Network Theory

Total Page:16

File Type:pdf, Size:1020Kb

Network Theory NETWORK THEORY For ELECTRICAL ENGINEERING INSTRUMENTATION ENGINEERING ELECTRONICS & COMMUNICATION ENGINEERING NETWORK THEORY SYLLABUS Network graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady‐state analysis, Resonance, Passive filters, Ideal current and voltage sources, Thevenin’s theorem, Norton’s theorem, Superposition theorem, Maximum power transfer theorem, Two‐port networks, Three phase circuits, Power and power factor in ac circuits. ANALYSIS OF GATE PAPERS ELECTRONICS ELECTRICAL INSTRUMENTATION 1 Mark 2 Mark 1 Mark 2 Mark 1 Mark 2 Mark Exam Year Ques. Ques. Total Ques. Ques. Total Ques. Ques. Total 2003 4 7 18 3 6 15 ‐ 1 2 2004 5 5 15 1 7 15 ‐ ‐ ‐ 2005 5 6 17 4 7 18 ‐ 2 4 2006 6 ‐ 6 2 6 14 1 4 9 2007 2 4 10 ‐ 7 14 2 4 10 2008 2 7 16 2 6 14 2 7 16 2009 3 4 11 2 6 14 ‐ 2 4 2010 2 3 8 3 4 11 2 2 6 2011 3 3 9 3 5 13 2 3 8 2012 4 4 12 5 6 17 4 6 16 2013 3 6 15 2 3 8 3 5 13 2014 Set‐1 2 4 10 2 2 6 3 4 11 2014 Set‐2 2 4 10 3 2 7 ‐ ‐ ‐ 2014 Set‐3 2 4 10 3 3 9 ‐ ‐ ‐ 2014 Set‐4 2 4 10 ‐ ‐ ‐ ‐ ‐ ‐ 2015 Set‐1 4 3 10 4 3 10 3 5 13 2015 Set‐2 3 3 9 3 3 9 ‐ ‐ ‐ 2015 Set‐3 3 2 7 ‐ ‐ ‐ ‐ ‐ ‐ 2016 Set‐1 1 2 5 4 5 14 3 3 9 2016 Set‐2 4 2 8 5 4 13 ‐ ‐ ‐ 2016 Set‐3 1 3 7 ‐ ‐ ‐ ‐ ‐ ‐ 2017 Set‐1 2 3 8 1 2 5 4 4 12 2017 Set‐1 0 4 8 2 2 6 ‐ ‐ ‐ 2018 2 3 8 2 3 8 3 3 9 © Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission CONTENTS Topics Page No 1. NETWORK BASICS 1.1 Introduction 1.2 Classifications of Network Elements 1.3 Circuit Components 1 1.4 Kirchoff's Laws 2 1.5 Mesh & Nodal Analysis 3 1.6 Equivalent Circuits 6 Gate Questions 137 9 2. NETWORK THEOREMS 2.1 Introduction 2.2 Superposition Theorem 2.3 Thevenin's & Norton's Theorem 49 2.4 Maximum Power Transfer Theorem 49 2.5 Tellegen's Theorem 50 2.6 Reciprocity Theorem 51 2.7 Substitution Theorem 53 2.8 Millman's Theorem 53 2.9 Duality Principle 54 Gate Questions 54 54 3. TRANSIENTS 58 3.1 Introduction 3.2 Steady State & Transient Response 3.3 DC Transients 89 Gate Questions 89 91 4. AC ANALYSIS 99 4.1 Introduction 4.2 Sinusoidal Steady state analysis 4.3 Series Circuits 129 4.4 Parallel Circuits 129 Gate Questions 13013 132 5. RESONANCE 6 5.1 Introduction 149 © Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission 5.2 Series Resonance 5.3 Parallel Resonance Gate Questions 149 152 6. GRAPH THEORY 155 6.1 Graph of a Network 6.2 Incidence Matrix 6.3 Tie‐Set Matrix 157 6.4 F‐Cut Set Matrix 159 Gate Questions 159 163 7. COUPLED CIRCUITS 164 7.1 Introduction 7.2 Mutual Inductance 7.3 The Coupling Coefficient 174 7.4 Series Connection of Coupled Inductors 174 7.5 Parallel Connection of Coupled Coils 176 7.6 Ideal Transformer 176 177 8. TWO PORT NETWORKS 177 8.1 Introduction 9 8.2 Open Circuit Impedance (Z) Parameters 9 8.3 Short Circuit Admittance (Y) Parameters 17 8.4 Transmission (A B C D) Parameters 170 8.5 Inverse Transmission (A' B' C' D') Parameters 180 8.6 Hybrid (H) Parameters 18 8.7 Inverse Hybrid (G) Parameters 181 8.8 Conditions for Reciprocity and Symmetry 181 8.9 Inter Relationships of Different Parameters 182 8.10 Interconnection of Two‐Port Network 182 Gate Questions 1182 184 9. NETWORK SYNTHESIS 89 9.1 LC, RC, RL Impedance & Admittance Functions Gate Questions 211 10. ASSIGNMENT 212 217 © Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission 1 NETWORK BASICS 1.1 INTRODUCTION Q I = (ampere) t In terms of the atomic theory concept, an Where, I is the current electric current in an element is the time Q is the charge rate of flow of free electrons in the element. T is the time The material may be classified as The current through a circuit element is the • Conductors, where availability of free time derivative of the electric charge i.e. electrons is very large, as in the case dq i = (c/s) or (Ampere) metals. dt • Insulators, where the availability of Where, dq is small change in charge. free electrons is rare, as in case of glass, dt is small change in time. mica, plastics etc. • Other materials, such as germanium 1.1.3 VOLTAGE and silicon called semiconductors, may play a significant role in All opposite charges possess a certain electronics. Thermally generated amount of potential energy because of the electrons are available as free