What's New in Immunotherapy and Targeted Therapy?

Total Page:16

File Type:pdf, Size:1020Kb

What's New in Immunotherapy and Targeted Therapy? What’s New in Immunotherapy and Targeted Therapy? 18th Focus on Melanoma 2021 Conference Justine V. Cohen, DO Clinical Assistant Professor of Medicine Abramson Cancer Center 2 Old Model of Cancer Care One size fits all 3 Precision Medicine Precision Medicine Personalized Medicine Precision Oncology New approach that takes into account individual variability in genes, environment and lifestyle to allow doctors and researchers to predict more accurately which treatment and prevention strategy will work in which groups of patients. 4 One Size Does Not Fit All! 5 Distinct Genetic Changes in Melanoma Superficial Lentigo Maligna Acral Lentiginous Spreading Melanoma Melanoma Melanoma Abnormal gene: Abnormal Gene: Abnormal gene: C-kit-2% C-kit-15% BRAF- 50% BRAF- 10% BRAF- 15% NRAS- 20% NRAS- 10% NRAS- 15% 6 Distinct Genetic Changes in Melanoma Ocular Melanoma Mucosal Melanoma Abnormal gene: Abnormal Gene: GNA11- 32% C-kit- 20% GNAQ- 50% NRAS- 15% BRAF < 1% BRAF- 5% 7 Many mutations in melanoma Difficult to predict which mutations will be present in a particular tumor Molecular profiling can help clinicians: • Enroll patients in clinical trials • Make informed therapeutic choices Adapted from mycancergenome.org 8 Timeline of approvals Encorafenib + Binimetinib Cobimetinib + V Vemurafenib (V) Dabafenib (D), Nivolumab Trametinib (T) High-dose Cobimetinib + V IL-2 Pembrolizumab D + T Ipi + DTIC Ipilimumab Nivo 1980 2011 2013 2015 2020 9 Immunotherapy Targeted Therapy .Interferon .Dabrafenib (Tafinlar) .IL-2 .Trametinib (Mekinist) .Ipilimumab (Yervoy) .Vemurafenib (Zelboraf) .Pembrolizumab (Keytruda) .Cobimetinib (Cotellic) .Nivolumab (Optivo) .Encorafenib (Braftovi) .Ipilimumab + Nivolumab .Binimetinib (Mektovi) .Talimogene laherparevec, TVEC (imlygic) .Atezolizumab + Cobimetinib + Vemurafenib 10 How we got here Pembrolizumab Nivolumab Ipilimumab Atezolizumab 11 How we got here 12 Tumor Cell APC Inactive T cells are T Cell activated and Tumor antigens proliferate released by tumor Activated T Cell cells Tumor antigens Tumor presented to T Activated Cell T Cell cells T cells recognize tumor antigens Tumor Cell T cells kill tumor cells 13 Immunotherapy 14 Immune checkpoint inhibitors 15 Precision Immunotherapy “Mutational Burden” High numbers of mutations correlate with strong response to immunotherapy PD-L1 expression on tumor cells 16 Neoantigens are more likely to occur in highly mutated tumors Lee et al Trends in Immunology May 2018 17 Updates in immunotherapy stage IV melanoma 18 Toxicity 19 BRAF/MEK inhibitor combinations Encorafenib + Binimetinib Cobimetinib + Vemurafenib Dabrafenib + Trametinib 1980 2014 2015 2018 20 BRAF mutations differ p.G469E p.L597S p.G464E 2% 2% AMP 3% p.L597R 3% 2% p.G469R 2% p.K601D 2% AMP p.G464E p.V600K p.G469E 10% p.G469R p.K601E p.K601D 12% p.K601E p.K601N p.K601N 2% p.V600E p.V600K p.L597R p.V600E p.L597S 60% Even mutations in commonly mutated genes vary between individuals 21 Targeted therapy toxicity Pyrexia Rash Photosensitivity Nausea Arthralgias Abnormalities in liver enzymes Cardiac toxicities Increase in cuSCCs ALL REVERSIBLE!!! 22 Triplet Therapy 23 Triplet Therapy Trials Vem/Cobi/Atezo vs Vem/Cobi IMSpire150 Dab/Tram/Pembro vs Dab/Tram Keynote-022 Dab/Tram/Sparta vs Dab/Tram COMBI-i 24 What’s on the horizon Combination Trials • Combinations with radiation • Combinations with hydroxychloroquine New Targets: “Next Generation” • LAG-3, TIM-3, TIGIT Adoptive T Cell Therapy CAR T Cell Therapy Cancer Vaccines 25 26 What’s on the horizon Combination Trials • Combinations with radiation • Combinations with hydroxychloroquine New Targets: “Next Generation” • LAG-3, TIM-3, TIGIT Adoptive T Cell Therapy CAR T Cell Therapy Cancer Vaccines 27 Penn Trials for Metastatic Melanoma RADVAX • Ipilimumab, nivolumab and radiation trial LIMIT trial • Nivolumab and hydroxychloroquine Umbrella • Includes rotating new drugs combined with trial pembrolizumab (TIGIT, CTLA-4, Lenvatanib) • Dabrafenib, trametinib and BAMM trial hydroxychloroquine 28 In Summary • Precision Medicine approach to cancer treatment • Clinical Trials • Biomarker research 29.
