (1996); Thomas et al. (2008); Liu et al. (2009); training phase and can be fully captured by Markov Random Fields Menke et al. (2010); Peng and Xu (2011)) that more powerful (MRFs). However, the MRFs can be computationally prohibitive when Markov Random Fields (MRFs) be used. MRFs employ an auxiliary beta strands are interleaved in complex topologies. dependency graph which allows them to model more complex We introduce SMURFLite, a method that combines both simplified statistical dependencies, including statistical dependencies that Markov Random Fields and simulated evolution to substantially occur between amino-acid residues that are hydrogen bonded in beta improve remote homology detection for beta structures.
    [Show full text]
  • AUTOPHY by Deepika Prasad a Thesis
    ANALYZING MARKER GENE DIVERSITY USING AN AUTOMATED PHYLOGENETIC TOOL: AUTOPHY by Deepika Prasad A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Bioinformatics and Computational Biology Spring 2017 © 2017 Deepika Prasad All Rights Reserved ANALYZING MARKER GENE DIVERSITY USING AN AUTOMATED PHYLOGENETIC TOOL: AUTOPHY by Deepika Prasad Approved: __________________________________________________________ Shawn Polson, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Kathleen F.McCoy, Ph.D. Chair of the Department of Computer and Information Sciences Approved: __________________________________________________________ Babatunde A. Ogunnaike, Ph.D. Dean of the College of Engineering Approved: __________________________________________________________ Ann L. Ardis, Ph.D. Senior Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS I want to express my sincerest gratitude to Professor Shawn Polson for his patience, continuous support, and enthusiasm. I could not have imagined having a better mentor to guide me through the process of my Master’s thesis. I would like to thank my committee members, Professor Eric Wommack and Honzhan Huang for their insightful comments and guidance in the thesis. I would also like to express my gratitude to Barbra Ferrell for asking important questions throughout my thesis research and helping me with the writing process. I would like to thank my friend Sagar Doshi, and lab mates Daniel Nasko, and Prasanna Joglekar, for helping me out with data, presentations, and giving important advice, whenever necessary. Last but not the least, I would like to thank my family, for being my pillars of strength.
    [Show full text]
  • Protein Domain Coocurences Reveal Functional Changes of Regulatory Mechanisms During Evolution
    Protein Domain Coocurences Reveal Functional Changes of Regulatory Mechanisms During Evolution A.A.Parikesit*, S.J. Prohaska, P.F. Stadler Chair of Bioinformatics, University of Leipzig Correlation between transcription factors and chromatin related proteins Introduction Figure 3 : Correlation of the number of transcription factors and chromatin domains. The emergence of higher organisms was facilitated by a Blue box. Species with few chromatin-related domains but many dramatic increases in the complexity of gene regulatory transcription factors: human, kangaroo rat, mouse, opossum, fugu. Green box: species with many chromatin-related domains but few mechanisms. This is achieved not only by addition of novel transcription factors: seq squirt, medaka, dolphin, yeast but also by expansion of existing mechanisms. Such an There are no organisms (known) that have a lot of both. expansion is usually characterized by the proliferation of functionally paralogous proteins and the appearance of novel combinations of functional domains. Large scale phylogenetic analysis can shed light on the relative amounts of functional domains and their combinations and interactions involved in Results show massive problems with data quality: closely related species certain regulatory networks. (e.g, dolphin and human) show dramatically different distributions of transcription factors and chromatin domains. This is not reasonable within Methods mammals and contradicts biological knowledge. We performed comparative and functional analysis of three SUPERFAMILY thus cannot be used for large-scale quantitative regulatory mechanisms: (1) transcriptional regulation by comparisons across species due to several sources of bias: transcription factors, (2) post-transcriptional regulation by - different completeness of protein annotation for different genomes miRNAs, and (3) chromatin regulation across all domains of - differences in transcript coverage life.
    [Show full text]
  • Renaissance SUPERFAMILY in the Decade Since Its Launch, a Repository of Information About Proteins in Genomes Has Developed Into a Primary Reference
    Renaissance SUPERFAMILY In the decade since its launch, a repository of information about proteins in genomes has developed into a primary reference. Dr Julian Gough, its creator, describes current work enhancing the scope, content and functionality of this key service Could you begin by outlining the reasons for How do HMMs feed into the service? creating SUPERFAMILY? HMMs are profi les which represent multiple SUPERFAMILY was originally created to better sequence alignments of homologous proteins understand molecular evolution, initially by in a rigorous statistical framework. They enabling comparison of the repertoire of proteins can be used to classify sequences based on and domains across the genomes of different homology and to create sequence alignments. species. The starting point was the Structural We use sequences of domains of known Classifi cation of Proteins (SCOP), and the most structure via iterative search procedures on basic purpose of SUPERFAMILY is to detect and large background sequence databases to classify these domains with known structural build alignments and, subsequently, models representatives in the protein sequences of representing domains of known structure at genomes. There are tens of thousands of known the superfamily level. These models are then protein structures, each the result of a costly searched against genome sequences to detect three-dimensional atomic resolution structure and classify the structural domains. determination by experiment, usually X-ray crystallography or nuclear magnetic resonance.