electrons separation between them. The difference is at room temperature, and act as potential energy of the charges is called the conductors, but at 0 Kelvin they act as potential difference. The potential insulator. difference in electrical terminology is known as voltage, and is denoted either by 1.1.1 CHARGE ‘V’ or ‘v’. Voltage is expressed in terms of energy (W) per unit charge (Q) i.e. According to basic physics, we know that W dw there are two types of charges: Positive V = Or ν = Q dq (corresponding to proton) and Negative (corresponding to electron). The (J/c) or (volt) fundamental unit of charge is the Where, dw is the small change in energy coulomb[c]. A single electron has a charge dq is the small change in charge. − One Volt, is the potential difference of −×1.602 10 19 C and a single proton −19 between two points when one joule of has a charge of +×1.602 10 C where one energy is used to pass one coulomb of coulomb is defined as one ampere second. charge from one point to the other Charge in coulomb Q = It where, I is current in ampere and t is time in second. 1.1.4 ENERGY 1.1.2 CURRENT Energy is capacity for doing work. Energy may exist in many forms such as The phenomenon of transferring charge mechanical, chemical; electrical is called from one point is a circuit to another is ‘Joule’. Energy is denoted by ‘W’. The termed as “electric current”. The eclectic energy delivered to a circuit element over current, denoted by either ‘I’ or ‘i’ .The the time interval (to, t) is given by unit of electric current is ‘ampere’ which t is denoted by ‘A’. Electric current W=pxdx∫ () mathematically expressed as t0 © Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission 1.1.5 POWER time interval. For example, passive elements like inductors and capacitor Power is the rate of change of energy. It is capable of storing a finite amount of denoted by ‘P’ or ‘p’, unit of power is energy. Resistor is also a passive ‘Watts’. element. Energy W Power() p = = time t 2) BILATERAL AND UNILATERAL dw In Bilateral elements, the voltage– or P = dt current relation is same for the current Where, dw is the change in energy flowing in either direction. For the dt is the change in time entire time‘t’ element offers the same dw impedance for the different directions we can also write, P = of the same current flow and hence the dt resistor is said to bilateral. dw dq = × dt dt P = v × iwatts So, the instantaneous power p(t) delivered to a circuit element is the product of the instantaneous value of voltage v(t) and current i(t) of the element has different P = v() t × i(t) A unilateral element relations between voltage and current for the two possible directions of 1.2 CLASSIFICATION OF NETWORK current. Vacuum diodes, silicon diodes ELEMENTS and metal rectifiers are examples of unilateral elements. 3) LINEAR AND NONLINEAR ELEMENTS An element is said to be linear (device is linear if it is characterized by an equation of the form y=mx, where m is constant) if its voltage-current characteristics is at all times a straight line through the origin. For example, 1) ACTIVE AND PASSIVE the current passive through a resistor is Active network elements are those proportional to the voltage applied which are capable of delivering power through it, and relation is expressed as to some external device. Specifically an V∝= IORV IR active element (energy sources like A linear element or network is one voltage and current sources) is capable which satisfies the principle of of delivering an average power greater superposition, i.e. the principle of than zero to some external device over homogeneity and additivity. An element an infinite time interval. For example, which does not satisfy the above ideal sources are active elements. principle is called a non linear element. Passive network elements are those which are capable only of receiving 4) LUMPED AND DISTRIBUTED power. A passive element is defined as Lumped elements are those elements one that cannot supply average power which are very small in size and in that is greater than zero over an infinite which simultaneous actions takes place © Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission for any given cause at the same instant dq ∴=vR of time.
