Complex Hadamard Matrices and Applications Teo Banica

Total Page:16

File Type:pdf, Size:1020Kb

Complex Hadamard Matrices and Applications Teo Banica Complex Hadamard matrices and applications Teo Banica To cite this version: Teo Banica. Complex Hadamard matrices and applications. 2021. hal-02317067v2 HAL Id: hal-02317067 https://hal.archives-ouvertes.fr/hal-02317067v2 Preprint submitted on 27 Jul 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. COMPLEX HADAMARD MATRICES AND APPLICATIONS TEO BANICA Abstract. A complex Hadamard matrix is a square matrix H 2 MN (C) whose entries are on the unit circle, jHijj = 1, and whose rows and pairwise orthogonal. The main ij 2πi=N example is the Fourier matrix, FN = (w ) with w = e . We discuss here the basic theory of such matrices, with emphasis on geometric and analytic aspects. Contents Introduction2 1. Hadamard matrices 7 2. Analytic aspects 25 3. Norm maximizers 43 4. Partial matrices 61 5. Complex matrices 79 6. Roots of unity 97 7. Geometry, defect 115 8. Special matrices 133 9. Circulant matrices 151 10. Bistochastic form 169 11. Glow computations 187 12. Local estimates 205 13. Quantum groups 223 14. Hadamard models 241 15. Generalizations 259 16. Fourier models 277 References 295 2010 Mathematics Subject Classification. 15B10. Key words and phrases. Hadamard matrix, Fourier matrix. 1 2 TEO BANICA Introduction A complex Hadamard matrix is a square matrix H 2 MN (C) whose entries are the unit circle, jHijj = 1, and whose rows are pairwise orthogonal with respect to the usual scalar product of CN . These matrices appear in connection with many questions, the basic example being the Fourier matrix, which is as follows, with w = e2πi=N : ij FN = (w )ij In standard matrix form, and with the standard discrete Fourier analysis convention that the indices vary as i; j = 0; 1;:::;N − 1, this matrix is as follows: 01 1 1 ::: 1 1 B1 w w2 : : : wN−1 C B C B1 w2 w4 : : : w2(N−1)C FN = B C B. C @. A 1 wN−1 w2(N−1) : : : w(N−1)2 Observe that this matrix is indeed Hadamard, with the orthogonality formulae between rows coming from the fact that the barycenter of any centered regular polygon is 0. This matrix is the matrix of the discrete Fourier transform over ZN , and the arbitrary complex Hadamard matrices can be thought of as being \generalized Fourier matrices". As an illustration, the complex Hadamard matrices cover in fact all the classical discrete Fourier transforms. Consider indeed the Fourier coupling of an arbitrary finite abelian group G, regarded via the isomorphism G ' Gb as a square matrix, FG 2 MG(C): F =< i; j > G i2G;j2Gb For the cyclic group G = ZN we obtain in this way the above matrix FN . In gen- eral, we can write G = ZN1 × ::: × ZNk , and modulo some standard identifications, the corresponding Fourier matrix decomposes then over components, as follows: FG = FN1 ⊗ ::: ⊗ FNk Now since the tensor product of complex Hadamard matrices is Hadamard, we conclude that this generalized Fourier matrix FG is a complex Hadamard matrix. The above generalization is particularly interesting when taking as input the groups n G = Z2 . Indeed, for such groups the corresponding Fourier matrices are real. As a first example here, at n = 1 we obtain the Fourier matrix F2, which is as follows: 1 1 F = 2 1 −1 HADAMARD MATRICES 3 This matrix is also denoted W2, and called first Walsh matrix. At n = 2 now, we obtain the second Walsh matrix, W4 = W2 ⊗ W2, which is given by: 01 1 1 1 1 B1 −1 1 −1C W4 = B C @1 1 −1 −1A 1 −1 −1 1 ⊗n In general, we obtain in this way the tensor powers W2n = F2 of the Fourier matrix n F2, having size N = 2 , called Walsh matrices, and having many applications. The world of the real Hadamard matrices, H 2 MN (±1), is quite fascinating, hav- ing deep ties with combinatorics, coding, and design theory. Due to the orthogonality conditions between the first 3 rows, the size of such a matrix must satisfy: N 2 f2g [ 4N The celebrated Hadamard Conjecture (HC), which is more than 100 years old, and is one of the most beautiful problems in combinatorics, and mathematics in general, states