    [Show full text]
  • An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement in Accuracy
    The University of Southern Mississippi The Aquila Digital Community Faculty Publications 9-7-2016 An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement In Accuracy Yuxiang Jiang Indiana University TFollowal Ronnen this and Or onadditional works at: https://aquila.usm.edu/fac_pubs Buck P arInstitutet of the forGenomics Research Commons On Agin Wyatt T. Clark RecommendedYale University Citation AsmaJiang, YR.., OrBankapuron, T. R., Clark, W. T., Bankapur, A. R., D'Andrea, D., Lepore, R., Funk, C. S., Kahanda, I., Verspoor, K. M., Ben-Hur, A., Koo, D. E., Penfold-Brown, D., Shasha, D., Youngs, N., Bonneau, R., Lin, A., Sahraeian, S. Miami University M., Martelli, P. L., Profiti, G., Casadio, R., Cao, R., Zhong, Z., Cheng, J., Altenhoff, A., Skunca, N., Dessimoz, DanielC., Dogan, D'Andr T., Hakala,ea K., Kaewphan, S., Mehryar, F., Salakoski, T., Ginter, F., Fang, H., Smithers, B., Oates, M., UnivGough,ersity J., ofTör Romeönen, P., Koskinen, P., Holm, L., Chen, C., Hsu, W., Bryson, K., Cozzetto, D., Minneci, F., Jones, D. T., Chapan, S., BKC, D., Khan, I. K., Kihara, D., Ofer, D., Rappoport, N., Stern, A., Cibrian-Uhalte, E., Denny, P., Foulger, R. E., Hieta, R., Legge, D., Lovering, R. C., Magrane, M., Melidoni, A. N., Mutowo-Meullenet, P., SeePichler next, K., page Shypitsyna, for additional A., Li, B.,authors Zakeri, P., ElShal, S., Tranchevent, L., Das, S., Dawson, N. L., Lee, D., Lees, J. G., Stilltoe, I., Bhat, P., Nepusz, T., Romero, A. E., Sasidharan, R., Yang, H., Paccanaro, A., Gillis, J., Sedeño- Cortés, A. E., Pavlidis, P., Feng, S., Cejuela, J.
    [Show full text]
  • Simulation and Graph Mining Tools for Improving Gene Mapping Efficiency
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto DEPARTMENT OF COMPUTER SCIENCE SERIES OF PUBLICATIONS A REPORT A-2011-3 Simulation and graph mining tools for improving gene mapping efficiency Petteri Hintsanen To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium XIV (Univer- sity Main Building, Unioninkatu 34) on 30 September 2011 at twelve o’clock noon. UNIVERSITY OF HELSINKI FINLAND Supervisor Hannu Toivonen, University of Helsinki, Finland Pre-examiners Tapio Salakoski, University of Turku, Finland Janne Nikkila,¨ University of Helsinki, Finland Opponent Michael Berthold, Universitat¨ Konstanz, Germany Custos Hannu Toivonen, University of Helsinki, Finland Contact information Department of Computer Science P.O. Box 68 (Gustaf Hallstr¨ omin¨ katu 2b) FI-00014 University of Helsinki Finland Email address: [email protected].fi URL: http://www.cs.Helsinki.fi/ Telephone: +358 9 1911, telefax: +358 9 191 51120 Copyright c 2011 Petteri Hintsanen ISSN 1238-8645 ISBN 978-952-10-7139-3 (paperback) ISBN 978-952-10-7140-9 (PDF) Computing Reviews (1998) Classification: G.2.2, G.3, H.2.5, H.2.8, J.3 Helsinki 2011 Helsinki University Print Simulation and graph mining tools for improving gene mapping efficiency Petteri Hintsanen Department of Computer Science P.O. Box 68, FI-00014 University of Helsinki, Finland petteri.hintsanen@iki.fi http://iki.fi/petterih PhD Thesis, Series of Publications A, Report A-2011-3 Helsinki, September 2011, 136 pages ISSN 1238-8645 ISBN 978-952-10-7139-3 (paperback) ISBN 978-952-10-7140-9 (PDF) Abstract Gene mapping is a systematic search for genes that affect observable character- istics of an organism.
    [Show full text]
  • Specialized Hidden Markov Model Databases for Microbial Genomics
    Comparative and Functional Genomics Comp Funct Genom 2003; 4: 250–254. Published online 1 April 2003 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.280 Conference Review Specialized hidden Markov model databases for microbial genomics Martin Gollery* University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557-0014, USA *Correspondence to: Abstract Martin Gollery, University of Nevada, Reno, 1664 N. Virginia As hidden Markov models (HMMs) become increasingly more important in the Street, Reno, NV analysis of biological sequences, so too have databases of HMMs expanded in size, 89557-0014, USA. number and importance. While the standard paradigm a short while ago was the E-mail: [email protected] analysis of one or a few sequences at a time, it has now become standard procedure to submit an entire microbial genome. In the future, it will be common to submit large groups of completed genomes to run simultaneously against a dozen public databases and any number of internally developed targets. This paper looks at some of the readily available HMM (or HMM-like) algorithms and several publicly available Received: 27 January 2003 HMM databases, and outlines methods by which the reader may develop custom Revised: 5 February 2003 HMM targets. Copyright 2003 John Wiley & Sons, Ltd. Accepted: 6 February 2003 Keywords: HMM; Pfam; InterPro; SuperFamily; TLfam; COG; TIGRfams Introduction will be a true homologue. As a result, HMMs have become very popular in the field of bioinformatics Over the last few years, hidden Markov models and a number of HMM databases have been (HMMs) have become one of the pre-eminent developed.
    [Show full text]