Recommended publications
  • Oncofocus® Precision Oncology
    Medical Laboratory Accredited to ISO15189:2012 Oncofocus® Precision Oncology ONCOFOCUS® TEST REPORT Oncologica UK Ltd Suite 15-16, The Science Village Chesterford Research Park Cambridge, CB10 1XL, UK Tel: +44(0)1223 785327 Email: [email protected] Lead Clinical Scientist: - Pre-Reg Clinical Scientist: - Date: 1 of 30 ONC19 - Surname - Requester - Forename - Contact details - DOB - Date requested - Gender - Histology # - Tumour % - Primary site Breast Tumour % - Tumour subtype - (macrodissected) Tissue Type - Comment: The DNA and RNA extracted from this sample were of optimal quality. The Oncofocus assay on which the sample was run met all assay specific quality metrics. Oncofocus currently targets 505 genes covering oncogenes, fusion genes, genes susceptible to copy number variation and tumour suppressors. Actionable genetic variants detected by Oncofocus are currently linked to 687 anti-cancer targeted therapies/therapy combinations. The following actionable variants were detected: Within the 'Current Clinical Trials Information' section of this report, starting on page 8, the NCT numbers are hyperlinks to the clinicaltrials.gov webpages which should be accessed to gain further trial specific information Sample Cancer Type: Breast Cancer Clinically Significant Biomarkers Indicated Contraindicated Relevant Therapies Relevant Therapies Genomic Alteration Alt allele freq (In this cancer type) (In other cancer type) Clinical Trials ERBB2 p.(G727A) c.2180G>C 39% Clinical trials and/or off-label ado-trastuzumab emtansine 19 BRAF p.(V600E) c.1799T>A 5% Clinical trials and/or off-label dabrafenib 13 vemurafenib PIK3CA p.(G1049R) c.3145G>C 58% Clinical trials and/or off-label Clinical trials and/or off-label 15 Sources included in relevant therapies: EMA1, FDA2, ESMO, NCCN Hotspot variants with >10% alternate allele reads are classified as ‘detected’ with an assay sensitivity and positive predictive value(PPV) of 99%.
    [Show full text]
  • Identification of Recurrent Mutational Events in Anorectal Melanoma
    Modern Pathology (2017) 30, 286–296 286 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Identification of recurrent mutational events in anorectal melanoma Hui Min Yang1,2,6, Susan J Hsiao1,6, David F Schaeffer2, Chi Lai3, Helen E Remotti1, David Horst4, Mahesh M Mansukhani1 and Basil A Horst1,5 1Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA; 2Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; 3Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada; 4Pathologisches Institut, Ludwig-Maximilians-Universitaet, Muenchen, Germany and 5Department of Dermatology, Columbia University Medical Center, New York, NY, USA Anorectal melanoma is a rare disease that carries a poor prognosis. To date, limited genetic analyses confirmed KIT mutations as a recurrent genetic event similar to other mucosal melanomas, occurring in up to 30% of anorectal melanomas. Importantly, a subset of tumors harboring activating KIT mutations have been found to respond to c-Kit inhibitor-based therapy, with improved patient survival at advanced tumor stages. We performed comprehensive targeted exon sequencing analysis of 467 cancer-related genes in a larger series of 15 anorectal melanomas, focusing on potentially actionable variants based on gain- and loss-of-function mutations. We report the identification of oncogenic driver events in the majority (93%) of anorectal melanomas. These included variants in canonical MAPK pathway effectors rarely observed in cutaneous melanomas (including an HRAS mutation, as well as a BRAF mutation resulting in duplication of threonine 599), and recurrent mutations in the tumor suppressor NF1 in 20% of cases, which represented the second-most frequently mutated gene after KIT in our series.
