http://www.chxb.cn ISSN 0253-9837 CN 21-1195/O6

催 CODEN THHPD3

学 报

CHINESE JOURNAL OF C AT ALYSIS ChineseChinese JournalJournal ofof CatalysisCatalysis

主编 林励吾 2013 Editor-in-Chief LIN Liwu Vol. 34 No. 2 eray 03Vol. 34 No. 2 pages 283 February 2013

N 2

O 2

CO CO2

_ o 80 c

_ o 80 c

- O2 397

中 国 化 学 会 催 化 学 会 会 刊 Transaction of the Catalysis Society of China

2013年 2013 第34卷 第2期 CHINESE JOURNAL OF CATALYSIS Vol. 34 No. 2 In This Issue

封面: Co3O4 中钴和氧的属性如同一个硬币的正反两面. 通过纳米材料

可控合成实现三价钴的表面富集, 可获取性能优异的 Co3O4 催化剂. 另一方

面, 余运波等报道了合适条件下的预处理有利于 Co3O4 表面氧空穴团的形 成, 实现了 CO 的低温氧化. 见本期第 283–293 页.

Cover: The properties of cobalt and oxygen ions in Co3O4 are just the two sides of the same coin. Using controlled synthesis of nano materials, Co3O4 enriched with surface Co3+ cations can be created, giving excellent catalytic performance. On the other hand, Yu and coworkers in their Article on pages 283–293 reported that pretreatment under suitable conditions favored the for-

mation of oxygen vacancy clusters on the Co3O4 surface, the presence of which guarantees CO oxidation at low temperatures.

About the Journal

Chinese Journal of Catalysis is an international journal published monthly by Chinese Chemical Society, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, and Elsevier. The journal publishes original, rigorous, and scholarly contributions in the fields of heterogeneous and homogeneous catalysis in English or in both English and Chinese. The scope of the journal includes:  New trends in catalysis for applications in energy production, environmental protection, and production of new materials, petroleum chemicals, and fine chemicals;  Scientific foundation for the preparation and activation of catalysts of commercial interest or their representative models;  Spectroscopic methods for structural characterization, especially methods for in situ characterization;  New theoretical methods of potential practical interest and impact in the science and applications of catalysis and catalytic reaction;  Relationship between homogeneous and heterogeneous catalysis;  Theoretical studies on the structure and reactivity of catalysts.  The journal also accepts contributions dealing with photo-catalysis, bio-catalysis, and surface science and chemical kinetics issues related to catalysis.

Types of Contributions Impact Factor

 Reviews deal with topics of current interest in the areas covered by this journal. Re- 2011 SCI Impact Factor: 1.171 views are surveys, with entire, systematic, and important information, of recent progress 2011 SCI 5-Year Impact Factor: 0.945 in important topics of catalysis. Rather than an assemblage of detailed information or a 2011 ISTIC Impact Factor: 1.288 complete literature survey, a critically selected treatment of the material is desired. Un- Abstracting and Indexing solved problems and possible developments should also be discussed. Authors should have published articles in the field. Reviews should have more than 80 references. Abstract Journals (VINITI)  Communications rapidly report studies with significant innovation and major academic Cambridge Scientific Abstracts (CIG) value. They are limited to four Journal pages. After publication, their full-text papers Catalysts & Catalysed Reactions (RSC) can also be submitted to this or other journals. Current Contents/Engineering, Computing  Articles are original full-text reports on innovative, systematic and completed research and Technology (Thomson ISI) on catalysis. Chemical Abstract Service/SciFinder  Highlight Comments describe and comment on very important new results in the orig- (CAS) inal research of a third person with a view to highlight their significance. The results Chemistry Citation Index should be presented clearly but concisely without the comprehensive details required of (Thomson ISI) an original article. Highlight comment should not be more than 2–3 Journal pages (ap- Japan Information Center of Science and proximately 9000 characters) in length, and should be appropriately organized by the Technology author. Chemical formulae, figures, and schemes should be restricted to important ex- Journal Citation Reports/Science Edition amples. The number of references should be restricted to about 15. (Thomson ISI)  Academic Arguments can discuss, express a different opinion or query the idea, con- Science Citation Index Expanded cept, data, data processing method, characterization method, computational method, or (Thomson ISI) the conclusion of published articles. The objective of an academic argument should be SCOPUS (Elsevier) to enliven the academic atmosphere. Web of Science (Thomson ISI)

2013年 2013 第34卷 第2期 CHINESE JOURNA OF CATALYSIS Vo l . 3 4 No. 2

《催化学报》第四届编辑委员会 月刊 SCI 收录 1980 年 3 月创刊 中国化学会催化学会会刊 The Fourth Editorial Board of Chinese Journal of Catalysis 2013年2月20日出版 顾问 (Advisors)

主管 中国科学院 蔡启瑞 (CAI Qirui) 辛 勤 (XIN Qin) Bernard DELMON (比利时) 主办 中国化学会 闵恩泽 () 胥诲熊 (XU Huixiong) Gerhard ERTL (德国) 中国科学院大连化学物理研究所 彭少逸 (PENG Shaoyi) Jürgen CARO (德国) Masaru ICHIKAWA (日本) 主编 林励吾 宋春山 (SONG Chunshan, 美国) Michel CHE (法国) 编辑 《催化学报》编辑委员会 出版 主编 (Editor-in-Chief)

林励吾 (LIN Liwu) 国内统一连续出版物号 CN 21-1195/O6 副主编 (Associate Editors-in-Chief) 国际标准连续出版物号 ISSN 0253-9837 包信和 寇 元 张 涛 CODEN THHPD3 (BAO Xinhe) (KOU Yuan) (ZHANG Tao) 广告经营许可证号 2011004 高 滋 (GAO Zi) 刘宇新 (LIU Yuxin) 编委 (Members) 总发行 安立敦 (AN Lidun) 李 灿 (LI Can) 吴 凯 (WU Kai) 北京东黄城根北街 号 16 包信和 (BAO Xinhe) 李大东 (LI Dadong) 吴通好 (WU Tonghao) 邮编: 100717 陈 德 (CHEN De, 挪威) 李微雪 (LI Weixue) 夏春谷 (XIA Chungu) 电话: (010) 64017032 陈经广 美国 林励吾 肖丰收 E-mail: [email protected] (CHEN Jingguang, ) (LIN Liwu) (XIAO Fengshou) 国内订购 全国各地邮政局 陈庆龄 (CHEN Qingling) 刘昌俊 (LIU Changjun) 谢在库 (XIE Zaiku) 邮发代号 8-93 陈诵英 (CHEN Songying) 刘宇新 (LIU Yuxin) 熊国兴 (XIONG Guoxing) 国外订购 中国国际图书贸易总公司 陈耀强 (CHEN Yaoqiang) 刘中民 (LIU Zhongmin) 徐柏庆 (XU Boqing) 北京 399 信箱 邮编 100044 陈 懿 (CHEN Yi) 卢冠忠 (LU Guanzhong) 许建和 (XU Jianhe) 国外发行代号 M417 椿范立 日本 罗锡辉 徐 杰 印刷 大连海大印刷有限公司 (Noritatsu TSUBAKI, ) (LUO Xihui) (XU Jie) 定价 39 元 邓友全 (DENG Youquan) 沈俭一 (SHEN Jianyi) 徐龙伢 (XU Longya) 方佑龄 (FANG Youling) 沈师孔 (SHEN Shikong) 严玉山 (YAN Yushan, 美 国 )

