CTNNBL1 Facilitates the Association of CWC15 with CDC5L and Is

Total Page:16

File Type:pdf, Size:1020Kb

CTNNBL1 Facilitates the Association of CWC15 with CDC5L and Is 7058–7069 Nucleic Acids Research, 2015, Vol. 43, No. 14 Published online 29 June 2015 doi: 10.1093/nar/gkv643 CTNNBL1 facilitates the association of CWC15 with CDC5L and is required to maintain the abundance of the Prp19 spliceosomal complex Febe van Maldegem1,*, Sarah Maslen1, Christopher M. Johnson1, Anita Chandra1, Karuna Ganesh2, Mark Skehel1 and Cristina Rada1,* 1MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK and 2Department of Medicine and Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA Received November 18, 2014; Revised June 04, 2015; Accepted June 09, 2015 ABSTRACT CDC5L, PLRG1 and SPF27 (the product of the BCAS2 gene), and a sub-complex that includes CTNNBL1 and In order to catalyse the splicing of messenger RNA, CWC15, as well as the chaperone protein HSP7C (en- multiple proteins and RNA components associate coded by the HSPA8 gene) (2). As part of a bigger com- and dissociate in a dynamic highly choreographed plex of more than 30 associated proteins (3), the Prp19 process. The Prp19 complex is a conserved essential complex aids the progression of the core snRNP compo- part of the splicing machinery thought to facilitate the nents through several steps of catalysis and recycling and conformational changes the spliceosome undergoes is therefore essential for splicing (4). The core complex during catalysis. Dynamic protein interactions often has remarkable conservation of function, being essential involve highly disordered regions that are difficult to in both Saccharomyces cerevisiae and Schizosaccharomyces study by structural methods. Using amine crosslink- pombe––known as the NineTeen Complex or NTC (5). The ing and hydrogen–deuterium exchange coupled to precise role of each of the components of the core complex is still uncertain (6), although as a whole it is thought to play a mass spectrometry, we describe the architecture of role facilitating the dynamic conformation rearrangements the Prp19 sub-complex that contains CTNNBL1. De- that take place during the maturation of the spliceosome ficiency in CTNNBL1 leads to delayed initiation of (7,8). cell division and embryonic lethality. Here we show PRPF19 (also known as PSO4 (9)) consists of a U-box that in vitro CTNNBL1 enhances the association of domain with E3 ligase activity (10), a coiled-coil region that CWC15 and CDC5L, both core Prp19 complex pro- mediates its tetramerization and interaction with CDC5L teins and identify an overlap in the region of CDC5L and SPF27, as well as seven WD interaction domains that that binds either CTNNBL1 or CWC15 suggesting the link it to other components of the spliceosome. The in- two proteins might exchange places in the complex. tegrity of the U-box and the ability to act as a tetramer are Furthermore, in vivo, CTNNBL1 is required to main- essential for its function as part of the Prp19 complex (11). tain normal levels of the Prp19 complex and to fa- In addition to splicing, PRPF19 has been linked to other RNA processing functions, such as facilitating elongation cilitate the interaction of CWC15 with CDC5L. Our and transcription coupled repair (12,13) or mRNA quality results identify a chaperone function for CTNNBL1 control and export in yeast (14). PRPF19 was initially iden- within the essential Prp19 complex, a function re- tified in a screen for mutant genes conferring sensitivity to quired to maintain the integrity of the complex and DNA damage by crosslinking agents, and has been shown to support efficient splicing. to be involved in the activation of the ATR (Ataxia telang- iectasia and Rad3 related) signalling cascade in response to INTRODUCTION DNA damage and replication stress (15,16), as well as in the control of mitotic spindle assembly (17). It is clear that The Prp19 complex is an essential multi protein compo- PRPF19 has multiple roles in addition to its function as part nent associated with the splicing machinery that consists of of the spliceosome (reviewed in (2)). a core of four conserved proteins (1), in humans PRPF19, *To whom correspondence should be addressed. Tel: +44 1223 267098; Fax: +44 1223 268305; Email: [email protected] Correspondence may also be addressed to Febe van Maldegem. Tel: +44 20 7269 3365; Fax: +44 20 7269 3094; Email: [email protected] Present address: Febe van Maldegem, The Francis Crick Institute, Lincoln’s Inn Fields Laboratory, London, WC2A 3LY, UK. Anita Chandra, Lymphocyte Signalling & Development, Babraham Institute, Cambridge CB22 3AT, UK. C The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Research, 2015, Vol. 43, No. 14 7059 CDC5L was originally identified in a cell cycle screen in and MBP-CDC5L were incubated with Ni-NTA (Qiagen), yeast and has been implicated in cell cycle checkpoint func- Glutathione-Sepharose 