Explicit Convertibility Proofs in Pure Type Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to the Calculus of Inductive Constructions Christine Paulin-Mohring
Introduction to the Calculus of Inductive Constructions Christine Paulin-Mohring To cite this version: Christine Paulin-Mohring. Introduction to the Calculus of Inductive Constructions. Bruno Woltzen- logel Paleo; David Delahaye. All about Proofs, Proofs for All, 55, College Publications, 2015, Studies in Logic (Mathematical logic and foundations), 978-1-84890-166-7. hal-01094195 HAL Id: hal-01094195 https://hal.inria.fr/hal-01094195 Submitted on 11 Dec 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introduction to the Calculus of Inductive Constructions Christine Paulin-Mohring1 LRI, Univ Paris-Sud, CNRS and INRIA Saclay - ˆIle-de-France, Toccata, Orsay F-91405 [email protected] 1 Introduction The Calculus of Inductive Constructions (CIC) is the formalism behind the interactive proof assis- tant Coq [24, 5]. It is a powerful language which aims at representing both functional programs in the style of the ML language and proofs in higher-order logic. Many data-structures can be repre- sented in this language: usual data-types like lists and binary trees (possibly polymorphic) but also infinitely branching trees. At the logical level, inductive definitions give a natural representation of notions like reachability and operational semantics defined using inference rules. -
Proof-Assistants Using Dependent Type Systems
CHAPTER 18 Proof-Assistants Using Dependent Type Systems Henk Barendregt Herman Geuvers Contents I Proof checking 1151 2 Type-theoretic notions for proof checking 1153 2.1 Proof checking mathematical statements 1153 2.2 Propositions as types 1156 2.3 Examples of proofs as terms 1157 2.4 Intermezzo: Logical frameworks. 1160 2.5 Functions: algorithms versus graphs 1164 2.6 Subject Reduction . 1166 2.7 Conversion and Computation 1166 2.8 Equality . 1168 2.9 Connection between logic and type theory 1175 3 Type systems for proof checking 1180 3. l Higher order predicate logic . 1181 3.2 Higher order typed A-calculus . 1185 3.3 Pure Type Systems 1196 3.4 Properties of P ure Type Systems . 1199 3.5 Extensions of Pure Type Systems 1202 3.6 Products and Sums 1202 3.7 E-typcs 1204 3.8 Inductive Types 1206 4 Proof-development in type systems 1211 4.1 Tactics 1212 4.2 Examples of Proof Development 1214 4.3 Autarkic Computations 1220 5 P roof assistants 1223 5.1 Comparing proof-assistants . 1224 5.2 Applications of proof-assistants 1228 Bibliography 1230 Index 1235 Name index 1238 HANDBOOK OF AUTOMAT8D REASONING Edited by Alan Robinson and Andrei Voronkov © 2001 Elsevier Science Publishers 8.V. All rights reserved PROOF-ASSISTANTS USING DEPENDENT TYPE SYSTEMS 1151 I. Proof checking Proof checking consists of the automated verification of mathematical theories by first fully formalizing the underlying primitive notions, the definitions, the axioms and the proofs. Then the definitions are checked for their well-formedness and the proofs for their correctness, all this within a given logic. -
A Calculus of Constructions with Explicit Subtyping Ali Assaf
A calculus of constructions with explicit subtyping Ali Assaf To cite this version: Ali Assaf. A calculus of constructions with explicit subtyping. 2014. hal-01097401v1 HAL Id: hal-01097401 https://hal.archives-ouvertes.fr/hal-01097401v1 Preprint submitted on 19 Dec 2014 (v1), last revised 14 Jan 2016 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A calculus of constructions with explicit subtyping Ali Assaf September 16, 2014 Abstract The calculus of constructions can be extended with an infinite hierar- chy of universes and cumulative subtyping. In this hierarchy, each uni- verse is contained in a higher universe. Subtyping is usually left implicit in the typing rules. We present an alternative version of the calculus of constructions where subtyping is explicit. This new system avoids prob- lems related to coercions and dependent types by using the Tarski style of universes and by introducing additional equations to reflect equality. 1 Introduction The predicative calculus of inductive constructions (PCIC), the theory behind the Coq proof system [15], contains an infinite hierarchy of predicative universes Type0 : Type1 : Type2 : ... and an impredicative universe Prop : Type1 for propositions, together with a cumulativity relation: Prop ⊆ Type0 ⊆ Type1 ⊆ Type2 ⊆ ... -
Formalizing the Curry-Howard Correspondence