that real Hadamard matrices should exist at any N 2 4N. Famous as well is the Circulant Hadamard Conjecture (CHC), which is more than 50 years old, stating that the following \conjugate" of the above matrix W4, and its other conjugates, are the unique circulant real Hadamard matrices, and this regardless of the value of N 2 N: 0−1 1 1 1 1 B 1 −1 1 1 C K4 = B C @ 1 1 −1 1 A 1 1 1 −1 There are many other interesting questions regarding the real Hadamard matrices, mostly of algebraic nature, but with some subtle analytic aspects as well. Getting back now to the general complex case, H 2 MN (T), the situation here is quite different. We know that at any N 2 N we have the Fourier matrix FN , so the HC dissapears. The CHC dissapears in fact as well, because the Fourier matrix FN can be put in circulant form, up to some simple operations on the rows and columns. As an 2πi=3 example, consider the Fourier matrix F3, which is as follows, with w = e : 01 1 1 1 2 F3 = @1 w w A 1 w2 w By doing some suitable manipulations on the rows and columns, namely permuting them, or multiplying them by numbers w 2 T, which are operations which preserve the 4 TEO BANICA class of complex Hadamard matrices, we can put F3 in circulant form, as follows: 0w 1 11 0 F3 = @1 w 1A 1 1 w The situation at general N 2 N is similar, and as a conclusion, both the HC and CHC dissapear, in the general complex setting H 2 MN (T). It is possible however to recover these conjectures, in a more complicated form, by looking at the Hadamard matrices H 2 MN (Zs) having as entries roots of unity of a given order s 2 N. In the purely complex case, where H 2 MN (T) is allowed to have non-roots of unity as entries, the whole subject rather belongs to geometry. Indeed, for a matrix H 2 MN p(T), the orthogonality condition between the rows tells us that the rescaled matrix U = H= N must be unitary. Thus, the N × N complex Hadamard matrices form a real algebraic manifold, appearing as an intersection of smooth manifolds, as follows: p XN = MN (T) \ NUN This intersection is far from being smooth, and generally speaking, the study of the complex Hadamard matrices belongs to real algebraic geometry, and more specifically to a real algebraic geometry of rather arithmetic type, related to Fourier analysis. As an illustration for the various phenomena that might appear, let us briefly discuss now the classification of the complex Hadamard matrices, at small values of N 2 N. At N = 2; 3 the situation is elementary, with F2;F3 being the unique matrices, up to equivalence. At N = 4 now, the solutions are the affine deformations of the Walsh matrix W4, depending on complex number of modulus one q 2 T, as follows: 01 1 1 1 1 q B1 −1 1 −1C W = B C 4 @1 q −1 −qA 1 −q −1 q At N = 5 now, the situation becomes quite complicated, but Haagerup was able to prove in [69] that, up to equivalence as usual, the unique complex Hadamard matrix is 2πi=5 the Fourier matrix F5, which is as follows, with w = e : 01 1 1 1 1 1 B1 w w2 w3 w4C B 2 4 3C F5 = B1 w w w w C B 3 4 2C @1 w w w w A 1 w4 w3 w2 w At N = 6 the complex Hadamard matrices are not classified yet, but there are many known interesting examples. First, since 6 = 2 × 3 is a composite number, the Fourier HADAMARD MATRICES 5 matrix F6 admits certain affine deformations, which are well understood. Next, we have the following matrix from [69], depending on a parameter on the unit circle, q 2 T: 01 1 1 1 1 1 1 B1 −1 i i −i −iC B C q B1 i −1 −i q −qC H6 = B C B1 i −i −1 −q q C @1 −i q¯ −q¯ i −1A 1 −i −q¯ q¯ −1 i We have as well the following matrix discovered and used by Tao in [131], with w = e2πi=3, which has the property of being \isolated", in an appropriate sense: 01 1 1 1 1 1 1 2 2 B1 1 w w w w C B 2 2 C B1 w 1 w w w C T6 = B 2 2C B1 w w 1 w w C @1 w2 w2 w 1 w A 1 w2 w w2 w 1 As explained in [17], up to the Hadamard equivalence relation, the above-mentioned matrices are the only ones at N = 6, whose combinatorics is based on the roots of unity. Finally, at N = 7, even the matrices whose combinatorics is based on the roots of unity are not classified yet.
