Conceptual Model Analysis of the Influence of Temperature

Total Page:16

File Type:pdf, Size:1020Kb

Conceptual Model Analysis of the Influence of Temperature Conceptual Model Analysis of the Influence of Temperature Feedbacks on Polar Amplification Ashley E. Payne August 16, 2015 1 Introduction Polar amplification, the increased response of surface warming at high latitudes to radia- tive forcing relative to the global mean, is found in idealized models, paleoclimate records and in observations of the Arctic [3, 4, 7]. However, attribution of its causes is a complex problem because of the high degree of interaction between the different mechanisms at work. Recent research has focused on the role of longwave feedbacks in polar amplification. Win- ton [2006] used twelve climate models from the fourth IPCC assessment report to compare the relative magnitudes of various feedbacks in the Arctic and globally for CO2 doubling in 1%/year CO2 increase experiments. He found that a large portion of the enhanced warming in the Arctic is attributable to the effect of longwave feedbacks, which include cloud, water vapor and temperature effects. Neutralizing the surface albedo feedback at high latitudes by replacing it by its global mean value in the feedback calculation still resulted in some degree of Arctic amplification relative to the global mean, indicating that the surface albedo feedback is important, but not dominant, in explaining polar amplification. The temperature feedback can be broken into the Planck feedback, the background equilib- rium response of the climate system, and the lapse rate feedback, the non-uniform change in temperature vertically. Both have been argued to be important to polar amplification in re- cent work. Pithan and Mauritsen [2014] performed a feedback analysis on data from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and found that the tempera- ture feedback dominates Arctic amplification, attributing this dominance to the interaction between the Planck feedback and the lapse rate feedback. Pithan and Mauritsen [2014] at- tribute a large part of the polar amplification to the Planck response itself, arguing that colder temperatures, as found at high latitudes relative to the low latitudes, require greater temperature increases for a given radiative forcing. The role of the lapse rate feedback in relation to the surface albedo feedback was investigated in Graversen et al. [2014] . By sup- pressing the lapse rate feedback in Community Climate System Model, version 4 (CCSM4) simulations, they found that a portion of polar amplification can be explained by its effect at high latitudes. However, the high level of interaction with the surface albedo feedback makes it difficult to consider the lapse rate independently. 317 The complexity of the problem highlights the importance of a simplified approach to gain in- sight into the roles of the Planck feedback and the lapse rate feedback on polar amplification. Here, we use a hierarchy of simple conceptual models to isolate the two different feedbacks and investigate whether (and if so, how much) polar amplification can be attributed to each. As discussed in Pithan and Mauritsen [2014], the Planck feedback is indeed much weaker in the colder high-latitudes. However, we argue that this by itself cannot cause polar am- plification. Instead, it is the qualitative difference in the lapse rate response between the low- and high-latitudes which is expected to contribute to polar amplification. While the low-latitude lapse rate is set by moist convection and is expected to decrease with increasing temperatures, leading to a negative lapse rate feedback, in the high-latitudes, models gen- erally suggest a destabilization of the vertical temperature profile with warming [6], leading to positive lapse rate feedback. The paper is organized as follows. In section 2, we describe our model setup, data, and method of quantifying feedback parameters. In section 3 we describe the radiative equilib- rium response of surface temperature to increases in emissivity in a simple two-layer energy balance model. Against this equilibrium baseline, we investigate the Planck feedback and the lapse rate feedback in sections 4 and 5, respectively, using a hierarchy of models. In section 6, we look at the impact of these feedbacks on polar amplification, with and without the water vapor feedback. We summarize our results and future directions in section 7. 