Recommended publications
  • EE2003 Circuit Theory
    Chapter 10: Sinusoidal Steady-State Analysis 10.1 Basic Approach 10.2 Nodal Analysis 10.3 Mesh Analysis 10.4 Superposition Theorem 10.5 Source Transformation 10.6 Thevenin & Norton Equivalent Circuits 10.7 Op Amp AC Circuits 10.8 Applications 10.9 Summary 1 10.1 Basic Approach • 3 Steps to Analyze AC Circuits: 1. Transform the circuit to the phasor or frequency domain. 2. Solve the problem using circuit techniques (nodal analysis, mesh analysis, superposition, etc.). 3. Transform the resulting phasor to the time domain. Phasor Phasor Laplace xform Inv. Laplace xform Fourier xform Fourier xform Solve variables Time to Freq Freq to Time in Freq • Sinusoidal Steady-State Analysis: Frequency domain analysis of AC circuit via phasors is much easier than analysis of the circuit in the time domain. 2 10.2 Nodal Analysis The basic of Nodal Analysis is KCL. Example: Using nodal analysis, find v1 and v2 in the figure. 3 10.3 Mesh Analysis The basic of Mesh Analysis is KVL. Example: Find Io in the following figure using mesh analysis. 4 5 10.4 Superposition Theorem When a circuit has sources operating at different frequencies, • The separate phasor circuit for each frequency must be solved independently, and • The total response is the sum of time-domain responses of all the individual phasor circuits. Example: Calculate vo in the circuit using the superposition theorem. 6 4.3 Superposition Theorem (1) - Superposition states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltage across (or currents through) that element due to EACH independent source acting alone.
    [Show full text]
  • Chung-Ang University School of Electrical and Electronics Engineering
    Lecture 04 Chung-Ang University School of Electrical and Electronics Engineering Prof. Kwee-Bo SIM, Michael Circuit Theory Chapter 04 : Circuit Theorems Your success as an engineer will be directly proportional to your ability to communicate! - Charles K. Alexander ☞ Learning Objectives 2 Circuit Theory Chapter 04 : Circuit Theorems Your success as an engineer will be directly proportional to your ability to communicate! - Charles K. Alexander 4.1 Introduction A major advantage of analyzing circuits using Kirchhoff’s laws as we did in Chapter 3 is that we can analyze a circuit without tampering with its original configuration. A major disadvantage of this approach is that, for a large, complex circuit, tedious computation is involved. The growth in areas of application of electric circuits has led to an evolution from simple to complex circuits. To handle the complexity, engineers over the years have developed some theorems to simplify circuit analysis. Such theorems include Thevenin’s and Norton’s theorems. Since these theorems are applicable to linear circuits, we first discuss the concept of circuit linearity. In addition to circuit theorems, we discuss the concepts of superposition, source transformation, and maximum power transfer in this chapter. The concepts we develop are applied in the last section to source modeling and resistance measurement. 3 Circuit Theory Chapter 04 : Circuit Theorems Your success as an engineer will be directly proportional to your ability to communicate! - Charles K. Alexander 4.2 Linear Property (1/2) Linearity is the property of an element describing a linear relationship between cause and effect. Although the property applies to many circuit elements, we shall limit its applicability to resistors in this chapter.