4B (GE Life Sciences) or Amylose tion and nucleic acid binding, linking the enzymatic activ- resin (New England Biolabs) respectively, for 1 h at 4◦C, ity of PRPF19 to U2-U6 RNPs and other potential targets washed and eluted using 1M imidazole, 10 mM reduced glu- (18,19). It is still unclear whether it functions outside the tathione or 50 mM maltose, respectively. For gel filtration, Prp19 complex independent of PRPF19, at least in mam- crosslinking and HDX, the tags of CWC15 and CDC5L malian cells, as CDC5L has also been implicated in ATR were cleaved off by HRV3C and Tobacco Etch Virus (TEV) signalling (15,20). PLRG1 contains multiple WD motifs proteases respectively, followed by a second purification that mediate protein/protein interactions through which it step on a 6 ml Resource Q ion exchange column in the case binds CDC5L and links it to other core components (21), of CTNNBL1 and CWC15, or a Resource S ion exchange although it is likely that additional cellular roles outside the column in the case of CDC5L using an AKTA Prime Plus Prp19 complex make it essential (22). SPF27 was initially FPLC system (GE Lifesciences). Elution was performed identified as a cDNA amplified in human breast cancers against a gradient of buffers A and B (all buffers are listed (BCAS2) (23), and is a unique protein domain of unknown in Supplementary Methods). function. Although conserved, the SPF27 homologue is not essential in S. cerevisiae unlike in S. pombe (24), and is con- Pull downs sidered a scaffold component in the Prp19 complex. For recombinant protein pull down assays 10–20 ␮gofeach CTNNBL1 is considered a peripheral component of the purified protein in pull down buffer was combined and in- Prp19 complex since it has not been found consistently as- ◦ cubated with 25 ␮l affinity resin for 1 h at 4 C under con- sociated with the complex across species (5,25) and does stant mixing. The resin was washed four times with the same not remain part of the complex throughout the spliceosome buffer and the complexes were eluted off the beads using maturation (26). CTNNBL1 is an ARM domain protein spin columns. The eluates were clarified by centrifugation with structural similarity to karyopherin (27) and known 10 min 21 000 g, supernatants and input samples were sepa- to bind nuclear localization signals, including those of rated by SDS-PAGE and visualized using Instant Blue (Ex- CDC5L, PRP31 and non spliceosome proteins such as the pedeon). antibody diversification enzyme AID28 ( ,29). CTNNBL1 and CWC15 are also present as a stable heterodimer outside Crosslinking-MS and HDX-MS the Prp19 complex (30), but unlike CTNNBL1, CWC15 is essential for cell viability and has no assigned structural do- (Full details of experimental procedures are described in mains or function. Even less is known about the role of Supplementary Methods). Briefly, purified recombinant hu- HSP7C, which is present only in a minority of Prp19 com- man proteins with or without proteolytic tag removal were plexes (31), but its generic function as a chaperone indicates crosslinked with BS3 d0/d4 in crosslinking buffer, after that it might be transiently required to sense misfolding as- which SDS-PAGE gel bands were further processed for MS sociated with the complex. analysis. For HDX-MS, protein complexes were pre-formed Molecular interactions in highly dynamic complexes such and dialysed in HDX exchange buffer without D2O, af- as the spliceosome often involve intrinsically disordered ter which exchange in presence of 80% D2O was allowed regions that are not amenable to structural analysis (32). for 3, 30, 300 and 3000 s before quenching by addition of Similarly, structural information for CTNNBL1 has not quench buffer. Samples were snap frozen and analyzed by aided mutagenesis-based mapping of its interactions with MS. The quenched protein samples were rapidly thawed other proteins (33). In order to understand the interactions and subjected to proteolytic cleavage by pepsin followed of the CTNNBL1/CWC15 sub-complex in relation to the by reversed phase High-performance liquid chromatogra- core Prp19 complex, we have combined biochemical and phy (HPLC) separation essentially as previously described hydrogen–deuterium exchange mass spectrometry (HDX- (34). Mass analysis of the peptide centroids was performed MS) methods to identify the associations of CTNNBL1 as described previously, using the software HD-Examiner with the Prp19 complex proteins in vitro, bringing us a step (Sierra Analytics) (34). closer to understanding the dynamics of the complex in vivo, where CTNNBL1 appears to be required to maintain the Data analysis of HDX integrity of the Prp19 complex through facilitating associa- %HDX per peptide was defined as the number of deuterium tion of CWC15 with CDC5L and thereby support efficient atoms divided by the maximum number of hydrogen atoms function of the complex in splicing.