伏义路 沈之荃 杨启华 Publication Monthly (12 issues) (FU Yilu) (SHEN Zhiquan) (YANG Qihua) Started in March 1980 高 滋 (GAO Zi) 申文杰 (SHEN Wenjie) 杨维慎 (YANG Weishen) Transaction of the Catalysis Society of China 关乃佳 (GUAN Naijia) 苏宝连 (SU Baolian, 比利时) 杨向光 (YANG Xiangguang) Superintended by 郭新闻 孙予罕 余 林 Chinese Academy of Sciences (GUO Xinwen) (SUN Yuhan) (YU Lin) Sponsored by 何鸣元 (HE Mingyuan) 万惠霖 (WAN Huilin) 袁友珠 (YUAN Youzhu) Chinese Chemical Society and Dalian 贺鹤勇 (HE Heyong) 王德峥 (WANG Dezheng) 张 涛 (ZHANG Tao) Institute of Chemical Physics of CAS 胡友良 (HU Youliang) 王国祯 (WANG Guozhen) 赵进才 (ZHAO Jincai) Editor-in-Chief LIN Liwu Edited by Editorial Board of 贾继飞 (JIA Jifei, 美 国 ) 王建国 (WANG Jianguo) 郑小明 (ZHENG Xiaoming) Chinese Journal of Catalysis 寇 元 (KOU Yuan) 王祥生 (WANG Xiangsheng) Published by Science Press 编辑部成员 (Editorial Office Staff)

主任 尹红梅 Distributed by Science Press (Managing Editor) (YIN Hongmei) 16 Donghuangchenggen North Street, 资深编辑 (Senior Editor) 刘宇新 (LIU Yuxin) Beijing 100717, China 编辑 (Editor) 初人合 (CHU Renhe) Tel: +86-10-64017032 编辑 (Editor) 张 艳 (ZHANG Yan) E-mail: [email protected] Subscription Agents 编辑部联系方式 (Editorial Office Address) Domestic All Local Post Offices in China Foreign China International Book Trading 地址: 大连市中山路 457 号 Add.: Dalian Institute of Chemical Physics, Chinese Corporation, P.O.Box 399, Beijing 100044, 中国科学院大连化学物理研究所 Academy of Sciences, 457 Zhongshan Road, China 邮编: 116023 Dalian 116023, Liaoning, China Printed by Dalian Haida Printing Company, Limited 电话: (0411)84379240 Tel.: +86-411-84379240 Price $39 传真: (0411)84379600 Fax: +86-411-84379600 电子信箱: [email protected] E-mail: [email protected]

中文主页 http://www.chxb.cn 国际版主页 http://www.elsevier.com/locate/chnjc 公 开 发 行 国际版全文 http://www.sciencedirect.com/science/journal/18722067

(CUIHUA XUEBAO) CHINESE JOURNAL OF CATALYSIS 中国科学院科学出版基金资助出版 月刊 SCI 收录 2013 年 2 月 第 34 卷 第 2 期

目 次

综 述 361 (中) 351 (中) 碱土金属对锆基钙钛矿材料负载钌催化剂氨合成性能的影 生物制造不同立体构型2,3-丁二醇: 合成机理与实现方法 响 沈梦秋, 纪晓俊, 聂志奎, 夏志芳, 杨晗, 黄和 王自庆, 马运翠, 林建新, 王榕, 魏可镁

367 (中) 研究论文 液相沉积法制备可磁分离复合光催化剂纳米球及其催化性 283 (英/中/封面文章) 能 许士洪, 谭东栋, 鲁巍, 时鹏辉, 毕得福, 马春燕, 上官文峰 焙烧与预处理条件对Co3O4催化氧化CO性能的影响 余运波, 赵娇娇, 韩雪, 张燕, 秦秀波, 王宝义 373 (中) 294 (英) Cr掺杂对中孔MgF2酸性及孔结构的影响 ZSM-5沸石结晶度对乙苯叔丁基化对位选择性的影响 牛怀成, 李利春, 李瑛, 郭荔, 唐浩东, 韩文锋, 刘化章 PUSHPARAJ Hemalatha, MANI Ganesh, MUTHIAHPILLAI Palanichamy, VELAYUTHAM Murugesan, PARK Yong-Ki, 379 (中) CHOI Won Choon, JANG Hyun Tae 介孔Ni-β-Mo2C/SBA-16催化剂在CH4/CO2重整制合成气反 应中的催化性能 305 (英) 瑙莫汗, 付晓娟, 雷艳秋, 苏海全

Ni掺杂对纳米结构牡丹花状CeO2材料催化特性的影响 仙存妮, 王少飞, 孙春文, 李泓, 陈晓惠, 陈立泉 385 (中) Pt/BiOCl纳米片的制备、表征及其光催化性能 313 (英/中) 余长林, 陈建钗, 操芳芳, 李鑫, 樊启哲, YU Jimmy C, 催化臭氧氧化降解邻苯二甲酸二甲酯中催化剂构效关系 魏龙福 王建兵, 王灿, 杨春丽, 王国庆, 祝万鹏 391 (中) 322 (英) Ru-Fe/C催化剂上邻氯硝基苯原位液相加氢性能

镍促进CuO-CeO2催化剂的结构表征及低温CO氧化活性 许响生, 陈傲昂, 周莉, 李小青, 顾辉子, 严新焕 陈国星, 李巧灵, 魏育才, 方维平, 杨意泉 相关信息 330 (英) 复合氧化物载体对镍基催化剂上CO甲烷化反应性能的影响 293 2nd International Congress on Catalysis for Biorefineries 张罕, 董云芸, 方维平, 连奕新 (CatBior 2013) 321 第二届国际生物质催化炼制大会(CatBior 2013)第一轮 336 (英) 通知 Au/NTS-1催化丙烯气相直接环氧化 397 作者索引 刘义武, 张小明, 索继栓