    [Show full text]
  • Product Monograph Including Patient Medication Information
    PRODUCT MONOGRAPH INCLUDING PATIENT MEDICATION INFORMATION Pr ® COTELLIC cobimetinib tablets 20 mg cobimetinib (as cobimetinib fumarate) Protein Kinase Inhibitor Date of Revision: Hoffmann-La Roche Limited January 5, 2018 7070 Mississauga Road Mississauga, Ontario, Canada L5N 5M8 www.rochecanada.com Submission Control No: 209926 COTELLIC®, ZELBORAF® are registered trade-marks of F. Hoffmann-La Roche AG, used under license ©Copyright 2016-2017, Hoffmann-La Roche Limited Page 1 of 38 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION .........................................................3 SUMMARY PRODUCT INFORMATION ........................................................................3 INDICATIONS AND CLINICAL USE ..............................................................................3 CONTRAINDICATIONS ...................................................................................................3 WARNINGS AND PRECAUTIONS ..................................................................................4 ADVERSE REACTIONS ..................................................................................................11 DRUG INTERACTIONS ..................................................................................................15 DOSAGE AND ADMINISTRATION ..............................................................................17 OVERDOSAGE ................................................................................................................20 ACTION AND CLINICAL PHARMACOLOGY ............................................................20
    [Show full text]
  • Quantification of Cobimetinib, Cabozantinib, Dabrafenib, Niraparib
    University of Groningen Quantification of cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and its metabolite regorafenib M2 in human plasma by UPLC-MS/MS Krens, Stefanie D; van der Meulen, Eric; Jansman, Frank G A; Burger, David M; van Erp, Nielka P Published in: Biomedical chromatography DOI: 10.1002/bmc.4758 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Krens, S. D., van der Meulen, E., Jansman, F. G. A., Burger, D. M., & van Erp, N. P. (2020). Quantification of cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and its metabolite regorafenib M2 in human plasma by UPLC-MS/MS. Biomedical chromatography, 34(3), [4758]. https://doi.org/10.1002/bmc.4758 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • RP - HPLC Method Development & Validation for the Simultaneous Estimation of Encorafenib and Binimetinib in API & Tablet Dosage Form
    International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 RP - HPLC Method Development & Validation for the Simultaneous Estimation of Encorafenib and Binimetinib in API & Tablet Dosage Form Kafiya Suroor1, Kudaravalli Sreedevi2 Department of Quality Assurance, Sultan –ul-Uloom College of Pharmacy, Hyderabad, India Abstract: A new RP-HPLC method was developed, validated and adapted for the estimation of encorafenib and binimetinib in bulk and tablet formulation. In this method, separation and assay of encorafenib and binimetinib was done in stationary phase using Agilent C18 column with mobile phase of 0.1M dipotassium hydrogen phosphate (pH 4.0) and methanol in 50:50 vol/vol ratio. The Binimetinib was eluted at 3.448 min and encorafenib at 5.795 min. Linearity ranges are 7.5-22.5 μg/ml and 37.5-112.50 μg/ml with regression coefficient values of 0.9996 and 0.9997 for binimetinib and encorafenib respectively. The LOD values found were binimetinib – 0.017 µg/ml and encorafenib – 0.114 µg/ml, and the LOQ values of binimetinib – 0.058 µg/ml and encorafenib – 0.381 µg/ml. Validation parameters examined following suggestions of ICH are accurate ample for the supposed assay. The approach is confirmed as splendid method for assay of encorafenib and binimetinib in tablet formula with excellent assay percentage values. Keywords: RP-HPLC, Encorafenib, Binimetinib, Antineoplastic drugs 1. Introduction dose of binimetinib is 45 mg orally twice daily and of encorafenib is 450 mg orally once daily. Approval by FDA Encorafenib and Binimetanib belong to the class of was based on a randomized, active-controlled, open-label, antineoplastic agents.
