Matrix Theory

Total Page:16

File Type:pdf, Size:1020Kb

Matrix Theory Matrix Theory Xingzhi Zhan +VEHYEXI7XYHMIW MR1EXLIQEXMGW :SPYQI %QIVMGER1EXLIQEXMGEP7SGMIX] Matrix Theory https://doi.org/10.1090//gsm/147 Matrix Theory Xingzhi Zhan Graduate Studies in Mathematics Volume 147 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE David Cox (Chair) Daniel S. Freed Rafe Mazzeo Gigliola Staffilani 2010 Mathematics Subject Classification. Primary 15-01, 15A18, 15A21, 15A60, 15A83, 15A99, 15B35, 05B20, 47A63. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-147 Library of Congress Cataloging-in-Publication Data Zhan, Xingzhi, 1965– Matrix theory / Xingzhi Zhan. pages cm — (Graduate studies in mathematics ; volume 147) Includes bibliographical references and index. ISBN 978-0-8218-9491-0 (alk. paper) 1. Matrices. 2. Algebras, Linear. I. Title. QA188.Z43 2013 512.9434—dc23 2013001353 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2013 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 181716151413 Contents Preface ix Chapter 1. Preliminaries 1 §1.1. Classes of Special Matrices 2 §1.2. The Characteristic Polynomial 6 §1.3. The Spectral Mapping Theorem 8 §1.4. Eigenvalues and Diagonal Entries 8 §1.5. Norms 10 §1.6. Convergence of the Power Sequence of a Matrix 13 §1.7. Matrix Decompositions 14 §1.8. Numerical Range 18 §1.9. The Companion Matrix of a Polynomial 21 §1.10. Generalized Inverses 22 §1.11. Schur Complements 23 §1.12. Applications of Topological Ideas 24 §1.13. Gr¨obner Bases 25 §1.14. Systems of Linear Inequalities 27 §1.15. Orthogonal Projections and Reducing Subspaces 29 §1.16. Books and Journals about Matrices 31 Exercises 31 Chapter 2. Tensor Products and Compound Matrices 35 §2.1. Definitions and Basic Properties 35 §2.2. Linear Matrix Equations 40 v vi Contents §2.3. Frobenius-K¨onig Theorem 44 §2.4. Compound Matrices 46 Exercises 49 Chapter 3. Hermitian Matrices and Majorization 51 §3.1. Eigenvalues of Hermitian Matrices 51 §3.2. Majorization and Doubly Stochastic Matrices 56 §3.3. Inequalities for Positive Semidefinite Matrices 68 Exercises 74 Chapter 4. Singular Values and Unitarily Invariant Norms 77 §4.1. Singular Values 77 §4.2. Symmetric Gauge Functions 88 §4.3. Unitarily Invariant Norms 90 §4.4. The Cartesian Decomposition of Matrices 97 Exercises 100 Chapter 5. Perturbation of Matrices 103 §5.1. Eigenvalues 103 §5.2. The Polar Decomposition 112 §5.3. Norm Estimation of Band Parts 114 §5.4. Backward Perturbation Analysis 116 Exercises 118 Chapter 6. Nonnegative Matrices 119 §6.1. Perron-Frobenius Theory 120 §6.2. Matrices and Digraphs 132 §6.3. Primitive and Imprimitive Matrices 134 §6.4. Special Classes of Nonnegative Matrices 138 §6.5. Two Theorems about Positive Matrices 142 Exercises 147 Chapter 7. Completion of Partial Matrices 149 §7.1. Friedland’s Theorem about Diagonal Completions 150 §7.2. Farahat-Ledermann’s Theorem about Borderline Completions 153 §7.3. Parrott’s Theorem about Norm-Preserving Completions 157 §7.4. Positive Definite Completions 159 Chapter 8. Sign Patterns 165 Contents vii §8.1. Sign-Nonsingular Patterns 168 §8.2. Eigenvalues 169 §8.3. Sign Semi-Stable Patterns 173 §8.4. Sign Patterns Allowing a Positive Inverse 174 Exercises 179 Chapter 9. Miscellaneous Topics 181 §9.1. Similarity of Real Matrices via Complex Matrices 181 §9.2. Inverses of Band Matrices 182 §9.3. Norm Bounds for Commutators 184 §9.4. The Converse of the Diagonal Dominance Theorem 188 §9.5. The Shape of the Numerical Range 192 §9.6. An Inversion Algorithm 197 §9.7. Canonical Forms for Similarity 198 §9.8. Extremal Sparsity of the Jordan Canonical Form 207 Chapter 10. Applications of Matrices 213 §10.1. Combinatorics 214 §10.2. Number Theory 216 §10.3. Algebra 217 §10.4. Geometry 220 §10.5. Polynomials 222 Unsolved Problems 227 Bibliography 237 Notation 249 Index 251 Preface The systematic study of matrices began late in the history of mathematics, but matrix theory is an active area of research now and it has applications in numerical analysis, control and systems theory, optimization, combinatorics, mathematical physics, differential equations, probability and statistics, eco- nomics, information theory, and engineering. One attractive feature of matrix theory is that many matrix problems can be solved naturally by using tools or