2 Data and Methods 2.1 Models Figure 1: Illustration of a simple two-layer energy balance model with a surface layer and an atmospheric layer. Fs is the incoming solar radiation, Fa is atmospheric heat transport, Ts is the temperature of the surface layer, Ta is the temperature of the atmospheric layer, a is the atmospheric emissivity and σ is the Stefan-Boltzmann constant. We investigate the role of the longwave temperature feedback using a hierarchy of simple models. The simplest is a two-layer one-dimensional energy balance model (EBM), in which the system is represented by two layers; the bottom layer represents the planetary boundary layer and the top layer represents the free troposphere (Fig. 1). Energy input to the system 318 is in the form of solar insolation, Fs and meridional atmospheric heat transport, Fa, which can be turned on or off. The temperatures of the surface layer and the atmospheric layer are represented by Ts and Ta, respectively. The influence of increasing CO2 concentration on warming is translated as increases in atmospheric emissivity, a, which is assumed to be less than one. For this simple model, we can write a system of equations that describe the balance of radiation in the two layers: dT C s = F + σT 4 σT 4, (1) s dt s a a − s dT C a = F + σT 4 2 σT 4, (2) a dt a a s − a a where, Cs and Ca are the heat capacities of the surface and atmospheric layers, respectively. Annual Hard average adjustment insolation to moist lapse rate Region specific Fixed RH albedos 80% Latent heat ________ ________ flux turned off at the radiation convection surface 5m slab diffusion ________ ________ ocean turbulence coupler Figure 2: An illustration of the column model composed using the CliMT package, in which various components are linked through a coupler. To step up complexity, we use a 26-layer radiative-convective column model. The model is based on the Climate Modelling and Diagnostics Toolkit (CliMT), available as a Python wrapper to various existing Fortran components [1]. Figure 2 describes the package set-up, in which ocean, radiation, convection and turbulence components interact using a coupler. With the CliMT package we set up two different configurations. The first is a column model equivalent of the simple two-layer EBM described previously, in which a grey-gas ra- diative scheme is coupled to a slab ocean and a simple turbulence scheme. For this model, as well as for the simple two-layer EBM described previously, the role of water vapor is 319 not incorporated. The second model has an added level of complexity, with a multi-band radiative scheme based on the Column Radiation Model by the NCAR Community Climate Model (CCM3). In order to maintain the energy budget of the column model, but also to constrain the role of moisture, we turn off latent heat flux at the surface and fix relative humidity to 80% in the model troposphere and to zero in the model stratosphere. When considered, convection is parameterized by hard adjustment to the moist adiabatic lapse rate. For each timestep, the temperature profile of the moist adiabatic lapse rate is calculated from the surface temperature. The intersection of this profile and the model- calculated temperature profile is found and all temperatures below that level are adjusted to the moist adiabat. The additional heat to the column due to this adjustment is pulled from the slab ocean and assumes efficient redistribution of heat from the surface throughout the column. For the column model, in order to provide some level of comparison to the simple two- layer model, we use the average of the temperature profile between 500 and 600 hPa to represent the atmospheric temperature, Ta. 2.2 Data We use ERA-Interim reanalysis to constrain parameter values in the following analysis, cal- culated as the climatological mean of the zonal average. In the following analysis, we will consider a “high-latitude” (HL) column and a “low-latitude” (LL) column. Parameter val- ues for each of these columns are estimated based on ERA-Interim reanalysis data at 80◦N 2 and 20◦N, respectively. An average insolation value of 367 W m− is used for non-region specific calculations. To approximate the role of meridional atmospheric heat transport, we use the zonally av- 2 eraged vertically integrated convergence of total energy flux (W m− ) (Fig. 3a). In a given location, for the column models, we represent the atmospheric heating profile as a normal distribution that is capped at the tropopause and constrained to integrate to the value of 1 total energy flux corresponding to its latitude, converted to units of K day− (Fig. 3b). 2.3 Feedback analysis In order to quantify the contribution of the Planck and lapse rate feedbacks to changes in the surface temperature, we use the partial radiative perturbation method [9]. By this method, a feedback, λx, is represented as: ∂R ∂x λ = , (3) x ∂x ∂T s where R is the radiation at the top of the atmosphere (TOA) and Ts is the surface temper- ature. As our focus is on temperature feedbacks, Eqn. 3 becomes: ∂R ∂T λ = , (4) T ∂T ∂T s 320 100 ) -2 50 0 -50 Convergence (W m a -100 -90 0 90 Low-latitudes b High-latitudes 200 400 600 Pressure (hPa) 800 -3 -2 -1 0 1 2 3 Heating Rate (K day-1) Figure 3: (a) Meridional variation of zonally averaged total energy flux calculated from ERA-Interim reanalysis (climatological mean over 1979 to 2013).