    [Show full text]
  • Chapter 5: Circuit Theorems
    Chapter 5: Circuit Theorems 1. Motivation 2. Source Transformation 3. Superposition (2.1 Linearity Property) 4. Thevenin’s Theorem 5. Norton’s Theorem 6. Maximum Power Transfer 7. Summary 1 5.1 Motivation If you are given the following circuit, are there any other alternative(s) to determine the voltage across 2Ω resistor? In Chapter 4, a circuit is analyzed without tampering with its original configuration. What are they? And how? Can we work it out by inspection? In Chapter 5, some theorems have been developed to simplify circuit analysis such as Thevenin’s and Norton’s theorems. The theorems are applicable to linear circuits. Discussion: Source Transformation, Linearity, & superposition. 2 5.2 Source Transformation (1) ‐ Like series‐parallel combination and wye‐delta transformation, source transformation is another tool for simplifying circuits. ‐ An equivalent circuit is one whose v-i characteristics are identical with the original circuit. ‐ A source transformation is the process of replacing a voltage source vs in series with a resistor R by a current source is in parallel with a resistor R, and vice versa. • Transformation of independent sources The arrow of the current + + source is directed toward the positive terminal of the voltage source. ‐ ‐ • Transformation of dependent sources The source transformation + + is not possible when R = 0 for voltage source and R = ∞ for current source. 3 ‐ ‐ 5.2 Source Transformation (1) A voltage source vs connected in series with a resistor Rs and a current source is is connected in parallel with a resistor Rp are equivalent circuits provided that Rp Rs & vs Rsis 4 5.2 Source Transformation (3) Example: Find vo in the circuit using source transformation.
    [Show full text]
  • Current Source & Source Transformation Notes
    EE301 – CURRENT SOURCES / SOURCE CONVERSION Learning Objectives a. Analyze a circuit consisting of a current source, voltage source and resistors b. Convert a current source and a resister into an equivalent circuit consisting of a voltage source and a resistor c. Evaluate a circuit that contains several current sources in parallel Ideal sources An ideal source is an active element that provides a specified voltage or current that is completely independent of other circuit elements. DC Voltage DC Current Source Source Constant Current Sources The voltage across the current source (Vs) is dependent on how other components are connected to it. Additionally, the current source voltage polarity does not have to follow the current source’s arrow! 1 Example: Determine VS in the circuit shown below. Solution: 2 Example: Determine VS in the circuit shown above, but with R2 replaced by a 6 k resistor. Solution: 1 8/31/2016 EE301 – CURRENT SOURCES / SOURCE CONVERSION 3 Example: Determine I1 and I2 in the circuit shown below. Solution: 4 Example: Determine I1 and VS in the circuit shown below. Solution: Practical voltage sources A real or practical source supplies its rated voltage when its terminals are not connected to a load (open- circuited) but its voltage drops off as the current it supplies increases. We can model a practical voltage source using an ideal source Vs in series with an internal resistance Rs. Practical current source A practical current source supplies its rated current when its terminals are short-circuited but its current drops off as the load resistance increases. We can model a practical current source using an ideal current source in parallel with an internal resistance Rs.
    [Show full text]
  • Source Transformation
    1 HW Chapter 10: 14, 20, 26, 44, 52, 64, 74, 92. Henry Selvaraj 2 Source Transformation • Source transformation in frequency domain involves transforming a voltage source in series with an impedance to a current source in parallel with an impedance. • Or vice versa: Vs VZIsss I s Zs Henry Selvaraj 3 Example: using the source transformation method. We transform the voltage source to a current source and obtain the circuit. Convert the current source to a voltage source Henry Selvaraj 4 Thevenin and Norton Equivalency • Both Thevenin and Norton’s theorems are applied to AC circuits the same way as DC. • The only difference is the fact that the calculated values will be complex. VZIZZTh N N Th N Henry Selvaraj 5 Example • Find the Thevenin and Norton equivalent circuits at terminals a-b for each of the circuit. Henry Selvaraj 6 Op Amp AC Circuits • As long as the op amp is working in the linear range, frequency domain analysis can proceed just as it does for other circuits. • It is important to keep in mind the two qualities of an ideal op amp: – No current enters either input terminals. – The voltage across its input terminals is zero with negative feedback. Henry Selvaraj 7 Example if vs =3 cos 1000t V. frequency-domain equivalent Henry Selvaraj Example contd… 8 Applying KCL at node 1, Henry Selvaraj 9 Example For the differentiator shown in Fig. obtainVo/Vs. Find vo(t) when vs (t) = Vm sin ωt and ω = 1/RC. Henry Selvaraj 10 Example Henry Selvaraj 11 Application • The op amp circuit shown here is known as a capacitance multiplier.