ideas from other branches of math- ematics such as analysis, algebra, graph theory, geometry and topology. The reverse situation also occurs, as shown in the last chapter. This book is intended for use as a text for graduate or advanced under- graduate level courses, or as a reference for research workers. It is based on lecture notes for graduate courses I have taught five times at East China Normal University and once at Peking University. My aim is to provide a concise treatment of matrix theory. I hope the book contains the basic knowledge and conveys the flavor of the subject. When I chose material for this book, I had the following criteria in mind: 1) important; 2) elegant; 3) ingenious; 4) interesting. Of course, a very small percentage of mathematics meets all of these criteria, but I hope the results and proofs here meet at least one of them. As a reader I feel that for clarity, the logical steps of a mathematical proof cannot be omitted, though routine calculations may be or should be. Whenever possible, I try to have a conceptual understanding of a result. I always emphasize methods and ideas. ix x Preface Most of the exercises are taken from research papers, and they have some depth. Thus if the reader has difficulty in solving the problems in these exercises, she or he should not feel frustrated. Parts of this book appeared in a book in Chinese with the same title published by the Higher Education Press in 2008. Thanks go to Professors Pei Yuan Wu and Wei Wu for discussions on the topic of numerical range and to Dr. Zejun Huang for discussions on Theorem 1.2 and Lemma 9.13. I am grateful to Professors Tsuyoshi Ando, Rajendra Bhatia, Richard Brualdi, Roger Horn, Erxiong Jiang, Chi-Kwong Li, Zhi- Guo Liu, Jianyu Pan, Jia-Yu Shao, Sheng-Li Tan, and Guang Yuan Zhang for their encouragement, friendship and help over the years. I wish to express my gratitude to my family for their kindness. This work was supported by the National Science Foundation of China under grant 10971070. Shanghai, December 2012 Xingzhi Zhan Bibliography [1] W.W. Adams and P. Loustaunau, An Introduction to Gr¨obner Bases, GSM 3, Amer. Math. Soc., Providence, RI, 1994. [2] S.S. Agaian, Hadamard Matrices and Their Applications, LNM 1168, Springer, 1985. [3] N. Anderson, E.B. Saff and R.S. Varga, On the Enestr¨om-Kakeya theorem and its sharpness, Linear Algebra Appl., 28(1979), 5–16. [4] T. Ando, Totally positive matrices, Linear Algebra Appl., 90(1987), 165–219. [5] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl., 118(1989), 163–248. [6] T. Ando, Matrix Young inequalities, Operator Theory: Advances and Applications, 75(1995), 33–38. [7] T. Ando and R. Bhatia, Eigenvalue inequalities associated with the Cartesian de- composition, Linear and Multilinear Algebra, 22(1987), no.2, 133–147. [8] T. Ando and T. Hara, Another approach to the strong Parrott theorem, J. Math. Anal. Appl., 171(1992), no.1, 125–130. [9] T. Ando and X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann., 315(1999), 771–780. [10] H. Araki and S. Yamagami, An inequality for the Hilbert-Schmidt norm, Commun. Math. Phys., 81(1981), 89–96. [11] E. Arrondo, Another elementary proof of the Nullstellensatz, Amer. Math. Monthly, 113(2006), no.2, 169–171. [12] G. Arsene and A. Gheondea, Completing matrix contractions, J. Operator Theory, 7(1982), no.1, 179–189. [13] E. Asplund, Inverses of matrices {aij } which satisfy aij =0forj>i+ p, Math. Scand., 7(1959), 57–60. [14] K.M.R. Audenaert, A singular value inequality for Heinz means, Linear Algebra Appl., 422(2007), 279–283. [15] K.M.R. Audenaert, Variance bounds, with an application to norm bounds for com- mutators, Linear Algebra Appl., 432(2010), 1126–1143. 237 238 Bibliography [16] R. Bapat, D1AD2 theorems for multidimensional matrices, Linear Algebra Appl., 48(1982), 437–442. [17] R.B. Bapat, Multinomial probabilities, permanents and a conjecture of Karlin and Rinott, Proc. Amer. Math. Soc., 102(1988), no.3, 467–472. [18] R.B. Bapat and T.E.S. Raghavan, Nonnegative Matrices and Applications,Cam- bridge University Press, 1997. [19] W.W. Barrett and P.J. Feinsilver, Inverses of banded matrices, Linear Algebra Appl., 41(1981), 111–130. [20] A. Barvinok, A Course in Convexity, GSM 54, Amer. Math. Soc., Providence, RI, 2002. [21] L. Bassett, J. Maybee and J.