Recommended publications
  • Thesis Paleo-Feedbacks in the Hydrological And
    THESIS PALEO-FEEDBACKS IN THE HYDROLOGICAL AND ENERGY CYCLES IN THE COMMUNITY CLIMATE SYSTEM MODEL 3 Submitted by Melissa A. Burt Department of Atmospheric Science In partial fulfillment of the requirements for the Degree of Master of Science Colorado State University Fort Collins, Colorado Summer 2008 COLORADO STATE UNIVERSITY April 29, 2008 WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR SUPERVISION BY MELISSA A. BURT ENTITLED PALEO-FEEDBACKS IN THE HYDROLOGICAL AND ENERGY CYCLES IN THE COMMUNITY CLIMATE SYSTEM MODEL 3 BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE. Committee on Graduate work ________________________________________ ________________________________________ ________________________________________ ________________________________________ ________________________________________ Adviser ________________________________________ Department Head ii ABSTRACT OF THESIS PALEO FEEDBACKS IN THE HYDROLOGICAL AND ENERGY CYCLES IN THE COMMUNITY CLIMATE SYSTEM MODEL 3 The hydrological and energy cycles are examined using the Community Climate System Model version 3 (CCSM3) for two climates, the Last Glacial Maximum (LGM) and Present Day. CCSM3, developed at the National Center for Atmospheric Research, is a coupled global climate model that simulates the atmosphere, ocean, sea ice, and land surface interactions. The Last Glacial Maximum occurred 21 ka (21,000 yrs before present) and was the cold extreme of the last glacial period with maximum extent of ice in the Northern Hemisphere. During this period, external forcings (i.e. solar variations, greenhouse gases, etc.) were significantly different in comparison to present. The “Present Day” simulation discussed in this study uses forcings appropriate for conditions before industrialization (Pre-Industrial 1750 A.D.). This research focuses on the joint variability of the hydrological and energy cycles for the atmosphere and lower boundary and climate feedbacks associated with these changes at the Last Glacial Maximum.
    [Show full text]
  • Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
    Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473.
    [Show full text]
  • Amplified Arctic Warming by Phytoplankton Under Greenhouse Warming
    Amplified Arctic warming by phytoplankton under greenhouse warming Jong-Yeon Parka, Jong-Seong Kugb,1, Jürgen Badera,c, Rebecca Rolpha,d, and Minho Kwone aMax Planck Institute for Meteorology, D-20146 Hamburg, Germany; bSchool of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea; cUni Climate, Uni Research & Bjerknes Centre for Climate Research, NO-5007 Bergen, Norway; dSchool of Integrated Climate system sciences, University of Hamburg, D-20146 Hamburg, Germany; and eKorea Institute of Ocean Science and Technology, Ansan 426-744, South Korea Edited by Christopher J. R. Garrett, University of Victoria, Victoria, BC, Canada, and approved March 27, 2015 (received for review September 1, 2014) Phytoplankton have attracted increasing attention in climate suggested substantial future changes in global phytoplankton, with science due to their impacts on climate systems. A new generation the opposite sign of their trends in different regions (15–17). Such of climate models can now provide estimates of future climate climate change-induced phytoplankton response would impact cli- change, considering the biological feedbacks through the development mate systems, given the aforementioned biological feedbacks. of the coupled physical–ecosystem model. Here we present the geo- Previous studies discovered an increase in the annual area- physical impact of phytoplankton, which is often overlooked in future integrated primary production in the Arctic, which is caused by the climate projections. A suite of future warming experiments using a fully thinning and melting of sea ice and the corresponding increase in coupled ocean−atmosphere model that interacts with a marine ecosys- the phytoplankton growing area (18, 19).