Formalizing the Curry-Howard Correspondence Juan F. Meleiro Hugo L. Mariano [email protected] [email protected] 2019 Abstract The Curry-Howard Correspondence has a long history, and still is a topic of active research. Though there are extensive investigations into the subject, there doesn’t seem to be a definitive formulation of this result in the level of generality that it deserves. In the current work, we intro- duce the formalism of p-institutions that could unify previous aproaches. We restate the tradicional correspondence between typed λ-calculi and propositional logics inside this formalism, and indicate possible directions in which it could foster new and more structured generalizations. Furthermore, we indicate part of a formalization of the subject in the programming-language Idris, as a demonstration of how such theorem- proving enviroments could serve mathematical research. Keywords. Curry-Howard Correspondence, p-Institutions, Proof The- ory. Contents 1 Some things to note 2 1.1 Whatwearetalkingabout ..................... 2 1.2 Notesonmethodology ........................ 4 1.3 Takeamap.............................. 4 arXiv:1912.10961v1 [math.LO] 23 Dec 2019 2 What is a logic? 5 2.1 Asfortheliterature ......................... 5 2.1.1 DeductiveSystems ...................... 7 2.2 Relations ............................... 8 2.2.1 p-institutions . 10 2.2.2 Deductive systems as p-institutions . 12 3 WhatistheCurry-HowardCorrespondence? 12 3.1 PropositionalLogic.......................... 12 3.2 λ-calculus ............................... 17 3.3 The traditional correspondece, revisited . 19 1 4 Future developments 23 4.1 Polarity ................................ 23 4.2 Universalformulation ........................ 24 4.3 Otherproofsystems ......................... 25 4.4 Otherconstructions ......................... 25 1 Some things to note This work is the conclusion of two years of research, the first of them informal, and the second regularly enrolled in the course MAT0148 Introdu¸c˜ao ao Trabalho Cient´ıfico. -
Proofs Are Programs: 19Th Century Logic and 21St Century Computing
Proofs are Programs: 19th Century Logic and 21st Century Computing Philip Wadler Avaya Labs June 2000, updated November 2000 As the 19th century drew to a close, logicians formalized an ideal notion of proof. They were driven by nothing other than an abiding interest in truth, and their proofs were as ethereal as the mind of God. Yet within decades these mathematical abstractions were realized by the hand of man, in the digital stored-program computer. How it came to be recognized that proofs and programs are the same thing is a story that spans a century, a chase with as many twists and turns as a thriller. At the end of the story is a new principle for designing programming languages that will guide computers into the 21st century. For my money, Gentzen's natural deduction and Church's lambda calculus are on a par with Einstein's relativity and Dirac's quantum physics for elegance and insight. And the maths are a lot simpler. I want to show you the essence of these ideas. I'll need a few symbols, but not too many, and I'll explain as I go along. To simplify, I'll present the story as we understand it now, with some asides to fill in the history. First, I'll introduce Gentzen's natural deduction, a formalism for proofs. Next, I'll introduce Church's lambda calculus, a formalism for programs. Then I'll explain why proofs and programs are really the same thing, and how simplifying a proof corresponds to executing a program. -
Type Theory and Applications
Type Theory and Applications Harley Eades [email protected] 1 Introduction There are two major problems growing in two areas. The first is in Computer Science, in particular software engineering. Software is becoming more and more complex, and hence more susceptible to software defects. Software bugs have two critical repercussions: they cost companies lots of money and time to fix, and they have the potential to cause harm. The National Institute of Standards and Technology estimated that software errors cost the United State's economy approximately sixty billion dollars annually, while the Federal Bureau of Investigations estimated in a 2005 report that software bugs cost U.S. companies approximately sixty-seven billion a year [90, 108]. Software bugs have the potential to cause harm. In 2010 there were a approximately a hundred reports made to the National Highway Traffic Safety Administration of potential problems with the braking system of the 2010 Toyota Prius [17]. The problem was that the anti-lock braking system would experience a \short delay" when the brakes where pressed by the driver of the vehicle [106]. This actually caused some crashes. Toyota found that this short delay was the result of a software bug, and was able to repair the the vehicles using a software update [91]. Another incident where substantial harm was caused was in 2002 where two planes collided over Uberlingen¨ in Germany. A cargo plane operated by DHL collided with a passenger flight holding fifty-one passengers. Air-traffic control did not notice the intersecting traffic until less than a minute before the collision occurred. -
The Theory of Parametricity in Lambda Cube