Recommended publications
  • Matrix Analysis (Lecture 1)
    Matrix Analysis (Lecture 1) Yikun Zhang∗ March 29, 2018 Abstract Linear algebra and matrix analysis have long played a fundamen- tal and indispensable role in fields of science. Many modern research projects in applied science rely heavily on the theory of matrix. Mean- while, matrix analysis and its ramifications are active fields for re- search in their own right. In this course, we aim to study some fun- damental topics in matrix theory, such as eigen-pairs and equivalence relations of matrices, scrutinize the proofs of essential results, and dabble in some up-to-date applications of matrix theory. Our lecture will maintain a cohesive organization with the main stream of Horn's book[1] and complement some necessary background knowledge omit- ted by the textbook sporadically. 1 Introduction We begin our lectures with Chapter 1 of Horn's book[1], which focuses on eigenvalues, eigenvectors, and similarity of matrices. In this lecture, we re- view the concepts of eigenvalues and eigenvectors with which we are familiar in linear algebra, and investigate their connections with coefficients of the characteristic polynomial. Here we first outline the main concepts in Chap- ter 1 (Eigenvalues, Eigenvectors, and Similarity). ∗School of Mathematics, Sun Yat-sen University 1 Matrix Analysis and its Applications, Spring 2018 (L1) Yikun Zhang 1.1 Change of basis and similarity (Page 39-40, 43) Let V be an n-dimensional vector space over the field F, which can be R, C, or even Z(p) (the integers modulo a specified prime number p), and let the list B1 = fv1; v2; :::; vng be a basis for V.
    [Show full text]
  • Lecture Notes: Qubit Representations and Rotations
    Phys 711 Topics in Particles & Fields | Spring 2013 | Lecture 1 | v0.3 Lecture notes: Qubit representations and rotations Jeffrey Yepez Department of Physics and Astronomy University of Hawai`i at Manoa Watanabe Hall, 2505 Correa Road Honolulu, Hawai`i 96822 E-mail: [email protected] www.phys.hawaii.edu/∼yepez (Dated: January 9, 2013) Contents mathematical object (an abstraction of a two-state quan- tum object) with a \one" state and a \zero" state: I. What is a qubit? 1 1 0 II. Time-dependent qubits states 2 jqi = αj0i + βj1i = α + β ; (1) 0 1 III. Qubit representations 2 A. Hilbert space representation 2 where α and β are complex numbers. These complex B. SU(2) and O(3) representations 2 numbers are called amplitudes. The basis states are or- IV. Rotation by similarity transformation 3 thonormal V. Rotation transformation in exponential form 5 h0j0i = h1j1i = 1 (2a) VI. Composition of qubit rotations 7 h0j1i = h1j0i = 0: (2b) A. Special case of equal angles 7 In general, the qubit jqi in (1) is said to be in a superpo- VII. Example composite rotation 7 sition state of the two logical basis states j0i and j1i. If References 9 α and β are complex, it would seem that a qubit should have four free real-valued parameters (two magnitudes and two phases): I. WHAT IS A QUBIT? iθ0 α φ0 e jqi = = iθ1 : (3) Let us begin by introducing some notation: β φ1 e 1 state (called \minus" on the Bloch sphere) Yet, for a qubit to contain only one classical bit of infor- 0 mation, the qubit need only be unimodular (normalized j1i = the alternate symbol is |−i 1 to unity) α∗α + β∗β = 1: (4) 0 state (called \plus" on the Bloch sphere) 1 Hence it lives on the complex unit circle, depicted on the j0i = the alternate symbol is j+i: 0 top of Figure 1.