    [Show full text]
  • Cold Season Emissions Dominate the Arctic Tundra Methane Budget
    Cold season emissions dominate the Arctic tundra methane budget Donatella Zonaa,b,1,2, Beniamino Giolic,2, Róisín Commaned, Jakob Lindaasd, Steven C. Wofsyd, Charles E. Millere, Steven J. Dinardoe, Sigrid Dengelf, Colm Sweeneyg,h, Anna Kariong, Rachel Y.-W. Changd,i, John M. Hendersonj, Patrick C. Murphya, Jordan P. Goodricha, Virginie Moreauxa, Anna Liljedahlk,l, Jennifer D. Wattsm, John S. Kimballm, David A. Lipsona, and Walter C. Oechela,n aDepartment of Biology, San Diego State University, San Diego, CA 92182; bDepartment of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom; cInstitute of Biometeorology, National Research Council, Firenze, 50145, Italy; dSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; eJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099; fDepartment of Physics, University of Helsinki, FI-00014 Helsinki, Finland; gCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80304; hEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305; iDepartment of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; jAtmospheric and Environmental Research, Inc., Lexington, MA 02421; kWater and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775-7340; lInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775-7340; mNumerical Terradynamic Simulation
    [Show full text]
  • Downloaded 09/28/21 01:47 AM UTC 8414 JOURNAL of CLIMATE VOLUME 27
    15 NOVEMBER 2014 Z H A N G A N D L I 8413 A Simple Analytical Model for Understanding the Formation of Sea Surface Temperature Patterns under Global Warming* LEI ZHANG Department of Atmospheric Sciences, University of Hawai‘i at Manoa, Honolulu, Hawaii TIM LI Department of Atmospheric Sciences, University of Hawai‘i at Manoa, Honolulu, Hawaii, and Climate Dynamics Research Center/Earth System Modeling Center, International Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China (Manuscript received 13 May 2014, in final form 12 August 2014) ABSTRACT How sea surface temperature (SST) changes under global warming is critical for future climate projection because SST change affects atmospheric circulation and rainfall. Robust features derived from 17 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) include a much greater warming in high latitudes than in the tropics, an El Niño–like warming over the tropical Pacific and Atlantic, and a dipole pattern in the Indian Ocean. However, the physical mechanism responsible for formation of such warming patterns remains open. A simple theoretical model is constructed to reveal the cause of the future warming patterns. The result shows that a much greater polar, rather than tropical, warming depends primarily on present-day mean SST and surface latent heat flux fields, and atmospheric longwave radiation feedback associated with cloud change further enhances this warming contrast. In the tropics, an El Niño–like warming over the Pacific and Atlantic arises from a similar process, while cloud feedback resulting from different cloud regimes between east and west ocean basins also plays a role.
    [Show full text]
  • What the Geological Record Tells Us About Our Present and Future Climate
    Downloaded from http://jgs.lyellcollection.org/ by guest on October 2, 2021 Perspective Journal of the Geological Society https://doi.org/10.1144/jgs2020-239 | Vol. 178 | 2020 | jgs2020-239 Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate Caroline H. Lear1*, Pallavi Anand2, Tom Blenkinsop1, Gavin L. Foster3, Mary Gagen4, Babette Hoogakker5, Robert D. Larter6, Daniel J. Lunt7, I. Nicholas McCave8, Erin McClymont9, Richard D. Pancost10, Rosalind E.M. Rickaby11, David M. Schultz12, Colin Summerhayes13, Charles J.R. Williams7 and Jan Zalasiewicz14 1 School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, CF10 3AT, UK 2 School of Environment Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK 3 National Oceanography Centre Southampton, University of Southampton, European Way, Southampton, SO14 3ZH, UK 4 Geography Department, Swansea University, Swansea, SA2 8PP, UK 5 Lyell Centre, Heriot Watt University, Research Avenue South, Edinburgh, EH14 4AP, UK 6 British Antarctic Survey, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK 7 School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK 8 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK 9 Department of Geography, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK 10 School of Earth Sciences, University of Bristol, Wills Memorial
    [Show full text]
  • Tundra Ecosystems Observed to Be CO2 Sources Due to Differential Amplification of the Carbon Cycle
    Ecology Letters, (2013) 16: 1307–1315 doi: 10.1111/ele.12164 REVIEW AND SYNTHESIS Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle Abstract E. F. Belshe1* E. A. G. Schuur1 and Are tundra ecosystems currently a carbon source or sink? What is the future trajectory of tundra carbon B. M. Bolker2 fluxes in response to climate change? These questions are of global importance because of the vast quanti- 1 ties of organic carbon stored in permafrost soils. In this meta-analysis, we compile 40 years of CO2 flux Department of Biology, University observations from 54 studies spanning 32 sites across northern high latitudes. Using time-series analysis, of Florida, Gainesville, FL, 32611, we investigated if seasonal or annual CO2 fluxes have changed over time, and whether spatial differences USA in mean annual temperature could help explain temporal changes in CO flux. Growing season net CO 2Department of Mathematics and 2 2 uptake has definitely increased since the 1990s; the data also suggest (albeit less definitively) an increase in Statistics, McMaster University, Hamilton, ON, L8S 4K1, USA winter CO2 emissions, especially in the last decade. In spite of the uncertainty in the winter trend, we esti- mate that tundra sites were annual CO2 sources from the mid-1980s until the 2000s, and data from the last *Correspondence: 7 years show that tundra continue to emit CO2 annually. CO2 emissions exceed CO2 uptake across the E-mail: [email protected] range of temperatures that occur in the tundra biome. Taken together, these data suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis.