数理解析研究所講究録 1217 巻 2001 年 143-157 143 The Theory of Parametricity in Lambda Cube Takeuti Izumi 竹内泉 Graduate School of Informatics, Kyoto Univ., 606-8501, JAPAN [email protected] 京都大学情報学研究科 Abstract. This paper defines the theories ofparametricity for all system of lambda cube, and shows its consistency. These theories are defined by the axiom sets in the formal theories. These theories prove various important semantical properties in the formal systems. Especially, the theory for asystem of lambda cube proves some kind of adjoint functor theorem internally. 1Introduction 1.1 Basic Motivation In the studies of informatics, it is important to construct new data types and find out the properties of such data types. For example, let $T$ and $T’$ be data types which is already known. Then we can construct anew data tyPe $T\mathrm{x}T'$ which is the direct product of $T$ and $T’$ . We have functions left, right and pair which satisfy the following equations: left(pair $xy$) $=x$ , right(pair $xy$) $=y$ for any $x:T$ and $y:T’$ , $T\mathrm{x}T'$ pair(left $z$ ) right $z$ ) $=z$ for any $z$ : . As for another example, we can construct Lit(T) which is atype of lists whose components are elements of $T$ . We have the empty list 0as the elements of List(T), the functions (-,-), which is so called sons-pair, and listrec. These element and functions satisfy the following equations: $listrec()fe=e$, listrec(s,l) $fe=fx(listrec lfe)$ for any $x:T$, $l$ :List(T), $e:D$ and $f$ : $Tarrow Darrow D$, where $D$ is another type. -
Equality Is Typable in Semi-Full Pure Type Systems
Equality is typable in Semi-Full Pure Type Systems Vincent Siles Hugo Herbelin Ecole Polytechnique / INRIA / Laboratoire PPS INRIA / Laboratoire PPS Equipe πr2 Equipe πr2 23 avenue d’Italie, 75013 Paris, France 23 avenue d’Italie, 75013 Paris, France [email protected] [email protected] Abstract—There are two usual ways to describe equality in Surprisingly, showing the equivalence between those two a dependent typing system, one that uses an external notion definitions is difficult. Geuvers and Werner [7] early noticed of computation like beta-reduction, and one that introduces a that being able to lift an untyped equality to a typed one, typed judgement of beta-equality directly in the typing system. After being an open problem for some time, the general i.e. to turn a system with β-conversion into a system with equivalence between both approaches has been solved by judgmental equality requires to show Subject Reduction in Adams for a class of pure type systems (PTSs) called functional. the latter system: In this paper, we relax the functionality constraint and prove the equivalence for all semi-full PTSs by combining the ideas If Γ `e M : A and M β N then Γ `e M = N : A. of Adams with a study of the general shape of types in PTSs. As one application, an extension of this result to systems Subject Reduction requires the injectivity of dependent A with sub-typing would be a first step toward bringing closer products Πx :B : the theory behind a proof assistant such as Coq to its A C implementation. -
Polymorphism All the Way Up! from System F to the Calculus of Constructions
Programming = proving? The Curry-Howard correspondence today Second lecture Polymorphism all the way up! From System F to the Calculus of Constructions Xavier Leroy College` de France 2018-11-21 Curry-Howard in 1970 An isomorphism between simply-typed λ-calculus and intuitionistic logic that connects types and propositions; terms and proofs; reductions and cut elimination. This second lecture shows how: This correspondence extends to more expressive type systems and to more powerful logics. This correspondence inspired formal systems that are simultaneously a logic and a programming language (Martin-Lof¨ type theory, Calculus of Constructions, Pure Type Systems). 2 I Polymorphism and second-order logic Static typing vs. genericity Static typing with simple types (as in simply-typed λ-calculus but also as in Algol, Pascal, etc) sometimes forces us to duplicate code. Example A sorting algorithm applies to any list list(t) of elements of type t, provided it also receives then function t ! t ! bool that compares two elements of type t. With simple types, to sort lists of integers and lists of strings, we need two functions with dierent types, even if they implement the same algorithm: sort list int :(int ! int ! bool) ! list(int) ! list(int) sort list string :(string ! string ! bool) ! list(string) ! list(string) 4 Static typing vs. genericity There is a tension between static typing on the one hand and reusable implementations of generic algorithms on the other hand. Some languages elect to weaken static typing, e.g. by introducing a universal type “any” or “?” with run-time type checking, or even by turning typing o: void qsort(void * base, size_t nmemb, size_t size, int (*compar)(const void *, const void *)); Instead, polymorphic typing extends the algebra of types and the typing rules so as to give a precise type to a generic function. -