    [Show full text]
  • Mutant Cancers 2 3 Heinz Hammerlindl1*, Dinoop Ravindran Menon1*, Sabrina Hammerlindl1, Abdullah Al
    Author Manuscript Published OnlineFirst on December 1, 2017; DOI: 10.1158/1078-0432.CCR-16-2118 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Hammerlindl et. al 1 Acetylsalicylic Acid Governs the Effect of Sorafenib in RAS Mutant Cancers 2 3 Heinz Hammerlindl1*, Dinoop Ravindran Menon1*, Sabrina Hammerlindl1, Abdullah Al 4 Emran1, Joachim Torrano1, Katrin Sproesser3, Divya Thakkar1, Min Xiao3, Victoria G. 5 Atkinson5, Brian Gabrielli4, Nikolas K. Haass2, Meenhard Herlyn3, Clemens Krepler3, Helmut 6 Schaider1,2† 7 8 1Dermatology Research Centre, The University of Queensland, The University of 9 Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia; 10 2The University of Queensland, The University of Queensland Diamantina Institute, 11 Translational Research Institute, Brisbane, Australia; 12 3The Wistar Institute, Philadelphia, PA, U.S.A.; 13 4Mater Medical Research Institute, The University of Queensland, Translational Research 14 Institute, Brisbane, Australia; 15 5Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Australia; 16 *These authors contributed equally to the study 17 18 Running title: 19 Combined aspirin and sorafenib for RAS-mutant cancer therapy 20 21 Key words: 22 Melanoma, Lung Cancer, NRAS, Sorafenib, Aspirin, RAS, ERK, AMPK 23 24 25 26 27 28 1 Downloaded from clincancerres.aacrjournals.org on September 24, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 1, 2017; DOI: 10.1158/1078-0432.CCR-16-2118 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Hammerlindl et. al 1 2 Grant Support 3 This work was funded by the Epiderm Foundation (H.S.), the Princess Alexandra Hospital 4 Research Foundation (PARSS2016_NearMiss) (H.S.), NIH grants PO1 CA114046, P50 5 CA174523, and the Dr.
    [Show full text]
  • New Oncology Reimbursements in Belgium
    33 New oncology reimbursements in Belgium P. Specenier, MD, PhD OVERVIEW OF BELGIAN REIMBURSEMENT NEWS (BELG J MED ONCOL 2018;12(1):33-34) TEMOZOLOMIDE® (TEMODAR/TEMODAL) was 7.4 months (95% confidence interval [CI] 5.6-9.1) with Some companies have transferred temozolomide from chap- cabozantinib versus 3.8 months (95% CI 3.7-5.4) with ever- ter IV to chapter I. These can now be prescribed without re- olimus with a hazard ratio (HR) of 0.58 (95% CI 0.45-0.74; strictions. In the near future, other temozolomide brands are p<0.0001). Similar data were observed in the intent-to-treat also expected to be transferred. population. A planned interim analysis of overall survival (OS) was conducted at the time of the PFS analysis and did LOMUSTINE (CCNU) not reach the interim boundary for statistical significance The reimbursement criteria for lomustine have been modi- (HR=0.68 [0.51, 0.90], p=0.006). However, in a subsequent fied and are entirely concordant with the recently modified unplanned interim analysis of OS, a statistically significant criteria for procarbazine, except for the indication Hodgkin’s improvement was demonstrated (median 21.4 months ver- disease, which only applies for procarbazine. sus 16.5 months; HR=0.66; 95% CI 0.53-0.83; p=0.0003). The overall response rate (ORR) was 17% (95% CI 13-22) for CABOMETYX® (CABOZANTINIB) cabozantinib and 3% (95% CI 2-6) for everolimus (p<0.0001). Cabometyx® (cabozantinib) can be reimbursed for patients with advanced renal cell carcinoma (RCC) after at least one COTELLIC® (COBIMETINIB) prior anti-VEGF directed agent.