    [Show full text]
  • Connections Between Tropical and Polar Climate Change Lead Institution
    PROJECT TITLE: Connections between tropical and polar climate change Lead Institution: University of Exeter Lead Supervisor: Prof James Screen, University of Exeter, Mathematics Co-Supervisor: Dr Thomas Bracegirdle, British Antarctic Survey Co-Supervisor: Dr Doug Smith, Met Office, Hadley Centre Project Enquiries: [email protected] Arctic sea ice has declined rapidly in recent decades, in California drought has been linked to Arctic sea- large part due to manmade global warming. These two ice loss. Arctic sea-ice loss induces changes in the images visualise the summer sea ice cover in 1984 and global energy balance, effecting tropical rainfall. 2016, obtained from satellite observations. The thickest ice Decreased tropical convection then drives a is coloured whitest. This dramatic loss of sea ice may trigger northward propagating Rossby wave-train, further climatic changes across the planet, as far away as forming a ridge in the North Pacific, which steers the tropics. wet tropical air masses away from California. Project Background Despite being thousands of kilometres apart, climatic changes in the tropical and polar regions of the planet are highly interconnected. In recent decades, the Arctic has warmed more than twice as fast as the global average – a phenomenon known as Arctic amplification. Emerging evidence suggests that a substantial portion of Arctic warming may be driven remotely from the tropics. Yet, the atmospheric and oceanic processes through which the tropics influence the Arctic are not fully understood. There is also increasing recognition that the effects of Arctic warming are not limited to the Arctic: what happens in the Arctic doesn’t stay in the Arctic (see this explainer video: https://bit.ly/2Csj1Yg).
    [Show full text]
  • On the Causes of Mid-Pliocene Warmth and Polar Amplification
    This is a repository copy of On the causes of mid-Pliocene warmth and polar amplification. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/88182/ Version: Accepted Version Article: Lunt, DJ, Haywood, AM, Schmidt, GA et al. (3 more authors) (2012) On the causes of mid-Pliocene warmth and polar amplification. Earth and Planetary Science Letters, 321-32 (8). 128 - 138. ISSN 0012-821X https://doi.org/10.1016/j.epsl.2011.12.042 © 2012, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ *Manuscript Click here to view linked References On the causes of mid-Pliocene warmth and polar amplification Daniel J.
    [Show full text]
  • Arctic Climate Feedbacks: Global Implications
    for a living planet ARCTIC CLIMATE FEEDBACKS: GLOBAL IMPLICATIONS ARCTIC CLIMATE FEEDBACKS: GLOBAL IMPLICATIONS Martin Sommerkorn & Susan Joy Hassol, editors With contributions from: Mark C. Serreze & Julienne Stroeve Cecilie Mauritzen Anny Cazenave & Eric Rignot Nicholas R. Bates Josep G. Canadell & Michael R. Raupach Natalia Shakhova & Igor Semiletov CONTENTS Executive Summary 5 Overview 6 Arctic Climate Change 8 Key Findings of this Assessment 11 1. Atmospheric Circulation Feedbacks 17 2. Ocean Circulation Feedbacks 28 3. Ice Sheets and Sea-level Rise Feedbacks 39 4. Marine Carbon Cycle Feedbacks 54 5. Land Carbon Cycle Feedbacks 69 6. Methane Hydrate Feedbacks 81 Author Team 93 EXECUTIVE SUMMARY VER THE PAST FEW DECADES, the Arctic has warmed at about twice the rate of the rest of the globe. Human-induced climate change has Oaffected the Arctic earlier than expected. As a result, climate change is already destabilising important arctic systems including sea ice, the Greenland Ice Sheet, mountain glaciers, and aspects of the arctic carbon cycle including altering patterns of frozen soils and vegetation and increasing “Human-induced methane release from soils, lakes, and climate change has wetlands. The impact of these changes on the affected the Arctic Arctic’s physical systems, earlier than expected.” “There is emerging evidence biological and growing concern that systems, and human inhabitants is large and projected to grow arctic climate feedbacks throughout this century and beyond. affecting the global climate In addition to the regional consequences of arctic system are beginning climate change are its global impacts. Acting as the to accelerate warming Northern Hemisphere’s refrigerator, a frozen Arctic plays a central role in regulating Earth’s climate signifi cantly beyond system.