( ) Elsevier ScienceDirect 341 (英/中) 英文全文电子版 国际版 由 出版社在 上出版 http://www.sciencedirect.com/science/journal/18722067 Cu掺杂对介孔VOx-TiO2催化苯羟基化制苯酚的影响 http://www.elsevier.com/locate/chnjc 徐丹, 贾丽华, 郭祥峰 http://www.chxb.cn

(CUIHUA XUEBAO) CHINESE JOURNAL OF CATALYSIS Supported by the Science Publication Foundation of the CAS Monthly Vol. 34 No. 2 February 2013 Graphical Contents

Review

Chin. J. Catal., 2013, 34: 351–360 doi: 10.3724/SP.J.1088.2013.20737 Biotechnological production of 2,3‐butanediol stereoisomers: synthetic mechanism and realized methods SHEN Mengqiu, JI Xiaojun*, NIE Zhikui, XIA Zhifang, YANG Han, HUANG He* Nanjing University of Technology

OH OH OH Diacetyl Reductase H3C H3C H3C OR CH3 CH3 CH3 Catalysis O O meso-, (R, R), (S, S)-2,3- OH O OH Butanediol Dehydrogenase (S, S)-2,3-Butanediol H C H C 3 3 OH Biotechnological CH3 CH3 Whole cell catalysts Production of O OH H3C CH Racemic 3 2,3-Butanediol R, R)-, meso- 2,3-Butanediol OH Stereoisomers (R, R)-2,3-Butanediol Fermentation Acetoin Carbohydrates; Biodiesel derived glycerol… α-Acetolactate OH

H3C CH3 OH meso-2,3-Butanediol Synthetic metabolic pathways

The biological routes for the production of pure 2,3‐butanediol stereoisomers, including using the methods of whole cell catalysis and the emerging synthetic biology, was reviewed. In contrast to the conventional chemical methods, the biological methods own their great advantages.

Articles

Chin. J. Catal., 2013, 34: 283–293 doi: 10.1016/S1872‐2067(11)60484‐1

Influence of Calcination and Pretreatment Conditions on the Activity of Co3O4 for CO Oxidation YU Yunbo*, ZHAO Jiaojiao, HAN Xue, ZHANG Yan, QIN Xiubo, WANG Baoyi Research Center for Eco‐Environmental Sciences, Chinese Academy of Sciences; Institute of High Energy Physics, Chinese Academy of Sciences

20 100

80 -TPD (%) 2 15

60 10 40 measured by O by measured 2 5 20

Adsorbed O

0 0 conversion CO (h)Durability for 100% o o o Air, 150 C N2, 150 C N2, 200 C Pretreatment conditions

Pretreatment of Co3O4 in N2 at moderate temperatures promotes the formation of oxygen vacancy clusters, favoring the adsorption of oxygen molecules and guaranteeing a long durability for CO oxidation. Chin. J. Catal., 2013, 34: 294–304 doi: 10.1016/S1872‐2067(11)60482‐8 Effects of crystallinity of ZSM‐5 zeolite on para‐selective tert‐butylation of ethylbenzene PUSHPARAJ Hemalatha, MANI Ganesh, MUTHIAHPILLAI Palanichamy, VELAYUTHAM Murugesan, PARK Yong‐Ki, CHOI Won Choon, JANG Hyun Tae* Hanseo University, South Korea; Anna University, India; Korea Research Institute of Chemical Technology, South Korea

A fluoride medium offers defect‐free, highly crystalline ZSM‐5 crystals. High crystallinity confers high para selectivity (> 90%) in tert‐butylation of ethylbenzene. A fluoride medium is better than an alkaline medium for the commercial production of para‐selective ZSM‐5 catalysts.

Chin. J. Catal., 2013, 34: 305–312 doi: 10.1016/S1872‐2067(11)60466‐X

Effect of Ni doping on the catalytic properties of nanostructured peony‐like CeO2 XIAN Cunni, WANG Shaofei, SUN Chunwen, LI Hong*, CHAN Suiwai, CHEN Liquan Institute of Physics, Chinese Academy of Sciences, China; Columbia University, USA

100 Ni-doped PCO CO 80 CO2 Ni-loaded PCO 60

40

20 PCO CO conversion (%) conversion CO Ce Ni O C 0 60 90 120 150 180 210 240 270 300 Ni-doped peony-like CeO2 (PCO) o Temperature ( C)

Oxygen vacancies are generated in bulk ceria after Ni doping, which promotes the reducibility of peony‐like CeO2, and hence enhances the catalytic activity for CO oxidation.

Chin. J. Catal., 2013, 34: 313–321 doi: 10.1016/S1872‐2067(11)60479‐8 Relationship between the structure and activity of ruthenium catalysts in the catalytic ozonation of dimethyl phthalate WANG Jianbing*, WANG Can, YANG Chunli, WANG Guoqing, ZHU Wanpeng China University of Mining and Technology, Beijing Campus; Tsinghua University

80 80

60 60

40

40

o 20 500 C 20 300 W TOC removal (%) TOC removal (%) 0 C AC C C C C l-A ll- t-A t-A l-A l-A 0 hel she nu onu oa oa 0 20406080100 uts ut oco oc C u/C N u/N C u/C R R R Time (min)

H O Ru H O

H O Ru Activated carbon

The surface structure of the activated carbon (AC) support influenced the activity of Ru/AC catalysts in dimethyl phthalate ozonation. Microwave heating during catalyst preparation changed the catalyst activity by a modification of its surface structure.

Chin. J. Catal., 2013, 34: 322–329 doi: 10.1016/S1872‐2067(11)60468‐3

Low temperature CO oxidation on Ni‐promoted CuO‐CeO2 catalysts CHEN Guoxing, LI Qiaoling, WEI Yucai, FANG Weiping, YANG Yiquan* University

The high catalytic activity of Ni‐promoted CuO‐CeO2 is due to the promoter giving increased amounts of Cu+ in the catalyst and the formation of solid solutions of Cu‐O‐Ce and Ni‐O‐Ce.

Chin. J. Catal., 2013, 34: 330–335 doi: 10.1016/S1872‐2067(11)60485‐3

Effects of composite oxide supports on catalytic performance CO + H2 CH4 + H2O of Ni‐based catalysts for CO methanation ZHANG Han, DONG Yunyun, FANG Weiping*, LIAN Yixin* NiO Strong Ni-Al Al2O3 interaction

CO + H2 CH4 + H2O

MOx adding

NiO/MOx‐Al2O3 (M = Mg, Si, Zr) catalysts for CO methanation, prepared using a modified grinding‐mixing method, have higher NiO catalytic activities than that of a conventional NiO/Al2O3 catalyst. Relatively weak This is attributed to the weakening of Ni–Al interactions after Al2O3 Ni-Al interaction adding MOx.