Recommended publications
  • Supplemental Material Table of Contents
    Supplemental material Table of Contents Detailed Materials and Methods ......................................................................................................... 2 Perioperative period ........................................................................................................................... 2 Ethical aspects ................................................................................................................................... 4 Evaluation of heart failure ................................................................................................................. 4 Sample preparation for ANP mRNA expression .................................................................................. 5 Sample preparation for validative qRT-PCR (Postn, Myh7, Gpx3, Tgm2) ............................................ 6 Tissue fibrosis .................................................................................................................................... 7 Ventricular remodeling and histological tissue preservation ................................................................ 8 Evaluation of the histological preservation of cardiac tissue ................................................................ 9 Sample preparation and quantitative label-free proteomics analyses .................................................. 10 Statistical methods ........................................................................................................................... 12 References ........................................................................................................................................
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Datasheet Blank Template
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . CWC15 (C-8): sc-514479 BACKGROUND APPLICATIONS CWC15 (CWC15 spliceosome-associated protein), also known as ORF5, Cwf15, CWC15 (C-8) is recommended for detection of CWC15 of mouse, rat and C11orf5 or HSPC14, is a 229 amino acid protein involved in pre-mRNA splicing. human origin by Western Blotting (starting dilution 1:100, dilution range The gene encoding CWC15 maps to human chromosome 11q21. With approx - 1:100- 1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein imately 135 million base pairs and 1,400 genes, chromosome 11 makes up (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution around 4% of human genomic DNA and is considered a gene and disease as- range 1:50- 1:500) and solid phase ELISA (starting dilution 1:30, dilution sociation dense chromosome. The chromosome 11 encoded Atm gene is impor - range 1:30-1:3000). tant for regulation of cell cycle arrest and apoptosis following double strand Suitable for use as control antibody for CWC15 siRNA (h): sc-97055, CWC15 DNA breaks. Atm mutation leads to the disorder known as ataxia-telang iecta - siRNA (m): sc-142639, CWC15 shRNA Plasmid (h): sc-97055-SH, CWC15 sia. The blood disorders sickle cell anemia and thalassemia are caused by β shRNA Plasmid (m): sc-142639-SH, CWC15 shRNA (h) Lentiviral Particles: HBB gene mutations. Wilms’ tumors, WAGR syndrome and Denys-Drash syn - sc- 97055-V and CWC15 shRNA (m) Lentiviral Particles: sc-142639-V. drome are associated with mutations of the WT1 gene.