    [Show full text]
  • Concept Inventory Assessment Instruments for Circuits Courses
    AC 2011-1962: CONCEPT INVENTORY ASSESSMENT INSTRUMENTS FOR CIRCUITS COURSES Tokunbo Ogunfunmi, Santa Clara University TOKUNBO OGUNFUNMI, Ph.D., P.E. is the Associate Dean for Research and Faculty Development in the School of Engineering at Santa Clara University, Santa Clara, California. He is also an Associate Professor of Electrical Engineering and Director of the Signal Processing Research Lab. (SPRL). He earned his BSEE (First Class Honors) from Obafemi Awolowo University (formerly University of Ife), Nigeria, his MSEE and PhDEE from Stanford University, Stanford, California. His teaching and research interests span the areas of Circuits and Systems, Digital Signal Processing (theory, applications and implementations), Adaptive Systems, VLSI/ASIC Design and Multimedia Signal Processing. He is a Senior Member of the IEEE, Member of Sigma Xi, AAAS and ASEE. Mahmudur Rahman, Santa Clara University Dr. Mahmudur Rahman received M.S. Engg. and Dr. Engg. from Tokyo Institute of Technology, and then worked as a research scientist in NEC Corporation at Tamagawa, Tokyo, Japan during 1981 -1985. He ac- tively co-organized 1st through 5th International Conference on Silicon Carbide and Related Materials in various capacities including Conference Chair and Editor of Conference Proceedings during 1987-1993. Presently he is an Associate Professor of Electrical Engineering and Director of the Electron Devices Laboratory at Santa Clara University. His current research interests include: i) Stable High Current Den- sity Carbon Nanotube Cold Field Emission Electron Source Technology ii) Wavelet Approach to Sys- tematic Quantitative Characterization of Surface Nanostructures of Thin-Films based on Scanning Probe Microscopy, iv) Statistical and Temperature Map Dependent Electromigration Modeling and Simulation of Deep-Submicron Processes Applied to Design for Manufacturing, v) Low Cost Efficient Thin-film Organic Solar Cells by Optimization of Pentacene/Fullerene Interface.
    [Show full text]
  • Fundamentals of Electrical Circuits
    Fundamentals of Electrical Circuits Printed September 2016 First printed in 2007 Background and Acknowledgements This material is intended for the first course sequence in Electrical Engineering focused on Electrical Circuit Analysis and Design. The content is derived from the author’s educational, engineering and management career, and teaching experience. Additionally, the following resources have informed the development of content and format: Katz, R. Contemporary Logic Design . (2005) Pearson. Wakerly, I. Digital Design . (2001) Prentice Hall. Sandige, R. Digital Design Essentials . (2002) Prentice Hall. Nilsson, J. Electrical Circuits . (2004) Pearson. MathWorks. MATLAB Reference Material Version R2000a . (2007) MathWorks I would like to extend special thanks to the many students and colleagues for their contributions in making this material a more effective learning tool. Further, I would invite the reader to forward corrections, additional topics, examples and problems to me for future updates. Thanks, Izad Khormaee www.EngrCS.com © 2009 Izad Khormaee, All Rights Reserved. Fundamentals of Electrical Circuits, V3.6 Page 2 Table of Contents CHAPTER 1. INTRODUCTION .............................................................................................................................. 6 1.1. OVERVIEW OF ELECTRICAL ENGINEERING .......................................................................................................... 7 1.2. PROBLEM SOLVING .............................................................................................................................................