Chin. J. Catal., 2013, 34: 336–340 doi: 10.1016/S1872‐2067(11)60474‐9 Gold supported on nitrogen‐incorporated TS‐1 for gas‐phase epoxidation of propylene LIU Yiwu, ZHANG Xiaoming*, SUO Jishuan Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Neijiang Normal University

A novel gold catalyst was prepared by immobilization of gold nanoparticles on nitrogen‐incorporated TS‐1. This catalyst exhibits an excellent catalytic capacity for gas‐phase epoxidation of propylene using H2 and O2. Nitrogen‐incorporation into TS‐1 improved both gold loading and dispersion, and decreased the acidic sites of the support surface. Chin. J. Catal., 2013, 34: 341–350 doi: 10.1016/S1872‐2067(11)60487‐7

Cu‐doped mesoporous VOx‐TiO2 for catalytic hydroxylation of benzene to phenol XU Dan, JIA Lihua*, GUO Xiangfeng* Qiqihar University

OH

H2-TPR Cu loading

2.5%

1.1%

H O 2 2

Intensity 0.75% Cu VO x 0.36%

0.29% TiO2 0%

100 200 300 400 500 600 700 Temperature (oC)

Incorporation of Cu additives into a VOx/TiO2 catalyst improved the reducibility of VOx species, while Cu helped the monodispersion of VOx species on the TiO2 support surface.

Chin. J. Catal., 2013, 34: 361–366 doi: 10.3724/SP.J.1088.2013.20744 H

Effect of alkali earth mentals on performance of H zirconium‐based perovskite composite oxides supported ruthenium for ammonia synthesis + Ru WANG Ziqing, MA Yuncui, LIN Jianxin, WANG Rong, WEI Kemei N Fuzhou University Ru Ru

Ca/Sr/Ba

BaZrO3 was an excellent support for Ru‐based catalyst for ammonia synthesis compared with CaZrO3 and SrZrO3, which Zr o could significantly inhibit the adsorption of H2 and facilitate the N + 3H 2NH cleavage of N2. 2 2 3

Chin. J. Catal., 2013, 34: 367–372 doi: 10.3724/SP.J.1088.2013.20766 Photocatalytic properties of magnetically separable composite photocatalyst nanospheres prepared by liquid‐phase deposition XU Shihong*, TAN Dongdong, LU Wei, SHI Penghui, BI Defu, MA Chunyan, SHANGGUAN Wenfeng Donghua University; Beijing General Municipal Engineering Design & Research Institute; Shanghai Jiao Tong University

Surfactant AOT

TEOS (NH4)TiF6

NiFe O SiO @NiFe O TiO @SiO @NiFe O 2 4 2 2 4 2 2 2 4 A novel photocatalyst nanosphere TiO2@SiO2@NiFe2O4 was prepared by a reverse micelle method and liquid phase deposition technique. The prepared photocatalyst nanospheres show high photocatalytic activity.

Chin. J. Catal., 2013, 34: 373–378 doi: 10.3724/SP.J.1088.2013.20854 Effect of Cr‐doping on the acidity and pore structure of mesoporous magnesium fluoride NIU Huaicheng, LI Lichun, LI Ying*, GUO Li*, TANG Haodong, HAN Wenfeng, LIU Huazhang Zhejiang University of Technology; Zhejiang Chemical Industry Research Institute Co., Ltd.

CHClF2 CHCl3 + CHF3 HF 100 Cr doped MgF2 80 MgF2 60 Co-precipitation 40 Thermal treatment 20 Mg(NO3)2 Conversion (%) CrF3 0 Cr(NO ) 0 100 200 300 400 3 3 Mesoporous MgF / Cr doped MgF o 2 2 Temperature ( C) The Cr‐doping in mesoporous magnesium fluoride prepared by co‐precipitation increases the acidity and the specific surface area of magnesium fluoride and thus increases the catalytic performance in CHClF2 disproportionation.

Chin. J. Catal., 2013, 34: 379–384 doi: 10.3724/SP.J.1088.2013.20857 Catalytic performance of mesoporous material supported bimetallic carbide Ni‐‐Mo2C/SBA‐16 catalyst for CH4/CO2 reforming to syngas Naomohan, FU Xiaojuan, LEI Yanqiu, SU Haiquan* Inner Mongolia University

The catalyst Ni‐‐Mo2C/SBA‐16 in methane/carbon dioxide reforming reaction, which establishs carbonization‐oxidation circulation, exhibited high catalytic activity and remarkable

anti‐coke effect.

Chin. J. Catal., 2013, 34: 385–390 doi: 10.3724/SP.J.1088.2013.20904 Preparation, characterization, and photocatalytic properties of Pt/BiOCl nanoplates Potential YU Changlin*, CHEN Jianchai, CAO Fangfang, LI Xin, FAN Qizhe, -2 light YU Jimmy C, WEI Longfu -1 hv - - - CB Jiangxi University of Science and Technology; Fuzhou University; + Pt e e e - - (H2/H ) 0 O2 +1 - The Chinese University of Hong Kong ·O2 Pt +2 light E ≈3.47 eV + + hv g +3 Ptn+ +dye OH- BiOCl The presence of Pt nanoparticles could effectively separate the CO + H O + Pt +4 2 2 photo‐generated e–/h+ pairs and result in the plasmon h+ h+ h+ ·OH VB photocatalysis under visible light irradiation.

Chin. J. Catal., 2013, 34: 391–396 doi: 10.3724/SP.J.1088.2013.20959 NO2 Re Catalytic stability of ortho‐chloronitrobenzene ac ti hydrogenation on Ru‐Fe/C catalyst on Cl ion tivat H* CO Deac XU Xiangsheng, CHEN Ao’ang, ZHOU Li, LI Xiaoqing, GU Huizi, 2 YAN Xinhuan* Zhejiang University of Technology CO

NH2 FTS WGSR Cl H2 C2H5OH H O n 2 atio CO accumulation on the active centers of Ru‐based catalyst is the ner ege main reason for its deactivation, while the Fe additive can reduce R the CO amount to a minimum level through WGS and FTS reaction. Ru Fe Active carbon

2013 Chinese Journal of Catalysis Vol. 34 No. 2

DOI: 10.3724/SP.J.1088.2013.20857 研究论文: 379–384

介孔Ni--Mo2C/SBA-16催化剂在CH4/CO2重整制合成气 反应中的催化性能

瑙莫汗a, 付晓娟b, 雷艳秋a, 苏海全a,b,* a内蒙古大学生命科学学院, 内蒙古呼和浩特 010021 b内蒙古大学化学化工学院自治区煤炭化学重点实验室, 内蒙古呼和浩特 010021