    [Show full text]
  • Genome-Wide Association Study of Copy Number Variations (Cnvs) with Opioid Dependence
    Neuropsychopharmacology (2015) 40, 1016–1026 & 2015 American College of Neuropsychopharmacology. All rights reserved 0893-133X/15 www.neuropsychopharmacology.org Genome-Wide Association Study of Copy Number Variations (CNVs) with Opioid Dependence Dawei Li*,1,2,3,4, Hongyu Zhao5,6, Henry R Kranzler7, Ming D Li8, Kevin P Jensen1, Tetyana Zayats1, Lindsay A Farrer9 and Joel Gelernter1,6,10 1 2 Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA; Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA; 3Department of Computer Science, University of Vermont, Burlington, VT, USA; 4Neuroscience, Behavior, and Health Initiative, University of Vermont, Burlington, VT, USA; 5Department of Biostatistics, Yale School of Public Health, New Haven, 6 7 CT, USA; Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA; Department of Psychiatry, University of 8 Pennsylvania School of Medicine and VISN 4 MIRECC, Philadelphia VAMC, Philadelphia, PA, USA; Department of Psychiatry and 9 Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA; Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Genetics and Genomics, Biostatistics, and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA; 10VA Connecticut Healthcare Center, Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA Single-nucleotide polymorphisms that have been associated with opioid dependence (OD) altogether account for only a small proportion of the known heritability. Most of the genetic risk factors are unknown. Some of the ‘missing heritability’ might be explained by copy number variations (CNVs) in the human genome. We used Illumina HumanOmni1 arrays to genotype 5152 African-American and European-American OD cases and screened controls and implemented combined CNV calling methods.
    [Show full text]
  • Datasheet: VPA00331KT Product Details
    Datasheet: VPA00331KT Description: PRPF19 ANTIBODY WITH CONTROL LYSATE Specificity: PRPF19 Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 2 Westerns Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation 20μl Rabbit polyclonal antibody purified by affinity chromatography Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN ) Stabilisers 3 Immunogen KLH-conjugated synthetic peptide corresponding to aa 4-33 of human PRPF19 External Database Links UniProt: Q9UMS4 Related reagents Entrez Gene: 27339 PRPF19 Related reagents Synonyms NMP200, PRP19, SNEV Page 1 of 3 Specificity Rabbit anti Human PRPF19 antibody recognizes PRPF19, also known as PRP19/PSO4 homolog, PRP19/PSO4 pre-mRNA processing factor 19 homolog, nuclear matrix protein 200, nuclear matrix protein NMP200 related to splicing factor PRP19, psoralen 4 and senescence evasion factor. The PRPF19 gene is the human homolog of yeast Pso4, a gene essential for cell survival and DNA repair (Beck et al.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Genome-Wide Scan for Candidate Lethal Variants in Thoroughbred Horses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.077008; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A genome-wide scan for candidate lethal variants in Thoroughbred horses. Evelyn T. Todd1*, Peter C. Thomson1, Natasha A. Hamilton2, Rachel A. Ang1, Gabriella Lindgren3,4, Åsa Viklund3, Susanne Eriksson3, Sofia Mikko3, Eric Strand5 and Brandon D. Velie1. 1 School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia. 2 Racing Australia Equine Genetics Research Centre, Racing Australia, NSW 2000, Australia. 3Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. 4Livestock Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium. 5Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway. *Correspondence and requests for materials should be addressed to Evelyn T. Todd (email: [email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.077008; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Abstract 2 Recessive lethal variants often segregate at low frequencies in animal populations, such that two 3 randomly selected individuals are unlikely to carry the same mutation.
    [Show full text]
  • Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
    www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g.
    [Show full text]
  • Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 As
    cells Article Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners 1, 1, 2, Eunate Gallardo-Vara y, Lidia Ruiz-Llorente y, Juan Casado-Vela y , 3 4 5 6, , María J. Ruiz-Rodríguez , Natalia López-Andrés , Asit K. Pattnaik , Miguel Quintanilla z * 1, , and Carmelo Bernabeu z * 1 Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; [email protected] (E.G.-V.); [email protected] (L.R.-L.) 2 Bioengineering and Aerospace Engineering Department, Universidad Carlos III and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Leganés, 28911 Madrid, Spain; [email protected] 3 Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; [email protected] 4 Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; [email protected] 5 School of Veterinary Medicine and Biomedical Sciences, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; [email protected] 6 Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), and Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain * Correspondence: [email protected] (M.Q.); [email protected] (C.B.) These authors contributed equally to this work. y Equal senior contribution. z Received: 7 August 2019; Accepted: 7 September 2019; Published: 13 September 2019 Abstract: Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer.