    [Show full text]
  • Periodic Staircase Matrices and Generalized Cluster Structures
    PERIODIC STAIRCASE MATRICES AND GENERALIZED CLUSTER STRUCTURES MISHA GEKHTMAN, MICHAEL SHAPIRO, AND ALEK VAINSHTEIN Abstract. As is well-known, cluster transformations in cluster structures of geometric type are often modeled on determinant identities, such as short Pl¨ucker relations, Desnanot–Jacobi identities and their generalizations. We present a construction that plays a similar role in a description of general- ized cluster transformations and discuss its applications to generalized clus- ter structures in GLn compatible with a certain subclass of Belavin–Drinfeld Poisson–Lie brackets, in the Drinfeld double of GLn, and in spaces of periodic difference operators. 1. Introduction Since the discovery of cluster algebras in [4], many important algebraic varieties were shown to support a cluster structure in a sense that the coordinate rings of such variety is isomorphic to a cluster algebra or an upper cluster algebra. Lie theory and representation theory turned out to be a particularly rich source of varieties of this sort including but in no way limited to such examples as Grassmannians [5, 18], double Bruhat cells [1] and strata in flag varieties [15]. In all these examples, cluster transformations that connect distinguished coordinate charts within a ring of regular functions are modeled on three-term relations such as short Pl¨ucker relations, Desnanot–Jacobi identities and their Lie-theoretic generalizations of the kind considered in [3]. This remains true even in the case of exotic cluster structures on GLn considered in [8, 10] where cluster transformations can be obtained by applying Desnanot–Jacobi type identities to certain structured matrices of a size far exceeding n.
    [Show full text]
  • Arxiv:Math/0010243V1
    FOUR SHORT STORIES ABOUT TOEPLITZ MATRIX CALCULATIONS THOMAS STROHMER∗ Abstract. The stories told in this paper are dealing with the solution of finite, infinite, and biinfinite Toeplitz-type systems. A crucial role plays the off-diagonal decay behavior of Toeplitz matrices and their inverses. Classical results of Gelfand et al. on commutative Banach algebras yield a general characterization of this decay behavior. We then derive estimates for the approximate solution of (bi)infinite Toeplitz systems by the finite section method, showing that the approximation rate depends only on the decay of the entries of the Toeplitz matrix and its condition number. Furthermore, we give error estimates for the solution of doubly infinite convolution systems by finite circulant systems. Finally, some quantitative results on the construction of preconditioners via circulant embedding are derived, which allow to provide a theoretical explanation for numerical observations made by some researchers in connection with deconvolution problems. Key words. Toeplitz matrix, Laurent operator, decay of inverse matrix, preconditioner, circu- lant matrix, finite section method. AMS subject classifications. 65T10, 42A10, 65D10, 65F10 0. Introduction. Toeplitz-type equations arise in many applications in mathe- matics, signal processing, communications engineering, and statistics. The excellent surveys [4, 17] describe a number of applications and contain a vast list of references. The stories told in this paper are dealing with the (approximate) solution of biinfinite, infinite, and finite hermitian positive definite Toeplitz-type systems. We pay special attention to Toeplitz-type systems with certain decay properties in the sense that the entries of the matrix enjoy a certain decay rate off the diagonal.