摘要: 采用等体积浸渍将双金属活性组分负载到介孔分子筛SBA-16上, 通过热分解制备了负载型催化剂Ni--Mo2C/SBA-16. N2吸附 -脱附、X射线粉末衍射和透射电镜等结果表明, 引入活性组分后, 样品依然保持原有的有序介孔结构, 活性组分高度分散于载体上, 没

有团聚. 在CH4/CO2重整制合成气反应中, Ni--Mo2C/SBA-16催化剂具有较高的CH4和CO2转化率, 以及CO和H2选择性, 有明显的抗 积炭作用. 关键词: 甲烷; 二氧化碳; 重整; 碳化钼; 镍; 介孔分子筛SBA-16; 合成气; 抗积炭

收稿日期: 2012-10-30. 接受日期: 2012-11-23. 出版日期: 2013-02-20. *通讯联系人. 电话/传真: (0471)4992981; 电子信箱: [email protected] 基金来源: 国家自然科学基金 (21061008); 内蒙古自然科学基金 (2010ZD01).

Catalytic performance of mesoporous material supported bimetallic carbide

Ni--Mo2C/SBA-16 catalyst for CH4/CO2 reforming to syngas

Naomohana, FU Xiaojuanb, LEI Yanqiua, SU Haiquana,b,* aCollege of Life Science, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China bInner Mongolia Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China

Abstract: Mesoporous molecular sieve SBA-16 supported bimetallic carbide catalyst Ni--Mo2C/SBA-16 was prepared using the impregna- tion and thermal decomposition method. N2 adsorption-desorption isotherms, powder X-ray diffraction, and transmission electron microsco- py measurements show that the active components were uniformly dispersed on the support, and the catalyst still remained ordered mesopo- rous structure of SBA-16. Catalytic performance measurements show that the catalyst exhibited higher conversion rate of CH4, CO2, and selectivity of CO, H2, and remarkable anti-coke effect. Key words: methane; carbon dioxide; reforming; molybdenum carbide; nickel; mesoporous molecular sieve SBA-16; syngas; anti-coke

Received 30 October 2012. Accepted 23 November 2012. Published 20 February 2013. * Corresponding author. Tel./Fax: +86-471-4992981; E-mail: [email protected] This work was supported by the National Natural Science Foundation of China (21061008) and the Inner Mongolia Natural Science Foun- dation (2010ZD01).

污染的日趋严重, 寻找绿色、清洁的合成气生产工艺已 1. 前言 迫在眉睫. 作为生物质能的沼气主要成分为CH4和

合成气主要组分为CO和H2, 它可用于合成氨以 CO2, 是由作物秸秆、畜禽粪便和农产品加工副产物等 及小分子碳氢化合物、醇、酸等化学品和液体燃料, 在 农业废弃物发酵而得. 我国是世界上最大的农业生产 化学工业中具有极为重要的地位. 常规合成气主要来 国, 每年要产生大量的农业废弃物. 到“十一五”末, 我 自于煤和天然气, 但随着化石资源的日益枯竭和环境 国沼气年产量已达130多亿m3; 预计到2020年, 沼气年 380 催 化 学 报 Chin. J. Catal., 2013, 34: 379–384

3 利用量将达440亿m . 有效利用丰富的沼气资源, 将其 Ni(NO3)2·6H2O (AR, 天津市大茂化学试剂厂)和六次

催化重整(CH4+CO2→2CO+2H2)制取合成气, 生产多 甲基四胺(HMTA, AR, 国药集团化学试剂有限公司)溶 种高附加值的化工产品, 既可以废物利用, 也可以减少 解于15%的氨水中制成溶液, 再分别加入载体SBA-16, [1,2] o 温室气体CO2和CH4的排放 . 这对于农作物秸秆等 SiO2和γ-Al2O3, 室温晾干, 于80 C真空干燥3 h, 放入管 生物质能源的开发利用和温室气体的减排都具有重要 式加热炉, 在Ar气氛中以7 oC/min从室温升至700 oC,

意义, 同时也可以适当地改变合成气依靠化石资源的 保持2 h后冷却至室温, 通入含1% O2-99% N2混合气

局面, 带来环境与经济的双重效益. 体, 钝化2 h后取出备用. 催化剂中Mo2C担载量为9%,

对CH4/CO2重整而言, 贵金属催化剂Pt, Ru, Rh等 Ni/Mo摩尔比为1/8. 具有良好的活性及稳定性, 但由于其来源有限, 价格昂 2.2. 催化剂的表征 贵而难以实现工业化[3,4]; 而过渡金属Ni的成本低廉、 催化剂的比表面积和孔径分布在美国 [5] [6~8] 催化活性高, 但积炭问题严重 . 研究表明 , 价格低 Micromeritics公司的ASAP 2020型物理吸附仪上测定,

廉, 且与Pt族贵金属有相似性能的碳化钼在CH4重整 用BET公式计算样品的比表面积, 用BJH公式计算样 反应中不仅具有很好的催化性能, 也有一定的抗硫中 品的孔径分布. XRD 测试在德国布鲁克D8

毒性能, 并且在反应过程中不产生积炭. Masatoshi课 ADVANCE 型X射线衍射仪上进行, Cu靶, Kα射线, 管 题组[9,10]发现未负载的碳化钼在700 oC, 101.3 kPa压力 电压40 kV, 管电流40 mA. 采用Tecnai G2 F20 S-TWIN [11] 下具有较高的H2选择性; 程金民等 研究了不同碳化 型高分辨TEM观察样品形貌, 电压200 kV. TGA分析 温度下制备的碳化钼对催化活性的影响, 认为在较高 使用德国耐驰STA 409PC DSC/TGA/DTA 型综合热分 的碳化终温下, 催化剂表面具有适量的自由碳时催化 析仪, 在空气气氛中以 10 oC/min 由室温升至 1000 oC. 活性好. 目前, 研究主要集中在非负载型碳化钼催化 2.3. 催化剂的评价 剂, 对负载型催化剂的研究甚少. 因此, 为了考察负载 催化剂的评价在天津先权公司的WFSM-3060型

型双金属催化剂对CH4和CO2重整反应的影响, 本文将 催化剂评价装置上进行, 采用内径8.7 mm的不锈钢管 [14] 具有高活性的Ni和具有抗积炭性能的-Mo2C相结合, 反应器 . 催化剂用量500 mg, 粒径40~60目. 反应前, o 负载到具有三维均匀孔道、高水热稳定性和高比表面 在650 C下用10% H2-90% Ar混合气还原1 h. 反应在 [12] 积的SBA-16介孔分子筛 上, 通过N2吸附-脱附、X- 常压下进行, 反应气是体积比为1:1 的CH4和CO2混合 射线衍射(XRD)、透射电镜(TEM)、热重(TGA) 等测试 气 , 反应温度750 oC, 其对应的气体空速为4000

对催化剂进行表征, 同时与SiO2 和 -Al2O3 负载的 ml/(g·h). 反应产物用SP 6890型色谱仪进行在线分析,

Ni--Mo2C催化剂进行比较, 考察Ni--Mo2C/SBA-16 色谱柱为TDX-01型填充柱.