    [Show full text]
  • Voltage/Current Sources & Source Transformations
    ELL 100 - Introduction to Electrical Engineering LECTURE 3: ANALYSIS OF DC CIRCUITS VOLTAGE/CURRENT SOURCES & SOURCE TRANSFORMATIONS Outline Introduction Voltage and Current Sources Passive Sign Convention Series and Parallel Connection of Sources Node, Branches and Loops Series and Parallel Elements Source Transformation Exercise/Numerical Analysis Unsolved Problems References 2 INTRODUCTION Electrical Circuits seem to be everywhere! 3 INTRODUCTION Analysis of Circuits implies: • Finding voltage across any element of the circuit. • Finding current through any element of the circuit. 4 INTRODUCTION Analysis of Circuits Modern trains are powered by electric Knowledge of circuit analysis enable oneself to motors. Their electrical systems are best use circuit simulator developed for students to analyzed using AC or phasor analysis learn analog, digital, and power electronics. techniques. 5 INTRODUCTION Circuit representation of a Physical Transformer Knowledge of circuit analysis helps to analyse any electrical device with their equivalent circuit representation. 6 INTRODUCTION DC Shunt Motor Lf Ra Circuit representation of a DC Shunt Motor Vdc A Rf AA 7 INTRODUCTION iPad Charger with internal Circuitry Internal Circuitry 8 INTRODUCTION Single Phase Inverter Internal Circuitry AC Load IAC IDC t t 9 INTRODUCTION Single phase diode bridge rectifier Equivalent Circuit 10 INTRODUCTION DC-DC step down converter Equivalent Circuit Regulated DC Output 11 INTRODUCTION Lighting System Parallel Connection Break in wire 220 or 110 volt AC Supply Rest of the bulbs are ON except the parallel path with break in circuit. 12 INTRODUCTION Lighting System Series Connection 220 or 110 volt Break AC Supply in wire Rest of the bulbs are OFF after breaking point. Correct? 13 INTRODUCTION Lighting System Series Connection 220 or 110 volt Break AC Supply in wire X No! TheseRest 2 bulbsof the will bulbs also be are OFF.
    [Show full text]
  • Laboratory Experiment 6 Pre-Reading Circuit Theorems ©2008 by Professor Mohamad H
    ECE 3300 Electrical Circuits: Laboratory Experiment 6 Pre-Reading Circuit Theorems ©2008 by Professor Mohamad H. Hassoun In this experiment, the student will verify two important circuit theorems: Thevenin’s Theorem and the Maximum Power Transfer Theorem. Learning Objectives By the end of this unit, the student should be able to build simple resistive circuits, powered by independent sources, and employ laboratory measurements to: Experimentally obtain the Thevenin equivalent circuit. Employ source transformation to the Thevenin circuit to obtain the Norton equivalent circuit. Experimentally verify the Maximum Power Transfer Theorem. Thevenin’s Theorem Back in 1883, a French engineer by the name M. L. Thevenin had developed a theorem that allows a portion of a complex resistive circuit to be reduced to a simple circuit consisting of a voltage source in series with a resistor. This simple circuit is called the Thevenin equivalent circuit. The following is a formal statement of Thevenin’s Theorem: For any circuit of resistive elements and power sources (current and/or voltage) with an identified terminal pair a-b, the circuit can be replaced by a series combination of an ideal voltage source vt and a resistor Rt. Here, the Thevenin voltage vt is the voltage across a-b (or the open-circuit voltage, voc) and Rt (the Thevenin resistance) is the ratio of the open-circuit voltage to the short-circuit current (isc) at the terminal pair a-b. Once the terminal pair a-b has been identified, the Thevenin equivalent circuit can be easily obtained, experimentally, by making one voltage measurement and one current measurement.
    [Show full text]
  • Response of First Order RL and RC Circuits
    Response of First Order RL and RC Circuits First Order Circuits: Overview In this chapter we will study circuits that have dc sources, resistors, and either inductors or capacitors (but not both). Such circuits are described by first order differential equations. They will include one or more switches that open or close at a specific point in time, causing the inductor or capacitor to see a new circuit configuration. This in turn will cause a time-dependent change in voltages and currents. We will find that the equations describing the voltages and currents in these circuits (i.e., the circuit responses) are exponential in time, and characterized by a single time constant. In other words, we will have responses of the form / ( ) ( ) − For the natural response, and ∝ / ( ) ( ) (1 ) − for the step response, where τ is the time constant ∝. These− are single time constant circuits. Natural response occurs when a capacitor or an inductor is connected, via a switching event, to a circuit that contains only an equivalent resistance (i.e., no independent sources). In that case, if the capacitor is initially charged with a voltage, or the inductor is initially carrying a current, the capacitor or inductor will release its energy to the resistance. The circuit below shows an inductor that was initially connected to a current source, which establishes a current in the inductor. The switching event at t = t0 results in the inductor being connected to only a resistance. In this case, the inductor current iL(t) will decrease exponentially in time. t = t0 R i (t) S L L R iS We next consider a capacitor initially connected to a voltage source, which establishes a voltage across the capacitor.