Investigation on the Typing of Equality in Type Systems Vincent Siles
Investigation on the typing of equality in type systems Vincent Siles To cite this version: Vincent Siles. Investigation on the typing of equality in type systems. Logic in Computer Science [cs.LO]. Ecole Polytechnique X, 2010. English. pastel-00556578 HAL Id: pastel-00556578 https://pastel.archives-ouvertes.fr/pastel-00556578 Submitted on 17 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole´ Polytechnique Th`ese de Doctorat Sp´ecialit´eInformatique Investigation on the typing of equality in type systems Pr´esent´ee et soutenue publiquement par Vincent Siles le 25 Novembre 2010 devant le jury compos´ede Bruno Barras Co-directeur de th`ese Gilles Barthe Rapporteur Roberto Di Cosmo Herman Geuvers Rapporteur Hugo Herbelin Co-directeur de th`ese Alexandre Miquel Rapporteur Randy Pollack Benjamin Werner Abstract Pure Type Systems are a good way to factorize the questions of meta-theory about a large family of type systems. They have been introduced as a gener- alization of Barendregt’s λ-cube, an abstraction of several type systems like the Simply Typed λ-Calculus, System F or the Calculus of Constructions. One critical detail of the Pure Type Systems is their conversion rule that allows to do computation at the level of types. -
The Girard–Reynolds Isomorphism
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Information and Computation 186 (2003) 260–284 www.elsevier.com/locate/ic The Girard–Reynolds isomorphism Philip Wadler ∗ Avaya Laboratories, 233 Mount Airy Road, Room 2C05, Basking Ridge, NJ 07920-2311, USA Received 8 February 2002; revised 30 August 2002 Abstract The second-order polymorphic lambda calculus, F2, was independently discovered by Girard and Reynolds. Girard additionally proved a Representation Theorem: every function on natural numbers that can be proved total in second-order intuitionistic predicate logic, P2, can be represented in F2. Reynolds additionally proved an Abstrac- tion Theorem: for a suitable notion of logical relation, every term in F2 takes related arguments into related results. We observe that the essence of Girard’s result is a projection from P2 into F2, and that the essence of Reynolds’s result is an embedding of F2 into P2, and that the Reynolds embedding followed by the Girard projection is the identity. The Girard projection discards all first-order quantifiers, so it seems unreasonable to expect that the Girard projection followed by the Reynolds embedding should also be the identity. However, we show that in the presence of Reynolds’s parametricity property that this is indeed the case, for propositions corresponding to inductive definitions of naturals or other algebraic types. © 2003 Elsevier Science (USA). All rights reserved. 1. Introduction Double-barrelled names in science may be special for two reasons: some belong to ideas so subtle that they required two collaborators to develop; and some belong to ideas so sublime that they possess two independent discoverers. -
A Type System for Certified Runtime Type Analysis
A Type System For Certified Runtime Type Analysis A Dissertation Presented to the Faculty of the Graduate School of Yale University in Candidacy for the Degree of Doctor of Philosophy by Bratin Saha Dissertation Director: Professor Zhong Shao December 2002 Abstract A Type System For Certified Runtime Type Analysis Bratin Saha 2002 Modern programming paradigms are increasingly giving rise to applications that require type information at runtime. For example, services like garbage collection, marshalling, and serializa- tion need to analyze type information at runtime. When compiling code which uses runtime type inspections, most existing compilers use untyped intermediate languages and discard type informa- tion at an early stage. Unfortunately, such an approach is incompatible with type-based certifying compilation. A certifying compiler generates not only the code but also a proof that the code obeys a security policy. Therefore, one need not trust the correctness of a compiler generating certified code, instead one can verify the correctness of the generated code. This allows a code consumer to accept code from untrusted sources which is specially advantageous in a networked environment. In practice, most certifying compilers use a type system for generating and encoding the proofs. These systems are called type-based certifying compilers. This dissertation describes a type system that can be used for supporting runtime type analysis in type-based certifying compilers. The type system has two novel features. First, type analysis can be applied to the type of any runtime value. In particular quantified types such as polymorphic and existential types can also be analyzed, yet type-checking remains decidable.