Recommended publications
  • Chapter 7 Block Designs
    Chapter 7 Block Designs One simile that solitary shines In the dry desert of a thousand lines. Epilogue to the Satires, ALEXANDER POPE The collection of all subsets of cardinality k of a set with v elements (k < v) has the ³ ´ v¡t property that any subset of t elements, with 0 · t · k, is contained in precisely k¡t subsets of size k. The subsets of size k provide therefore a nice covering for the subsets of a lesser cardinality. Observe that the number of subsets of size k that contain a subset of size t depends only on v; k; and t and not on the specific subset of size t in question. This is the essential defining feature of the structures that we wish to study. The example we just described inspires general interest in producing similar coverings ³ ´ v without using all the k subsets of size k but rather as small a number of them as possi- 1 2 CHAPTER 7. BLOCK DESIGNS ble. The coverings that result are often elegant geometrical configurations, of which the projective and affine planes are examples. These latter configurations form nice coverings only for the subsets of cardinality 2, that is, any two elements are in the same number of these special subsets of size k which we call blocks (or, in certain instances, lines). A collection of subsets of cardinality k, called blocks, with the property that every subset of size t (t · k) is contained in the same number (say ¸) of blocks is called a t-design. We supply the reader with constructions for t-designs with t as high as 5.
    [Show full text]
  • A Finiteness Result for Circulant Core Complex Hadamard Matrices
    A FINITENESS RESULT FOR CIRCULANT CORE COMPLEX HADAMARD MATRICES REMUS NICOARA AND CHASE WORLEY UNIVERSITY OF TENNESSEE, KNOXVILLE Abstract. We show that for every prime number p there exist finitely many circulant core complex Hadamard matrices of size p ` 1. The proof uses a 'derivative at infinity' argument to reduce the problem to Tao's uncertainty principle for cyclic groups of prime order (see [Tao]). 1. Introduction A complex Hadamard matrix is a matrix H P MnpCq having all entries of absolute value 1 and all rows ?1 mutually orthogonal. Equivalently, n H is a unitary matrix with all entries of the same absolute value. For ij 2πi{n example, the Fourier matrix Fn “ p! q1¤i;j¤n, ! “ e , is a Hadamard matrix. In the recent years, complex Hadamard matrices have found applications in various topics of mathematics and physics, such as quantum information theory, error correcting codes, cyclic n-roots, spectral sets and Fuglede's conjecture. A general classification of real or complex Hadamard matrices is not available. A catalogue of most known complex Hadamard matrices can be found in [TaZy]. The complete classification is known for n ¤ 5 ([Ha1]) and for self-adjoint matrices of order 6 ([BeN]). Hadamard matrices arise in operator algebras as construction data for hyperfinite subfactors. A unitary ?1 matrix U is of the form n H, H Hadamard matrix, if and only if the algebra of n ˆ n diagonal matrices Dn ˚ is orthogonal onto UDnU , with respect to the inner product given by the trace on MnpCq. Equivalently, the square of inclusions: Dn Ă MnpCq CpHq “ ¨ YY ; τ˛ ˚ ˚ ‹ ˚ C Ă UDnU ‹ ˚ ‹ ˝ ‚ is a commuting square, in the sense of [Po1],[Po2], [JS].
