Computational Pseudorandomness, the Wormhole Growth Paradox, and Constraints on the AdS/CFT Duality Adam Bouland Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 617 Soda Hall, Berkeley, CA 94720, U.S.A.
[email protected] Bill Fefferman Department of Computer Science, University of Chicago, 5730 S Ellis Ave, Chicago, IL 60637, U.S.A.
[email protected] Umesh Vazirani Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 671 Soda Hall, Berkeley, CA 94720, U.S.A.
[email protected] Abstract The AdS/CFT correspondence is central to efforts to reconcile gravity and quantum mechanics, a fundamental goal of physics. It posits a duality between a gravitational theory in Anti de Sitter (AdS) space and a quantum mechanical conformal field theory (CFT), embodied in a map known as the AdS/CFT dictionary mapping states to states and operators to operators. This dictionary map is not well understood and has only been computed on special, structured instances. In this work we introduce cryptographic ideas to the study of AdS/CFT, and provide evidence that either the dictionary must be exponentially hard to compute, or else the quantum Extended Church-Turing thesis must be false in quantum gravity. Our argument has its origins in a fundamental paradox in the AdS/CFT correspondence known as the wormhole growth paradox. The paradox is that the CFT is believed to be “scrambling” – i.e. the expectation value of local operators equilibrates in polynomial time – whereas the gravity theory is not, because the interiors of certain black holes known as “wormholes” do not equilibrate and instead their volume grows at a linear rate for at least an exponential amount of time.