催化剂上CH4/CO2重整反应的性能. 3. 结果与讨论 2. 实验部分 3.1. 催化剂的孔结构特征 2.1. 催化剂的制备 表1为各载体及其催化剂的织构性质. 由表可见, 参照文献[13]制备介孔分子筛 SBA-16. 在 35 oC 活性组分的负载使得相应样品比表面积和孔容有所下

下将0.8 g 三嵌段共聚物P123(EO20PO70EO20) (AR, 降, 而孔径略有增加. 这是由于活性组分堵塞了载体

Aldrich 公司)和1.3 g F127 (EO106PO70EO106, AR, Sig- 的部分孔道所致. ma 公司)的混合模板剂溶解在含22 ml浓盐酸的溶液 图1为各催化剂的N2吸附-脱附等温线和孔径分布

中, 加入13 ml正硅酸乙酯(TEOS) (AR, 国药集团化学 曲线. 由图可见, Ni--Mo2C/SiO2 和 Ni--Mo2C/

试剂有限公司), 连续搅拌1 h; 将上述溶液转移至带聚 -Al2O3样品的N2吸附-脱附等温线与IV型比较接近, 四氟乙烯衬底的不锈钢釜中, 于35 oC静置24 h, 100 oC 并带有H1型迟滞环, 表明样品具有两端开口的孔径分 o o 静置24 h, 冷却后过滤并洗涤, 于80 C烘干, 550 C焙 布均匀的圆筒状介孔结构; 而Ni--Mo2C/SBA-16催化

烧6 h去除模板剂, 即得SBA-16载体. 剂与SBA-16载体一样, 具有H2型迟滞环的IV型N2-吸 采用等体积浸渍法制备催化剂. 将 脱附等温线, 为三维笼状的孔道结构, 且分子筛孔口尺 [15] (NH4)6Mo7O24·4H2O (AR, 天津市化学试剂四厂), 寸比“笼”的小 . 还可以看出, Ni--Mo2C/SBA-16 www.chxb.cn 瑙莫汗 等: 介孔 Ni--Mo2C/SBA-16 催化剂在 CH4/CO2 重整制合成气反应中的催化性能 381

表1 各载体和催化剂的织构性质 (a) Ni--Mo2C/-Al2O3 Table 1 Textural properties of the carriers and catalysts 400 Ni--Mo2C/SiO2 Specific surface Pore volume Average pore Ni--Mo2C/SBA-16

Catalyst STP/g) area (m2/g) (cm3/g) diameter (nm) 3 300

-Al2O3 244.6 0.84 9.24 SiO2 395.4 0.85 6.38 200 SBA-16 659.6 0.55 3.28

Ni--Mo2C/-Al2O3 179.3 0.68 10.89 100 Ni--Mo2C/SiO2 299.0 0.64 6.47  Ni- -Mo2C/SBA-16 267.9 0.41 4.73 Amount adsorbed ( cm 0 0.0 0.2 0.4 0.6 0.8 1.0 催化剂的孔径集中在3.4和 4.7 nm. 这是由于介孔 Relative pressure (p/p0 ) SBA-16 的孔径相对较小, 在负载活性组分的过程中部 (b) 0.020 Ni--Mo2C/-Al2O3 [16,17] 分孔道被填充堵塞, 从而出现多种孔道现象 . Ni--Mo2C/SiO2 Ni--Mo2C/SBA-16 /g)

3.2. XRD结果 3 0.015 各催化剂的XRD谱示于图2. 由图2(a) 可以看出, 0.010 o Ni--Mo2C/SBA-16催化剂在2θ = 0.84 处出现了归属 于SBA-16的介孔立方体心Im3m结构的(110)晶面特征 0.005 衍射峰, 与载体(2θ = 0.82o)相比, 其介孔的有序性有所 Pore volume(cm 0.000 降低, 并且在(110), (200)和(211)晶面衍射峰有些偏移 和减弱, 但是催化剂依然保持高度有序的介孔结构, 说 5 1015202530 明引入活性组分对载体结构没有明显影响. 使用后的 Pore size (nm) o 图1 催化剂的N2吸附-脱附曲线和孔分布曲线 Ni--Mo2C/SBA-16催化剂在2θ = 0.86 处仍出现特征 Fig. 1. N2 adsorption-desorption isotherms (a) and pore size distribu- 衍射峰, 但其强度明显减弱, 说明反应后催化剂的介孔 tion curves (b) of the catalysts. 有序度降低. 这是由于反应过程中持续高温水热环境

水侵蚀催化剂, 以及活性组分烧结和团聚等因素所致. 出平均粒径顺序是Ni--Mo2C/-Al2O3

由图2(b) 可以看出, 三种催化剂中均出现了 SiO2

    (a)  Mo2C NiO (c) MoO2 -Mo2C (b)    SiO2 -Al2O3  C -Al2O3  MoNi (110)              Ni- -Mo2C/ -Al2O3 after reaction  (200)

(211) Ni--Mo2C/SBA-16

SBA-16

 Intensity      Ni- -Mo2C/SBA-16 before reaction    Ni--Mo2C/SiO2     Ni- -Mo2C/SiO2 after reaction    Ni- -Mo2C/SBA-16 after reaction Ni- -Mo2C/-Al2O3 Ni- -Mo2C/SBA-16 after reaction 2420 40 60 80 20 40 60 80 o 2/( o ) 2/( o ) 2/( )

图2 反应前后Ni--Mo2C/SBA-16催化剂的小角XRD及反应前后各催化剂的广角XRD谱

Fig. 2. Small angle XRD patterns of catalyst Ni--Mo2C/SBA-16 before and after reaction (a) and wide angle XRD patterns of the catalysts before (b) and after reaction (c). 382 催 化 学 报 Chin. J. Catal., 2013, 34: 379–384

性组分-Mo2C 和 Ni 之间的相互作用较强, 形成了 3.3. TEM结果

MoNi相. 在Ni--Mo2C/-Al2O3中出现 NiO 的衍射峰 图 3 是各催化剂的TEM 照片. 由图可见, o [21] (2θ = 41.9 ) , 说明载体-Al2O3与Ni物种之间的相互 Ni--Mo2C/SBA-16催化剂与载体SBA-16有类似的高 [22,23] 作用较弱, 生成NiO相 . 而Ni--Mo2C/SiO2催化剂 度有序的介孔结构, 并且活性组分的引入没有破坏载 中存在MoNi相和NiO相, 说明在该催化剂中活性组分 体的有序结构, 与上文结果一致. 另外, 各催化剂活性 之间存在相互作用, 同时载体与活性组分之间有弱的 组分颗粒粒径均在5 nm左右, 在载体上分散较均匀.