    [Show full text]
  • Binary Polynomial Transforms for Nonlinear Signal Processing
    BINARY POLYNOMIAL TRANSFORMS FOR NONLINEAR SIGNAL PROCESSING Jaakko Astola, Karen Egiazarian, Rugen oktern SOS Agaian Signal Processing Laboratory Electrical Engineering Department Tampere University of Technology University of Texas at San Antonio Tampere, FINLAND San Antonio, Texas, USA ABSTRACT ing computers or systems suitable for simultaneous arith- metical or logical operations. In this paper we introduce parametric binary Rademacher functions of two types. Based on them using different kinds 2. BINARY POLYNOMIAL FUNCTIONS AND of arithmetical and logical operations we generate a set of MATRICES binary polynomial transforms (BPT). Some applications of BPT in nonlinear filtering and in compression of binary 2.1. Rademacher Functions and Matrices images are presented. Let a and b be arbitrary integers. We form the classes r,(t,a, b) and s,(t,a, b) of real periodic functions in the 1. INTRODUCTION following way. Let Spectral analysis is a powerful tool in communication, sig- ro(t.a,b) E so(t,a, b) E 1, (1) nal/ image processing and applied mathematics and there are many reasons behind the usefulness of spectral analysis. First, in many applications it is convenient to transform a a, fortEU~~ol[$,fk++i), problem into another, easier problem; the spectral domain rn+l (t, a, b) = is essentially a steady-state viewpoint; this not only gives b, for t E U~~ol[ $t + 5&l *).2 insight for analysis but also for design. Second, and more (2) important: the spectral approach allows us to treat entire and classes of signals which have similar properties in the spec- tral domain; it has excellent properties such as fast algo- a: for t E LO,&I, n = 0, 1,2, .
    [Show full text]
  • Hadamard Equiangular Tight Frames
    Air Force Institute of Technology AFIT Scholar Faculty Publications 8-8-2019 Hadamard Equiangular Tight Frames Matthew C. Fickus Air Force Institute of Technology John Jasper University of Cincinnati Dustin G. Mixon Air Force Institute of Technology Jesse D. Peterson Air Force Institute of Technology Follow this and additional works at: https://scholar.afit.edu/facpub Part of the Discrete Mathematics and Combinatorics Commons Recommended Citation Fickus, M., Jasper, J., Mixon, D. G., & Peterson, J. D. (2021). Hadamard Equiangular Tight Frames. Applied and Computational Harmonic Analysis, 50, 281–302. https://doi.org/10.1016/j.acha.2019.08.003 This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Hadamard Equiangular Tight Frames Matthew Fickusa, John Jasperb, Dustin G. Mixona, Jesse D. Petersona aDepartment of Mathematics and Statistics, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433 bDepartment of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221 Abstract An equiangular tight frame (ETF) is a type of optimal packing of lines in Euclidean space. They are often represented as the columns of a short, fat matrix. In certain applications we want this matrix to be flat, that is, have the property that all of its entries have modulus one. In particular, real flat ETFs are equivalent to self-complementary binary codes that achieve the Grey-Rankin bound. Some flat ETFs are (complex) Hadamard ETFs, meaning they arise by extracting rows from a (complex) Hadamard matrix.
    [Show full text]
  • The Early View of “Global Journal of Computer Science And
    The Early View of “Global Journal of Computer Science and Technology” In case of any minor updation/modification/correction, kindly inform within 3 working days after you have received this. Kindly note, the Research papers may be removed, added, or altered according to the final status. Global Journal of Computer Science and Technology View Early Global Journal of Computer Science and Technology Volume 10 Issue 12 (Ver. 1.0) View Early Global Academy of Research and Development © Global Journal of Computer Global Journals Inc. Science and Technology. (A Delaware USA Incorporation with “Good Standing”; Reg. Number: 0423089) Sponsors: Global Association of Research 2010. Open Scientific Standards All rights reserved. Publisher’s Headquarters office This is a special issue published in version 1.0 of “Global Journal of Medical Research.” By Global Journals Inc. Global Journals Inc., Headquarters Corporate Office, All articles are open access articles distributed Cambridge Office Center, II Canal Park, Floor No. under “Global Journal of Medical Research” 5th, Cambridge (Massachusetts), Pin: MA 02141 Reading License, which permits restricted use. Entire contents are copyright by of “Global United States Journal of Medical Research” unless USA Toll Free: +001-888-839-7392 otherwise noted on specific articles. USA Toll Free Fax: +001-888-839-7392 No part of this publication may be reproduced Offset Typesetting or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information Global Journals Inc., City Center Office, 25200 storage and retrieval system, without written permission. Carlos Bee Blvd. #495, Hayward Pin: CA 94542 The opinions and statements made in this United States book are those of the authors concerned.