    [Show full text]
  • Article Will first Give a Brief Overview That
    Clim. Past, 11, 605–618, 2015 www.clim-past.net/11/605/2015/ doi:10.5194/cp-11-605-2015 © Author(s) 2015. CC Attribution 3.0 License. Interannual climate variability seen in the Pliocene Model Intercomparison Project C. M. Brierley Department of Geography, University College London, Gower St, London, WC1E 6BT, UK Correspondence to: C. M. Brierley ([email protected]) Received: 8 August 2014 – Published in Clim. Past Discuss.: 17 September 2014 Revised: 10 February 2015 – Accepted: 23 February 2015 – Published: 27 March 2015 Abstract. Following reconstructions suggesting weakened surface temperature estimates from geochemical proxies in- temperature gradients along the Equator in the early dicate that the tropical Pacific saw reduced zonal (Wara et al., Pliocene, there has been much speculation about Pliocene 2005) and meridional temperature gradients (Brierley et al., climate variability. A major advance for our knowledge 2009) in the early Pliocene. The gradient developed as time about the later Pliocene has been the coordination of mod- progressed but was still significantly reduced by the mid- elling efforts through the Pliocene Model Intercomparison Pliocene (Dowsett et al., 2012). These reduced temperature Project (PlioMIP). Here the changes in interannual modes of gradients are thought to have consequences for the climate sea surface temperature variability will be presented across variability of the period. Most discussions have centred on PlioMIP. Previously, model ensembles have shown little con- the behaviour of the El Niño–Southern Oscillation (ENSO) sensus in the response of the El Niño–Southern Oscillation – an interannual mode of climate variability whose warm, El (ENSO) to imposed forcings – either for the past or future.
    [Show full text]
  • Downloaded 10/09/21 01:40 AM UTC 1636 JOURNAL of CLIMATE VOLUME 25
    1MARCH 2012 R O H L I N G E T A L . 1635 Sea Surface and High-Latitude Temperature Sensitivity to Radiative Forcing of Climate over Several Glacial Cycles E. J. ROHLING,M.MEDINA-ELIZALDE, AND J. G. SHEPHERD School of Ocean and Earth Science, and National Oceanography Centre, Southampton, University of Southampton, Southampton, United Kingdom M. SIDDALL Department of Earth Sciences, University of Bristol, Bristol, United Kingdom J. D. STANFORD School of Ocean and Earth Science, and National Oceanography Centre, Southampton, University of Southampton, Southampton, United Kingdom (Manuscript received 17 September 2010, in final form 26 July 2011) ABSTRACT A compilation is presented of global sea surface temperature (SST) records that span around one glacial cycle or more, and it is compared with changes in the earth’s radiative balance over the last 520 000 years, as de- termined from greenhouse gas concentrations, albedo changes related to ice sheet area and atmospheric dust fluctuations, and insolation changes. A first scenario uses global mean values for the radiative changes, and a second scenario uses zonal means for 108 latitude bands for a more regionally specific perspective. On the orbital time scales studied here, a smooth increase of SST response from the equator to high latitudes is found when comparison is made to global mean radiative forcing, but a sharply ‘‘stepped’’ increase at 208–308 latitude when comparing with the more regionally specific forcings. The mean global SST sensitivities to radiative change are within similar limits for both scenarios, around 0.8 6 0.48C(Wm22)21. Combined with previous estimates of 1.3–1.5 times stronger temperature sensitivity over land, this yields an estimate for global climate sensitivity of 0.85 (20.4/10.5)8C(Wm22)21, close to previous estimates.
    [Show full text]