相互作用. 图 3(e)为反应后Ni--Mo2C/SBA-16催化剂TEM照片. 图2(c)为反应后各催化剂的XRD谱. 由图可知, 可知反应后催化剂的活性组分颗粒相互团聚, 粒径都 反应后催化剂均在2θ = 25.9o, 36.9o, 53.3o, 60.4o处出现 在10 nm左右, 说明反应过程中活性颗粒存在烧结和团

MoO2 的特征衍射峰(JCPDS 65-1273). 其中 聚现象, 从而降低了催化剂的介孔有序度, 与XRD结

Ni--Mo2C/-Al2O3和Ni--Mo2C/SiO2催化剂还在2θ = 果一致. 26.6o处产生了无定形C的衍射峰, 说明这两种催化剂 3.4. 催化性能评价

在反应过程中产生了积炭. 这与 TGA 结果一致: 图 4 为不同载体负载的Ni--Mo2C 催化剂上

Ni--Mo2C/-Al2O3和Ni--Mo2C/SiO2催化剂的积炭量 CH4/CO2重整反应的CH4和CO2转化率、以及CO和H2

分别为2%和0.5%, 而在Ni--Mo2C/SBA-16催化剂上 选择性随时间的变化曲线. 可以看出, 随着反应时间

几乎没有积炭. 另外, Ni--Mo2C/SBA-16催化剂不仅 的延长, Ni--Mo2C/SiO2 和Ni--Mo2C/-Al2O3 催化剂

没有C衍射峰, 而且依然存在-Mo2C特征衍射峰, 说明 上 CH4 转化率均变化不大, 都在25% 左右; 而

该催化剂在反应中不产生积炭, 有明显的抗积炭性能. Ni--Mo2C/SBA-16催化剂上CH4转化率由最初反应时 的22%逐渐增加到反应14 h 时的87%, 随后降低到 表2 催化剂的颗粒大小和分散度 20%. 对于CO2转化率, Ni--Mo2C/SiO2和Ni--Mo2C/ Table 2 Particle size and dispersion degree of the catalysts -Al2O3催化剂随着反应时间的增加由最初的30%缓慢 Particle size (-Mo2C) Dispersion degree Catalyst 减少到21%; 而Ni--Mo C/SBA-16催化剂在反应14 h (nm) (%) 2 时达到最高值 后 逐渐减少到 对于 和 Ni--Mo2C/-Al2O3 15.4 6.2 89% , 27%. CO H2 Ni--Mo C/SiO 19.3 4.9 2 2 选择性, Ni--Mo2C/SBA-16反应14 h时分别达到最高, Ni--Mo2C/SBA-16 21.7 4.4 为 39% 和 34%; 而 Ni--Mo2C/SiO2 和 Ni--Mo2C/

(a) (b) (c)

(d) (e)

图3 不同催化剂的TEM照片

Fig. 3. TEM images of catalysts Ni--Mo2C/SBA-16 (a,b), Ni--Mo2C/SiO2 (c), Ni--Mo2C/-Al2O3 (d), and Ni--Mo2C/SBA-16 after reaction (e). www.chxb.cn 瑙莫汗 等: 介孔 Ni--Mo2C/SBA-16 催化剂在 CH4/CO2 重整制合成气反应中的催化性能 383

100 100 100 100 Ni--Mo2C/-Al2O3

Ni--Mo2C/SiO2 80 80 80 80 Ni--Mo2C/SBA-16

(a) (b) (c) 60 (d) 60 60 60

40

conversion (%) selectivity (%) 4 conversion (%) conversion 2 2 40

40 40 H CH CO selectivity (%)

CO 20

20 20 20 0 01020010200102001020 Time (h) Time (h) Time (h) Time (h)

图4 催化剂上CH4转化率、CO2转化率、CO选择性和H2选择性随进料时间的变化

Fig. 4. Changes of CH4 conversion (a), CO2 conversion (b), CO selectivity (c), and H2 selectivity (d) with time on stream over the catalysts.

-Al2O3催化剂均随时间的增加而逐渐减少, CO 选择 构有关, 它可以促进CH4和CO2的扩散和解离; 其次,

性均由反应初的31%左右降到了20%, H2选择性均在 Ni--Mo2C/SBA-16催化剂中的Ni与-Mo2C之间存在 [29] 10%左右. 由此可见, Ni--Mo2C/SBA-16催化剂上CH4 协同作用, 促进反应的进行 . 而在Ni--Mo2C/SiO2

和CO2的转化率, 以及CO和H2的选择性均最高, 且在 和Ni--Mo2C/-Al2O3催化剂中因CH4解离速度较快,

反应14 h时达最高值. 因此, 对Ni--Mo2C/SBA-16催 形成的表面C覆盖了活性位点, 阻碍活性组分与反应 化剂而言, 存在较长的诱导期, 说明在反应过程中 物接触, 导致催化剂失活.