    [Show full text]
  • Asymptotic Existence of Hadamard Matrices
    ASYMPTOTIC EXISTENCE OF HADAMARD MATRICES by Ivan Livinskyi A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of MASTER OF SCIENCE Department of Mathematics University of Manitoba Winnipeg Copyright ⃝c 2012 by Ivan Livinskyi Abstract We make use of a structure known as signed groups, and known sequences with zero autocorrelation to derive new results on the asymptotic existence of Hadamard matrices. For any positive odd integer p it is obtained that a Hadamard matrix of order 2tp exists for all ( ) 1 p − 1 t ≥ log + 13: 5 2 2 i Contents 1 Introduction. Hadamard matrices 2 2 Signed groups and remreps 10 3 Construction of signed group Hadamard matrices from sequences 18 4 Some classes of sequences with zero autocorrelation 28 4.1 Golay sequences .............................. 30 4.2 Base sequences .............................. 31 4.3 Complex Golay sequences ........................ 33 4.4 Normal sequences ............................. 35 4.5 Turyn sequences .............................. 36 4.6 Other sequences .............................. 37 5 Asymptotic Existence results 40 5.1 Asymptotic formulas based on Golay sequences . 40 5.2 Hadamard matrices from complex Golay sequences . 43 5.3 Hadamard matrices from all complementary sequences considered . 44 6 Thoughts about further development 48 Bibliography 51 1 Chapter 1 Introduction. Hadamard matrices A Hadamard matrix H is a square (±1)-matrix such that any two of its rows are orthogonal. In other words, a square (±1)-matrix H is Hadamard if and only if HH> = nI; where n is the order of H and I is the identity matrix of order n.
    [Show full text]
  • Hadamard and Conference Matrices
    Hadamard and conference matrices Peter J. Cameron December 2011 with input from Dennis Lin, Will Orrick and Gordon Royle Now det(H) is equal to the volume of the n-dimensional parallelepiped spanned by the rows of H. By assumption, each row has Euclidean length at most n1/2, so that det(H) ≤ nn/2; equality holds if and only if I every entry of H is ±1; > I the rows of H are orthogonal, that is, HH = nI. A matrix attaining the bound is a Hadamard matrix. Hadamard's theorem Let H be an n × n matrix, all of whose entries are at most 1 in modulus. How large can det(H) be? A matrix attaining the bound is a Hadamard matrix. Hadamard's theorem Let H be an n × n matrix, all of whose entries are at most 1 in modulus. How large can det(H) be? Now det(H) is equal to the volume of the n-dimensional parallelepiped spanned by the rows of H. By assumption, each row has Euclidean length at most n1/2, so that det(H) ≤ nn/2; equality holds if and only if I every entry of H is ±1; > I the rows of H are orthogonal, that is, HH = nI. Hadamard's theorem Let H be an n × n matrix, all of whose entries are at most 1 in modulus. How large can det(H) be? Now det(H) is equal to the volume of the n-dimensional parallelepiped spanned by the rows of H. By assumption, each row has Euclidean length at most n1/2, so that det(H) ≤ nn/2; equality holds if and only if I every entry of H is ±1; > I the rows of H are orthogonal, that is, HH = nI.