    [Show full text]
  • MATH 210A, FALL 2017 Question 1. Let a and B Be Two N × N Matrices
    MATH 210A, FALL 2017 HW 6 SOLUTIONS WRITTEN BY DAN DORE (If you find any errors, please email [email protected]) Question 1. Let A and B be two n × n matrices with entries in a field K. −1 Let L be a field extension of K, and suppose there exists C 2 GLn(L) such that B = CAC . −1 Prove there exists D 2 GLn(K) such that B = DAD . (that is, turn the argument sketched in class into an actual proof) Solution. We’ll start off by proving the existence and uniqueness of rational canonical forms in a precise way. d d−1 To do this, recall that the companion matrix for a monic polynomial p(t) = t + ad−1t + ··· + a0 2 K[t] is defined to be the (d − 1) × (d − 1) matrix 0 1 0 0 ··· 0 −a0 B C B1 0 ··· 0 −a1 C B C B0 1 ··· 0 −a2 C M(p) := B C B: : : C B: :: : C @ A 0 0 ··· 1 −ad−1 This is the matrix representing the action of t in the cyclic K[t]-module K[t]=(p(t)) with respect to the ordered basis 1; t; : : : ; td−1. Proposition 1 (Rational Canonical Form). For any matrix M over a field K, there is some matrix B 2 GLn(K) such that −1 BMB ' Mcan := M(p1) ⊕ M(p2) ⊕ · · · ⊕ M(pm) Here, p1; : : : ; pn are monic polynomials in K[t] with p1 j p2 j · · · j pm. The monic polynomials pi are 1 −1 uniquely determined by M, so if for some C 2 GLn(K) we have CMC = M(q1) ⊕ · · · ⊕ M(qk) for q1 j q1 j · · · j qm 2 K[t], then m = k and qi = pi for each i.
    [Show full text]
  • Some Aspects of the Optimization Over the Copositive and the Completely Positive Cone
    Some aspects of the optimization over the copositive and the completely positive cone Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) Dem Fachbereich IV der Universit¨at Trier vorgelegt von Julia Witzel Trier, 2013 Eingereicht am 17.07.2013 Gutachter: Prof. Dr. Mirjam Dur¨ Prof. Dr. Gabriele Eichfelder Tag der mundlichen¨ Prufung:¨ 25.09.2013 Die Autorin hat im Laufe des Promotionsverfahrens geheiratet und hieß zu dessen Beginn Julia Sponsel. Zusammenfassung Optimierungsprobleme tauchen in vielen praktischen Anwendungsbereichen auf. Zu den einfachsten Problemen geh¨oren lineare Optimierungsprobleme. Oft reichen lineare Probleme allerdings zur Modellierung praktischer Anwendun- gen nicht aus, sondern es muss die Ganzzahligkeit von Variablen gefordert werden oder es tauchen nichtlineare Nebenbedingungen oder eine nichtlineare Zielfunktion auf. Eine wichtige Problemklasse stellen hierbei quadratische Pro- bleme dar, welche im Allgemeinen aber schwer zu l¨osen sind. Ein Ansatz, der sich in den letzten Jahren entwickelt und verbreitet hat, besteht in der Umfor- mulierung quadratischer Probleme in sogenannte kopositive Programme. Ko- positive Programme sind lineare Optimierungsprobleme uber¨ dem Kegel der kopositiven Matrizen n×n T T n Cn = fA 2 R : A = A ; x Ax ≥ 0 fur¨ alle x 2 R ; x ≥ 0g; oder dem Dualkegel, dem Kegel der vollst¨andig positiven Matrizen m ∗ n X T n o Cn = xixi : xi 2 R ; xi ≥ 0 fur¨ alle i = 1; : : : ; m : i=1 Die Schwierigkeit dieser Probleme liegt in der Kegelbedingung. Aber nicht nur das Optimieren uber¨ diesen Kegeln ist schwierig. Wie von Murty und Kabadi (1987) und Dickinson und Gijben (2013) gezeigt ist es NP-schwer zu testen, ob eine gegebene Matrix kopositiv oder vollst¨andig positiv ist.
    [Show full text]
  • THREE STEPS on an OPEN ROAD Gilbert Strang This Note Describes
    Inverse Problems and Imaging doi:10.3934/ipi.2013.7.961 Volume 7, No. 3, 2013, 961{966 THREE STEPS ON AN OPEN ROAD Gilbert Strang Massachusetts Institute of Technology Cambridge, MA 02139, USA Abstract. This note describes three recent factorizations of banded invertible infinite matrices 1. If A has a banded inverse : A=BC with block{diagonal factors B and C. 2. Permutations factor into a shift times N < 2w tridiagonal permutations. 3. A = LP U with lower triangular L, permutation P , upper triangular U. We include examples and references and outlines of proofs. This note describes three small steps in the factorization of banded matrices. It is written to encourage others to go further in this direction (and related directions). At some point the problems will become deeper and more difficult, especially for doubly infinite matrices. Our main point is that matrices need not be Toeplitz or block Toeplitz for progress to be possible. An important theory is already established [2, 9, 10, 13-16] for non-Toeplitz \band-dominated operators". The Fredholm index plays a key role, and the second small step below (taken jointly with Marko Lindner) computes that index in the special case of permutation matrices. Recall that banded Toeplitz matrices lead to Laurent polynomials. If the scalars or matrices a−w; : : : ; a0; : : : ; aw lie along the diagonals, the polynomial is A(z) = P k akz and the bandwidth is w. The required index is in this case a winding number of det A(z). Factorization into A+(z)A−(z) is a classical problem solved by Plemelj [12] and Gohberg [6-7].