    [Show full text]
  • Src Transformation & Thevenin
    2/19/20 Overview • Review concepts of • Voltage Equivalent Circuits: • Req Thevenin Theorem • Thevenin Equivalent Circuit • Equivalent Vs-with-series-R • “Equivalent” V-I-R Behavior to an actual power supply or EGR 220, Chapter 4.5 - 4.11 ‘driving’ circuit. (not section 4.9) February 20, 2020 2 1 2 Equivalent Resistance •Equivalent circuits concept • Equivalent resistance and voltage are terminal- dependent a) IndistinguishaBle from each other, • Ohm’s Law tells us that V = I*R so… b) …In terms of the V – I – Req characteristics, V • R = /I c) …At the specified terminals (nodes) • Electrical resistance is the ratio of: • The (open circuit) voltage across a pair of nodes to • The (short circuit) through the pair of nodes 3 4 3 4 1 2/19/20 Source Transformation & Equivalents Source Transformation • Voltage Vab and Req can Be measured across any nodes of any device or circuit. • We are interested in this measured orcalculated V – I – R behavior Isc v v = i R!!!!!!!!!!!!! ⇔ !!!!!!!!!!!!!i = s s s s R Req • Caution: maintain polarity of sources (“sc” = short circuit; “oc” = open circuit) 5 6 Your Mission Will your computer melt/do nothing? • Find two circuits with equivalent behavior with 1) 1 current source + 1 resistor 2) 1 voltage source + 1 resistor • If you design a power source with output of • I = ∞� à Your computer will melt Find Voc and Isc • V = 0� à Your computer will Be a paper weight 7 8 7 8 2 2/19/20 Will your computer melt/do nothing? Later: Can these be equivalent? Find Voc and Isc 9 10 9 10 Later: Can these be equivalent? Later: Can these be equivalent? 11 12 11 12 3 2/19/20 • Find i in the circuit below Source Transformation • Find i in the circuit below 13 14 Thevenin Equivalent Thevenin Equivalent – Process 1) Find RTh: ⏚ 2) Find VTh: 15 16 15 16 4 2/19/20 Thevenin Equivalent – Process Thevenin Equivalent – Process 1) Find RTh: 1) Find RTh: a) Remove the load resistor (if there is one) a) Remove the load resistor (if there is one) b) Set all (independent) sources equal to zero.
    [Show full text]
  • ELEC 221 Final Exam Workbook
    ELEC 221 Final Exam Workbook ELEC 221 Workbook 1.1 Definitions and Equations Voltage: Amount of potential energy difference between two points. Energy required per unit charge for separation. Measured in volts. 푑푤 푣 = 푑푞 Where v = voltage (V), w = energy (J), q = charge (C) Current: Rate of charge flow. Measured in amps. 푑푞 푖 = 푑푡 Where i = current (A), q = charge (C), t = time (s) Power: Time rate of expending or absorbing energy. Measured in watts. 푑푤 푝 = 푑푡 Where p = power (W), w = energy (J), t = time (s) Conservation of Energy: Total power delivered = total power absorbed. Energy can only be transferred. ∑푝 = 0 Where p = power (W) 1.2 Basic Circuit Elements Resistor: A device having a designed resistance that electric current can flow through. R = Resistance, measured in 푣 = 푖 ∙ 푅 Ohms (Ω) 푝 = 푣 ∙ 푖 Switches: Two positions open and closed. Current cannot flow through an open circuit as there is no path. Open Circuit: i = 0, no current flow Short Circuit: Can have current flow, v = 0 due to no resistance 1 of 22 ELEC 221 Workbook Independent Sources: An idealized circuit component that fixes the voltage or current in a branch. Ideal Voltage Source Ideal Current Source Dependent Sources: A voltage or current source whose value depends on a voltage or current somewhere else in the network. Usually represented by a diamond shape. Dependent Voltage Source Dependent Current Source 1.3 Kirchhoff’s Laws Kirchhoff’s Current Law: The sum of the currents entering a node is zeros. (The incoming currents must equal the outgoing currents).
    [Show full text]