    [Show full text]
  • LU Decomposition - Wikipedia, the Free Encyclopedia
    LU decomposition - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/LU_decomposition From Wikipedia, the free encyclopedia In linear algebra, LU decomposition (also called LU factorization) is a matrix decomposition which writes a matrix as the product of a lower triangular matrix and an upper triangular matrix. The product sometimes includes a permutation matrix as well. This decomposition is used in numerical analysis to solve systems of linear equations or calculate the determinant of a matrix. LU decomposition can be viewed as a matrix form of Gaussian elimination. LU decomposition was introduced by mathematician Alan Turing [1] 1 Definitions 2 Existence and uniqueness 3 Positive definite matrices 4 Explicit formulation 5 Algorithms 5.1 Doolittle algorithm 5.2 Crout and LUP algorithms 5.3 Theoretical complexity 6 Small example 7 Sparse matrix decomposition 8 Applications 8.1 Solving linear equations 8.2 Inverse matrix 8.3 Determinant 9 See also 10 References 11 External links Let A be a square matrix. An LU decomposition is a decomposition of the form where L and U are lower and upper triangular matrices (of the same size), respectively. This means that L has only zeros above the diagonal and U has only zeros below the diagonal. For a matrix, this becomes: An LDU decomposition is a decomposition of the form where D is a diagonal matrix and L and U are unit triangular matrices, meaning that all the entries on the diagonals of L and U LDU decomposition of a Walsh matrix 1 of 7 1/11/2012 5:26 PM LU decomposition - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/LU_decomposition are one.
    [Show full text]
  • Some Applications of Hadamard Matrices
    ORIGINAL ARTICLE Jennifer Seberry · Beata J Wysocki · Tadeusz A Wysocki On some applications of Hadamard matrices Abstract Modern communications systems are heavily reliant on statistical tech- niques to recover information in the presence of noise and interference. One of the mathematical structures used to achieve this goal is Hadamard matrices. They are used in many different ways and some examples are given. This paper concentrates on code division multiple access systems where Hadamard matrices are used for user separation. Two older techniques from design and analysis of experiments which rely on similar processes are also included. We give a short bibliography (from the thousands produced by a google search) of applications of Hadamard matrices appearing since the paper of Hedayat and Wallis in 1978 and some appli- cations in telecommunications. 1 Introduction Hadamard matrices seem such simple matrix structures: they are square, have entries +1or−1 and have orthogonal row vectors and orthogonal column vectors. Yet they have been actively studied for over 138 years and still have more secrets to be discovered. In this paper we concentrate on engineering and statistical appli- cations especially those in communications systems, digital image processing and orthogonal spreading sequences for direct sequences spread spectrum code division multiple access. 2 Basic definitions and properties A square matrix with elements ±1 and size h, whose distinct row vectors are mutu- ally orthogonal, is referred to as an Hadamard matrix of order h. The smallest examples are: 2 Seberry et al. 111 1 11 − 1 − 1 (1) , , 1 − 11−− − 11− where − denotes −1. Such matrices were first studied by Sylvester (1867) who observed that if H is an Hadamard matrix, then HH H −H is also an Hadamard matrix.
    [Show full text]
  • One Method for Construction of Inverse Orthogonal Matrices
    ONE METHOD FOR CONSTRUCTION OF INVERSE ORTHOGONAL MATRICES, P. DIÞÃ National Institute of Physics and Nuclear Engineering, P.O. Box MG6, Bucharest, Romania E-mail: [email protected] Received September 16, 2008 An analytical procedure to obtain parametrisation of complex inverse orthogonal matrices starting from complex inverse orthogonal conference matrices is provided. These matrices, which depend on nonzero complex parameters, generalize the complex Hadamard matrices and have applications in spin models and digital signal processing. When the free complex parameters take values on the unit circle they transform into complex Hadamard matrices. 1. INTRODUCTION In a seminal paper [1] Sylvester defined a general class of orthogonal matrices named inverse orthogonal matrices and provided the first examples of what are nowadays called (complex) Hadamard matrices. A particular class of inverse orthogonal matrices Aa()ij are those matrices whose inverse is given 1 t by Aa(1ij ) (1 a ji ) , where t means transpose, and their entries aij satisfy the relation 1 AA nIn (1) where In is the n-dimensional unit matrix. When the entries aij take values on the unit circle A–1 coincides with the Hermitian conjugate A* of A, and in this case (1) is the definition of complex Hadamard matrices. Complex Hadamard matrices have applications in quantum information theory, several branches of combinatorics, digital signal processing, etc. Complex orthogonal matrices unexpectedly appeared in the description of topological invariants of knots and links, see e.g. Ref. [2]. They were called two- weight spin models being related to symmetric statistical Potts models. These matrices have been generalized to two-weight spin models, also called , Paper presented at the National Conference of Physics, September 10–13, 2008, Bucharest-Mãgurele, Romania.