    [Show full text]
  • CRNKL1 Is a Highly Selective Regulator of Intron-Retaining HIV-1 and Cellular Mrnas
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934927; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 CRNKL1 is a highly selective regulator of intron-retaining HIV-1 and cellular mRNAs 2 3 4 Han Xiao1, Emanuel Wyler2#, Miha Milek2#, Bastian Grewe3, Philipp Kirchner4, Arif Ekici4, Ana Beatriz 5 Oliveira Villela Silva1, Doris Jungnickl1, Markus Landthaler2,5, Armin Ensser1, and Klaus Überla1* 6 7 1 Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander 8 Universität Erlangen-Nürnberg, Erlangen, Germany 9 2 Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the 10 Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany 11 3 Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany 12 4 Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen- 13 Nürnberg, Erlangen, Germany 14 5 IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115, Berlin, 15 Germany 16 # these two authors contributed equally 17 18 19 *Corresponding author: 20 Prof. Dr. Klaus Überla 21 Institute of Clinical and Molecular Virology, University Hospital Erlangen 22 Friedrich-Alexander Universität Erlangen-Nürnberg 23 Schlossgarten 4, 91054 Erlangen 24 Germany 25 Tel: (+49) 9131-8523563 26 e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934927; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • RNA Components of the Spliceosome Regulate Tissue- and Cancer-Specific Alternative Splicing
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Research RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing Heidi Dvinge,1,2,4 Jamie Guenthoer,3 Peggy L. Porter,3 and Robert K. Bradley1,2 1Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; 2Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; 3Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA Alternative splicing of pre-mRNAs plays a pivotal role during the establishment and maintenance of human cell types. Characterizing the trans-acting regulatory proteins that control alternative splicing has therefore been the focus of much research. Recent work has established that even core protein components of the spliceosome, which are required for splicing to proceed, can nonetheless contribute to splicing regulation by modulating splice site choice. We here show that the RNA components of the spliceosome likewise influence alternative splicing decisions. Although these small nuclear RNAs (snRNAs), termed U1, U2, U4, U5, and U6 snRNA, are present in equal stoichiometry within the spliceosome, we found that their relative levels vary by an order of magnitude during development, across tissues, and across cancer samples. Physiologically relevant perturbation of individual snRNAs drove widespread gene-specific differences in alternative splic- ing but not transcriptome-wide splicing failure. Genes that were particularly sensitive to variations in snRNA abundance in a breast cancer cell line model were likewise preferentially misspliced within a clinically diverse cohort of invasive breast ductal carcinomas.
    [Show full text]
  • Original Article CDC5L Contributes to Malignant Cell Proliferation in Human Osteosarcoma Via Cell Cycle Regulation
    Int J Clin Exp Pathol 2016;9(10):10451-10457 www.ijcep.com /ISSN:1936-2625/IJCEP0031885 Original Article CDC5L contributes to malignant cell proliferation in human osteosarcoma via cell cycle regulation Yu Wang1,4*, Hong Chang2,4*, Di Gao3,4, Lei Wang4, Nan Jiang4, Bin Yu4 1Department of Orthopaedics, Chifeng Hospital, Inner Mongolia, China; 2Department of Orthopaedics, 421 Hospital of PLA, Guangzhou, China; 3Department of Orthopaedics, The University of Hong Kang, Shenzhen Hospital, Shenzhen, China; 4Department of Orthopaedics and Traumatology, Nanfang Hospital Southern Medical University, Guangzhou, China. *Equal contributors. Received May 9, 2016; Accepted July 22, 2016; Epub October 1, 2016; Published October 15, 2016 Abstract: Cell division cycle 5-like (CDC5L) has been reported in overexpressed in osteosarcoma (OS). However, its biological function in tumor biology was still unclear. Here, we firstly determined the expression of CDC5L in several OS cell lines, including Saos-2, SF-86, U2OS and SW1353, and found it was commonly upregulated in these four OS cells. Subsequently, Saos-2 and U2OS cells with higher CDC5L expression were transfected with interfering RNA tar- geting CDC5L. A set of functional assay was conducted on the two cell lines, including CCK-8, colony formation and flow cytometry assay. Our results indicated that CDC5L silencing significantly inhibited cell proliferation and arrested cell cycle at G2/M phase. Mechanically, Western blot analysis further confirmed knockdown of CDC5L remarkably down regulated the protein levels of CDK1, Cyclin B and PCNA. There findings further demonstrated that CDC5L play a crucial role in OS development and might be a promising therapeutic target of OS.
    [Show full text]