SBA-16载体的三维笼状结构有利于CH4和CO2的扩散 4. 结论 和解离. 对于CH4/CO2重整而言, 存在的主要问题就是 催化剂因烧结、积炭以及水的侵蚀等原因导致失活. 以具有三维笼状立体结构的介孔分子筛SBA-16

结合上文可推测, Ni--Mo2C/SBA-16催化活性的迅速 为载体, 制备了Ni--Mo2C/SBA-16双金属负载型催化 降低与高反应活性时易导致活性组分出现烧结和团聚 剂. 结果表明, 引入活性组分的催化剂依然保持了 以及部分介孔结构在水的侵蚀下遭到破坏有关. SBA-16的有序介孔结构, 同时活性组分在载体上具有

Ni--Mo2C/SiO2和Ni--Mo2C/-Al2O3催化剂具有较好 较高的分散度, 没有团聚. 与 Ni--Mo2C/SiO2 及

稳定性, 与它们有介孔结构和较高比表面积, 有利于活 Ni--Mo2C/-Al2O3催化剂相比, Ni--Mo2C/SBA-16催 [24,25] 性组分的分散, 从而延缓活性组分颗粒烧结有关 ; 化剂在CH4/CO2重整制合成气反应中具有明显的抗积

而这两种催化剂活性较低则与它们在反应中易产生积 炭作用, 且CH4和CO2的转化率, 以及CO和H2的选择性 [26] 炭而导致失活有关 . Ni--Mo2C/SBA-16 催化剂上 均更高, 说明SBA-16载体的三维笼状结构有利于CH4

CO 的选择性要高于H2的选择性. 这是由于在重整反 和CO2的扩散和解离. 应条件下还存在水汽变换逆反应 (CO+H2O ↔ 参 考 文 献 H +CO )所致[27]. 2 2 1 Chen Y L, Gao J X, Li Y H. China Environ Sci (陈雅琳, 高吉 在碳化钼催化 重整反应中 该碳化 氧化 CH4/CO2 , - 喜, 李咏红. 中国环境科学), 2010, 30: 1425 [28] 反应循环可认为 : 在催化剂上CO2解离生成O, 它与 2 Zhao J N, Zhang G L, Yang D L. J Agro-Environ Sci (赵建宁, 碳化钼表面的C进行反应从而形成空位; 而这个空位 张贵龙, 杨殿林. 农业环境科学学报), 2011, 30: 812 3 Yamaguchi A, Iglesia E. J Catal, 2010, 274: 52 可以由CH4解离生成的碳所填补以重整生成碳化钼, 4 Ma C H, Li H Y, Lin G D, Zhang H B. Appl Catal B, 2010, 或由氧填补而生成MoO . 反应后Ni--Mo C/SBA-16 2 2 100: 245 催化剂的XRD结果表明, 催化剂中不仅有MoO2, 也有 5 Huang J, Ma R X, Gao Zh H, Shen Ch F, Huang W. Chin J 黄健 马人熊 高志华 沈朝峰 黄伟 催化学报 -Mo2C, 说明反应中CO2 解离生成O与-Mo2C形成 Catal ( , , , , . ), 2012, 33: 637 MoO2, 而生成的MoO2 被 CH4 解离的C 所碳化形成 6 Claridge J B, York A P E, Brungs A J, Marquez-Alvarez C,  从而建立碳化 氧化循环 促进催化反应继续 -Mo2C, - , Sloan J, Tsang S C, Green M L H. J Catal, 1998, 180: 85 进行. 该现象的出现首先与SBA-16载体的三维笼状结 7 Pritchard M L, McCauley R L, Gallaher B N, Thomson W J. 384 催 化 学 报 Chin. J. Catal., 2013, 34: 379–384

Appl Catal A, 2004, 275: 213 18 Liang C H, Ma W P, Feng Z C, Li C. Carbon, 2003, 41: 1833 8 Lamont D C, Thomson W J. Chem Eng Sci, 2005, 60: 3553 19 Zhao L H, Fang K G, Jiang D, Li D B, Sun Y H. Catal Today, 9 Katsuhiko O, Masatoshi N, Shinzo O. J Phys Chem B, 2001, 2010, 158: 490 105: 9124 20 Stux A M, Laberty-Robert C, Swider-Lyons K E. J Solid State 10 Taro H, Yasushi O, Masatoshi N. Chin J Catal, 2011, 32: 771 Chem, 2008, 181: 2741 11 Cheng J M, Huang W, Zuo Zh J. Chem J Chin Univ (程金民, 21 Yao S D, Gu L J, Sun C Y, Li J, Shen W J. Ind Eng Chem Res, 黄伟, 左志军. 高等学校化学学报), 2010, 31: 130 2009, 48: 713 12 Sun H, Tang Q H, Du Y, Liu X B, Chen Y, Yang Y H. J Colloid 22 Ahmed S A A, Anis H F, Ahmed E A. Chin J Catal, 2011, 32: Interf Sci, 2009, 333: 317 1604 13 Lee J S, Joo S H, Ryoo R. J Am Chem Soc, 2002, 124: 1156 23 Huang T, Huang W, Huang J, Ji P. Fuel Process Technol, 2011, 14 Zeng Sh H, Zhang L, Zhang X H, Pan H, Zhuang M, Su H Q. 92: 1868 J Nat Gas J Chem Soc Rare Earth (曾尚红, 张蕾, 张晓红, 潘慧, 庄明, 24 Huang J, Ma R X, Huang T, Zhang A R, Huang W. Chem, 2011, 20: 465 苏海全. 中国稀土学报), 2011, 29: 422 25 Hadian N, Rezaei M, Mosayebi Z, Meshkani F. J Nat Gas 15 Lü E J, Zhang H K, Yang Y N, Ren J. J Mol Catal (China) (吕 Chem, 2012, 21: 200 恩静 张怀科 杨永宁 任杰 分子催化 , , , . ), 2012, 26: 333 26 Hou Z Y, Gao J, Guo J Z, Liang D, Lou H, Zheng X M. J 16 Zhao M, Wang H R, Chen Sh H, Yao Y L, Gong M Ch, Chen Catal, 2007, 250: 331 Y Q. Chin J Catal (赵明, 王海蓉, 陈山虎, 姚艳玲, 龚茂初, 27 Liu P, Rodriguze J A. J Phys Chem B, 2006, 110: 19418 陈耀强. 催化学报), 2010, 31: 429 28 Naito S, Tsuji M, Sakamoto Y, Miyao T. Stud Surf Sci Catal, 17 Zhang R B, Liang L, Zeng X R, Shang J Y, Wang T, Cai J X. 2000, 143: 415 Acta Phys-Chim Sin (张荣斌, 梁蕾, 曾宪荣, 商金艳, 汪涛, 29 Shi C, Zhang A J, Li X S, Zhang S H, Zhu A M, Ma Y F, Au C. 蔡建信. 物理化学学报), 2012, 28: 1951 Appl Catal A, 2012, 431-432: 164

Graphical Abstract Chin. J. Catal., 2013, 34: 379–384 doi: 10.3724/SP.J.1088.2013.20857 Catalytic performance of mesoporous material supported bimetallic carbide Ni‐‐Mo2C/SBA‐16 catalyst for CH4/CO2 reforming to syngas Naomohan, FU Xiaojuan, LEI Yanqiu, SU Haiquan* Inner Mongolia University

The catalyst Ni‐‐Mo2C/SBA‐16 in methane/carbon dioxide reforming reaction, which establishs carbonization‐oxidation circulation, exhibited high catalytic activity and remarkable anti‐coke effect.