    [Show full text]
  • QR Decomposition: History and Its Applications
    Mathematics & Statistics Auburn University, Alabama, USA QR History Dec 17, 2010 Asymptotic result QR iteration QR decomposition: History and its EE Applications Home Page Title Page Tin-Yau Tam èèèUUUÎÎÎ JJ II J I Page 1 of 37 Æâ§w Go Back fÆêÆÆÆ Full Screen Close email: [email protected] Website: www.auburn.edu/∼tamtiny Quit 1. QR decomposition Recall the QR decomposition of A ∈ GLn(C): QR A = QR History Asymptotic result QR iteration where Q ∈ GLn(C) is unitary and R ∈ GLn(C) is upper ∆ with positive EE diagonal entries. Such decomposition is unique. Set Home Page a(A) := diag (r11, . , rnn) Title Page where A is written in column form JJ II J I A = (a1| · · · |an) Page 2 of 37 Go Back Geometric interpretation of a(A): Full Screen rii is the distance (w.r.t. 2-norm) between ai and span {a1, . , ai−1}, Close i = 2, . , n. Quit Example: 12 −51 4 6/7 −69/175 −58/175 14 21 −14 6 167 −68 = 3/7 158/175 6/175 0 175 −70 . QR −4 24 −41 −2/7 6/35 −33/35 0 0 35 History Asymptotic result QR iteration EE • QR decomposition is the matrix version of the Gram-Schmidt orthonor- Home Page malization process. Title Page JJ II • QR decomposition can be extended to rectangular matrices, i.e., if A ∈ J I m×n with m ≥ n (tall matrix) and full rank, then C Page 3 of 37 A = QR Go Back Full Screen where Q ∈ Cm×n has orthonormal columns and R ∈ Cn×n is upper ∆ Close with positive “diagonal” entries.
    [Show full text]
  • Parametrization of 3×3 Unitary Matrices Based on Polarization
    Parametrization of 33 unitary matrices based on polarization algebra (May, 2018) José J. Gil Parametrization of 33 unitary matrices based on polarization algebra José J. Gil Universidad de Zaragoza. Pedro Cerbuna 12, 50009 Zaragoza Spain [email protected] Abstract A parametrization of 33 unitary matrices is presented. This mathematical approach is inspired by polarization algebra and is formulated through the identification of a set of three orthonormal three-dimensional Jones vectors representing respective pure polarization states. This approach leads to the representation of a 33 unitary matrix as an orthogonal similarity transformation of a particular type of unitary matrix that depends on six independent parameters, while the remaining three parameters correspond to the orthogonal matrix of the said transformation. The results obtained are applied to determine the structure of the second component of the characteristic decomposition of a 33 positive semidefinite Hermitian matrix. 1 Introduction In many branches of Mathematics, Physics and Engineering, 33 unitary matrices appear as key elements for solving a great variety of problems, and therefore, appropriate parameterizations in terms of minimum sets of nine independent parameters are required for the corresponding mathematical treatment. In this way, some interesting parametrizations have been obtained [1-8]. In particular, the Cabibbo-Kobayashi-Maskawa matrix (CKM matrix) [6,7], which represents information on the strength of flavour-changing weak decays and depends on four parameters, constitutes the core of a family of parametrizations of a 33 unitary matrix [8]. In this paper, a new general parametrization is presented, which is inspired by polarization algebra [9] through the structure of orthonormal sets of three-dimensional Jones vectors [10].