    [Show full text]
  • Combined BRAF and MEK Inhibition with Vemurafenib and Cobimetinib for Patients with Advanced Melanoma
    Review Melanoma Combined BRAF and MEK Inhibition with Vemurafenib and Cobimetinib for Patients with Advanced Melanoma Antonio M Grimaldi, Ester Simeone, Lucia Festino, Vito Vanella and Paolo A Ascierto Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione “G. Pascale”, Napoli, Italy cquired resistance is the most common cause of BRAF inhibitor monotherapy treatment failure, with the majority of patients experiencing disease progression with a median progression-free survival of 6-8 months. As such, there has been considerable A focus on combined therapy with dual BRAF and MEK inhibition as a means to improve outcomes compared with monotherapy. In the COMBI-d and COMBI-v trials, combined dabrafenib and trametinib was associated with significant improvements in outcomes compared with dabrafenib or vemurafenib monotherapy, in patients with BRAF-mutant metastatic melanoma. The combination of vemurafenib and cobimetinib has also been investigated. In the phase III CoBRIM study in patients with unresectable stage III-IV BRAF-mutant melanoma, treatment with vemurafenib and cobimetinib resulted in significantly longer progression-free survival and overall survival (OS) compared with vemurafenib alone. One-year OS was 74.5% in the vemurafenib and cobimetinib group and 63.8% in the vemurafenib group, while 2-year OS rates were 48.3% and 38.0%, respectively. The combination was also well tolerated, with a lower incidence of cutaneous squamous-cell carcinoma and keratoacanthoma compared with monotherapy. Dual inhibition of both MEK and BRAF appears to provide a more potent and durable anti-tumour effect than BRAF monotherapy, helping to prevent acquired resistance as well as decreasing adverse events related to BRAF inhibitor-induced activation of the MAPK-pathway.
    [Show full text]
  • Preferential Response of Basal-Like Head and Neck Squamous Cell Carcinoma Cell Lines to EGFR-Targeted Therapy Depending on EREG-Driven Oncogenic Addiction
    Article Preferential Response of Basal-Like Head and Neck Squamous Cell Carcinoma Cell Lines to EGFR-Targeted Therapy Depending on EREG-Driven Oncogenic Addiction Sylvie Job 1, Aurélien de Reyniès 1, Betty Heller 2, Amélie Weiss 2, Eric Guérin 3,4, Christine Macabre 4,5, Sonia Ledrappier 4,5, Cyril Bour 4,5, Christine Wasylyk 2, Nelly Etienne-Selloum 5,6, Laurent Brino 2, Christian Gaiddon 4, Bohdan Wasylyk 2,† and Alain C. Jung 4,5,†,* 1 Programme Cartes d’Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, 75013 Paris, France; [email protected] (S.J.); [email protected] (A.d.R.) 2 Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMC, UMR 7104 CNRS-UdS, U.1258 INSERM, 1 rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France.; [email protected] (B.H.); [email protected] (A.W.); [email protected] (C.W.); [email protected] (L.B.); [email protected] (B.W.) 3 Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67098 Strasbourg, France; [email protected] 4 Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France; [email protected] (C.M.); [email protected] (S.L.); [email protected] (C.B.); [email protected] (C.G.) 5 Centre de Lutte Contre le Cancer Paul Strauss, 67000 Strasbourg, France; [email protected] 6 UMR 7021 CNRS/Unistra, Laboratoire de Bioimagerie et Pathologies (LBP), Faculté de Pharmacie, 67401 Illkirch, France * Correspondence: [email protected]; Tel.: +33-0388275367 † These authors contributed equally to this work.