    [Show full text]
  • Introduction to Linear Algebra
    Introduction to linear algebra Teo Banica Real matrices, The determinant, Complex matrices, Calculus and applications, Infinite matrices, Special matrices 08/20 Foreword These are slides written in the Fall 2020, on linear algebra. Presentations available at my Youtube channel. 1. Real matrices and their properties ... 3 2. The determinant of real matrices ... 19 3. Complex matrices and diagonalization ... 35 4. Linear algebra and calculus questions ... 51 5. Infinite matrices and spectral theory ... 67 6. Special matrices and matrix tricks ... 83 Real matrices and their properties Teo Banica "Introduction to linear algebra", 1/6 08/20 Rotations 1/3 Problem: what’s the formula of the rotation of angle t? Rotations 2/3 2 x The points in the plane R can be represented as vectors y . The 2 × 2 matrices “act” on such vectors, as follows: a b x ax + by = c d y cx + dy Many simple transformations (symmetries, projections..) can be written in this form. What about the rotation of angle t? Rotations 3/3 A quick picture shows that we must have: ∗ ∗ 1 cos t = ∗ ∗ 0 sin t Also, by paying attention to positives and negatives: ∗ ∗ 0 − sin t = ∗ ∗ 1 cos t Thus, the matrix of our rotation can only be: cos t − sin t R = t sin t cos t By "linear algebra”, this is the correct answer. Linear maps 1/4 2 2 Theorem. The maps f : R ! R which are linear, in the sense that they map lines through 0 to lines through 0, are: x ax + by f = y cx + dy Remark. If we make the multiplication convention a b x ax + by = c d y cx + dy the theorem says f (v) = Av, with A being a 2 × 2 matrix.
    [Show full text]
  • Perron Spectratopes and the Real Nonnegative Inverse Eigenvalue Problem
    Perron Spectratopes and the Real Nonnegative Inverse Eigenvalue Problem a b, Charles R. Johnson , Pietro Paparella ∗ aDepartment of Mathematics, College of William & Mary, Williamsburg, VA 23187-8795, USA bDivision of Engineering and Mathematics, University of Washington Bothell, Bothell, WA 98011-8246, USA Abstract Call an n-by-n invertible matrix S a Perron similarity if there is a real non- 1 scalar diagonal matrix D such that SDS− is entrywise nonnegative. We give two characterizations of Perron similarities and study the polyhedra (S) := n 1 C x R : SDxS− 0;Dx := diag (x) and (S) := x (S): x1 = 1 , whichf 2 we call the Perron≥ spectracone andgPerronP spectratopef 2, respectively. C Theg set of all normalized real spectra of diagonalizable nonnegative matrices may be covered by Perron spectratopes, so that enumerating them is of interest. The Perron spectracone and spectratope of Hadamard matrices are of par- ticular interest and tend to have large volume. For the canonical Hadamard matrix (as well as other matrices), the Perron spectratope coincides with the convex hull of its rows. In addition, we provide a constructive version of a result due to Fiedler ([9, Theorem 2.4]) for Hadamard orders, and a constructive version of [2, Theorem 5.1] for Sule˘ımanova spectra. Keywords: Perron spectracone, Perron spectratope, real nonnegative inverse eigenvalue problem, Hadamard matrix, association scheme, relative gain array 2010 MSC: 15A18, 15B48, 15A29, 05B20, 05E30 1. Introduction The real nonnegative inverse eigenvalue problem (RNIEP) is to determine arXiv:1508.07400v2 [math.RA] 19 Nov 2015 which sets of n real numbers occur as the spectrum of an n-by-n nonnegative matrix.
    [Show full text]