    [Show full text]
  • A Singularly Valuable Decomposition: the SVD of a Matrix Dan Kalman
    A Singularly Valuable Decomposition: The SVD of a Matrix Dan Kalman Dan Kalman is an assistant professor at American University in Washington, DC. From 1985 to 1993 he worked as an applied mathematician in the aerospace industry. It was during that period that he first learned about the SVD and its applications. He is very happy to be teaching again and is avidly following all the discussions and presentations about the teaching of linear algebra. Every teacher of linear algebra should be familiar with the matrix singular value deco~??positiolz(or SVD). It has interesting and attractive algebraic properties, and conveys important geometrical and theoretical insights about linear transformations. The close connection between the SVD and the well-known theo1-j~of diagonalization for sylnmetric matrices makes the topic immediately accessible to linear algebra teachers and, indeed, a natural extension of what these teachers already know. At the same time, the SVD has fundamental importance in several different applications of linear algebra. Gilbert Strang was aware of these facts when he introduced the SVD in his now classical text [22, p. 1421, obselving that "it is not nearly as famous as it should be." Golub and Van Loan ascribe a central significance to the SVD in their defini- tive explication of numerical matrix methods [8, p, xivl, stating that "perhaps the most recurring theme in the book is the practical and theoretical value" of the SVD. Additional evidence of the SVD's significance is its central role in a number of re- cent papers in :Matlgenzatics ivlagazine and the Atnericalz Mathematical ilironthly; for example, [2, 3, 17, 231.
    [Show full text]
  • Polynomials and Hankel Matrices
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Polynomials and Hankel Matrices Miroslav Fiedler Czechoslovak Academy of Sciences Institute of Mathematics iitnci 25 115 67 Praha 1, Czechoslovakia Submitted by V. Ptak ABSTRACT Compatibility of a Hankel n X n matrix W and a polynomial f of degree m, m < n, is defined. If m = n, compatibility means that HC’ = CfH where Cf is the companion matrix of f With a suitable generalization of Cr, this theorem is gener- alized to the case that m < n. INTRODUCTION By a Hankel matrix [S] we shall mean a square complex matrix which has, if of order n, the form ( ai +k), i, k = 0,. , n - 1. If H = (~y~+~) is a singular n X n Hankel matrix, the H-polynomial (Pi of H was defined 131 as the greatest common divisor of the determinants of all (r + 1) x (r + 1) submatrices~of the matrix where r is the rank of H. In other words, (Pi is that polynomial for which the nX(n+l)matrix I, 0 0 0 %fb) 0 i 0 0 0 1 LINEAR ALGEBRA AND ITS APPLICATIONS 66:235-248(1985) 235 ‘F’Elsevier Science Publishing Co., Inc., 1985 52 Vanderbilt Ave., New York, NY 10017 0024.3795/85/$3.30 236 MIROSLAV FIEDLER is the Smith normal form [6] of H,. It has also been shown [3] that qN is a (nonzero) polynomial of degree at most T. It is known [4] that to a nonsingular n X n Hankel matrix H = ((Y~+~)a linear pencil of polynomials of degree at most n can be assigned as follows: f(x) = fo + f,x + .
    [Show full text]
  • Inverse Problems for Hankel and Toeplitz Matrices
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Inverse Problems for Hankel and Toeplitz Matrices Georg Heinig Vniversitiit Leipzig Sektion Mathematik Leipzig 7010, Germany Submitted by Peter Lancaster ABSTRACT The problem is considered how to construct a Toeplitz or Hankel matrix A from one or two equations of the form Au = g. The general solution is described explicitly. Special cases are inverse spectral problems for Hankel and Toeplitz matrices and problems from the theory of orthogonal polynomials. INTRODUCTION When we speak of inverse problems we have in mind the following type of problems: Given vectors uj E C”, gj E C”’ (j = l,.. .,T), we ask for an m x n matrix A of a certain matrix class such that Auj = gj (j=l,...,?-). (0.1) In the present paper we deal with inverse problems with the additional condition that A is a Hankel matrix [ si +j] or a Toeplitz matrix [ ci _j]. Inverse problems for Hankel and Toeplitz matices occur, for example, in the theory of orthogonal polynomials when a measure p on the real line or the unit circle is wanted such that given polynomials are orthogonal with respect to this measure. The moment matrix of p is just the solution of a certain inverse problem and is Hankel (in the real line case) or Toeplitz (in the unit circle case); here the gj are unit vectors. LINEAR ALGEBRA AND ITS APPLICATIONS 165:1-23 (1992) 1 0 Elsevier Science Publishing Co., Inc., 1992 655 Avenue of tbe Americas, New York, NY 10010 0024-3795/92/$5.00 2 GEORG HEINIG Inverse problems for Toeplitz matrices were considered for the first time in the paper [lo]of M.
    [Show full text]