    [Show full text]
  • FOI Reference: FOI 414 - 2021
    FOI Reference: FOI 414 - 2021 Title: Researching the Incidence and Treatment of Melanoma and Breast Cancer Date: February 2021 FOI Category: Pharmacy FOI Request: 1. How many patients are currently (in the past 3 months) undergoing treatment for melanoma, and how many of these are BRAF+? 2. In the past 3 months, how many melanoma patients (any stage) were treated with the following: • Cobimetinib • Dabrafenib • Dabrafenib AND Trametinib • Encorafenib AND Binimetinib • Ipilimumab • Ipilimumab AND Nivolumab • Nivolumab • Pembrolizumab • Trametinib • Vemurafenib • Vemurafenib AND Cobimetinib • Other active systemic anti-cancer therapy • Palliative care only 3. If possible, could you please provide the patients treated in the past 3 months with the following therapies for metastatic melanoma ONLY: • Ipilimumab • Ipilimumab AND Nivolumab • Nivolumab • Pembrolizumab • Any other therapies 4. In the past 3 months how many patients were treated with the following for breast cancer? • Abemaciclib + Anastrozole/Exemestane/Letrozole • Abemaciclib + Fulvestrant • Alpelisib + Fulvestrant • Atezolizumab • Bevacizumab [Type text] • Eribulin • Everolimus + Exemestane • Fulvestrant as a single agent • Gemcitabine + Paclitaxel • Lapatinib • Neratinib • Olaparib • Palbociclib + Anastrozole/Exemestane/Letrozole • Palbociclib + Fulvestrant • Pertuzumab + Trastuzumab + Docetaxel • Ribociclib + Anastrozole/Exemestane/Letrozole • Ribociclib + Fulvestrant • Talazoparib • Transtuzumab + Paclitaxel • Transtuzumab as a single agent • Trastuzumab emtansine • Any other
    [Show full text]
  • Cotellic, INN-Cobimetinib
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Cotellic 20 mg film-coated tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each film-coated tablet contains cobimetinib hemifumarate equivalent to 20 mg cobimetinib. Excipient with known effect Each film-coated tablet contains 36 mg lactose monohydrate. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet. White, round film-coated tablets of approximately 6.6 mm diameter, with “COB” debossed on one side. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Cotellic is indicated for use in combination with vemurafenib for the treatment of adult patients with unresectable or metastatic melanoma with a BRAF V600 mutation (see sections 4.4 and 5.1). 4.2 Posology and method of administration Treatment with Cotellic in combination with vemurafenib should only be initiated and supervised by a qualified physician experienced in the use of anticancer medicinal products. Before starting this treatment, patients must have BRAF V600 mutation-positive melanoma tumour status confirmed by a validated test (see sections 4.4 and 5.1). Posology The recommended dose of Cotellic is 60 mg (3 tablets of 20 mg) once daily. Cotellic is taken on a 28 day cycle. Each dose consists of three 20 mg tablets (60 mg) and should be taken once daily for 21 consecutive days (Days 1 to 21-treatment period); followed by a 7-day break (Days 22 to 28-treatment break). Each subsequent Cotellic treatment cycle should start after the 7-day treatment break has elapsed. For information on the posology of vemurafenib, please refer to its SmPC.
    [Show full text]
  • Summary Risk Management Plan for Braftovi
    Summary of the risk management plan Summary of the risk management plan for BRAFTOVI This is a summary of the risk management plan (RMP) for BRAFTOVI when administered in combination with MEKTOVI or cetuximab. The RMP details important risks of BRAFTOVI in combination with MEKTOVI or cetuximab, how these risks can be minimised, and how more information will be obtained about BRAFTOVI in combination with MEKTOVI or cetuximab risks and uncertainties (missing information). Summary of product characteristics (SmPC) for BRAFTOVI and its package leaflets give essential information to healthcare professionals and patients on how BRAFTOVI should be used. This summary of the RMP for BRAFTOVI when administered in combination with MEKTOVI or cetuximab should be read in the context of all this information including the assessment reports of the evaluation and the plain-language summary, all of which are part of the European Public Assessment Report (EPAR). Important new concerns or changes to current concerns will be included in future updates of the RMP for BRAFTOVI. I. The medicine and what it is used for BRAFTOVI is authorised in combination with MEKTOVI for the treatment of adult patients with unresectable or metastatic melanoma with a BRAF V600 mutation (see SmPC for the full indication). The active substance of BRAFTOVI is encorafenib and of MEKTOVI is binimetinib and both are given by the oral route of administration. BRAFTOVI in combination with cetuximab is authorised for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, who have received prior systemic therapy. Cetuximab is given by intravenous infusion.
    [Show full text]