Astrophysical Applications of Gravitational Microlensing

Total Page:16

File Type:pdf, Size:1020Kb

Astrophysical Applications of Gravitational Microlensing Astrophysical Applications of Gravitational Microlensing Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Subo Dong, M.S. Graduate Program in Astronomy The Ohio State University 2009 Dissertation Committee: Professor Andrew Philip Gould, Advisor Professor Bernard Scott Gaudi Professor Krzysztof Zbigniew Stanek Copyright by Subo Dong 2009 ABSTRACT In this thesis, I present several astrophysical applications of Galactic and cosmological microlensing. The first few topics are on searching and characterizing extrasolar planets by means of high-magnification microlensing events. The detection efficiency analysis of the A 3000 event OGLE-2004-BLG-343 is presented. Due to max ∼ human error, intensive monitoring did not begin until 43 minutes after peak, at which point the magnification had fallen to A 1200. It is shown that, had a ∼ similar event been well sampled over the peak, it would have been sensitive to almost all Neptune-mass planets over a factor of 5 in projected separation and even would have had some sensitivity to Earth-mass planets. New algorithms optimized for fast evaluation of binary-lens models with finite-sources effects have been developed. These algorithms have enabled efficient and thorough parameter-space searches in modeling planetary high-magnification events. The detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb, discovered from an Amax = 628 event with severe finite-source effects, is reported. Detailed analysis yields a fairly precise planet/star mass ratio of q = (2.5+0.5) 10−3, while the planet/star −0.3 × ii projected separation is subject to a strong close/wide degeneracy. Photometric and astrometric measurements from Hubble Space Telescope, as well as constraints from higher order effects extracted from the ground-based light curve (microlens parallax, planetary orbital motion and finite-source effects) are used to constrain the nature of planetary event OGLE-2005-BLG-071Lb. Our primary analysis leads to the conclusion that the host is an M = 0.46 0.04 M M dwarf and that the planet ± ⊙ has mass M = 3.8 0.4 M , which is likely to be the most massive planet yet p ± Jupiter discovered that is hosted by an M dwarf. Next a spaced-based microlens parallax is determined for the first time using Spitzer and ground-based observations for binary-lens event OGLE-2005-SMC-001. The parallax measurement yields a projected velocityv ˜ 230 km s−1, the typical ∼ value expected for halo lenses, but an order of magnitude smaller than would be expected for lenses lying in the Small Magellanic Cloud (SMC) itself. Finally, I propose using quasar microlensing to probe Mg II and other absorption “cloudlets” with sizes 10−4.0 10−2.0pc in the intergalactic medium. ∼ − I show that significant spectral variability on timescales of months to years can be induced by such small-scale absorption “cloudlets” toward a microlensed quasar. With numerical simulations, I demonstrate the feasibility of applying this method to Q2237+0305, and I show that high-resolution spectra of this quasar in the near future would provide a clear test of the existence of such metal-line absorbing “cloudlets”. iii Dedicated to my mother and father iv ACKNOWLEDGMENTS In modern times, most of the necessities of people’s daily lives rely upon others, therefore, no matter how highly the lofty ideal of individual freedom is acclaimed, most people have to choose their jobs according to the needs of the society rather than following their inner voices (i.e., what they are interested in the most). I consider myself very lucky to have five years’ opportunity to pursue my childhood dream in becoming an astronomer with no financial burden. I am thankful to everyone who has made this possible. I thank Andy Gould for being an unparalleled advisor. He has taken immense care in guiding me along my path to becoming a scientist. His influence and help have permeated every aspect of my scientific activities as a graduate student. Whenever I need discussions or advice (or whenever he perceives me as needing them), he is always ready to offer them in most timely fashion. His excitement by new findings, creativity in novel ideas, and self-driven “Gung-ho” working spirit exhibit no trace of his age. It is difficult to describe how exhilarating an experience it is to work with him. v I thank Andy for being a truthful person – for being truthful to himself, to others, and to nature. I was initially intimidated by the way he spoke in morning coffee and colloquia. But I have come to realize that, if one is offended by sincere efforts to pursue the truth, or not offended by distortion or fabrication of facts and careless or superficial analyses, he/she is not a real scientist. I thank Andy for teaching me to be honest to data, to listen to what nature has to say rather than projecting one’s prejudices onto nature. I came to the United States certainly at an interesting time, when “the best and brightest” in the White House and on the Wall Street have drastically transformed the world’s social and economic orders. As a “Stranger in a Strange Land”, I appreciate Andy for many illuminating discussions that shed light on the perplexing and intriguing events in the U.S. and on the world stage. He observes the society at a vantage point beyond his ethnical, national, and cultural background. I never have to worry about offending him by expressing my honest views. I thank Andy for rallying a group of people (mostly astronomers) to have discussions on real-world events in a similar fashion as we discuss science. We attempt to distinguish between real and bogus information from various sources and analyze the events by confronting ideas against distilled evidence and data. Although I do not always agree with Andy, it has always been such a great time talking to him on almost anything. Next I thank my thesis committee members, Scott Gaudi and Kris Stanek. vi I first met Scott back when he was a postdoc at CfA. He has been providing unreserved encouragement and support to me since then. I have benefited greatly from his advice on science and professional development. I thank him for having led me to see the bright side when I was in depression or frustration. I admire his comprehensive knowledge in almost all branches of astronomy and his often amazingly deep physical intuition. I thank Kris for being friendly and humorous and willing to talk to me on any topic. I thank him for inspiring discussions that led to my first original workable science idea. I appreciate his insistence that scientific pictures should fundamentally be simple. He always has great insights into complexity and sees through irrelevant artificial obscuration. I hope I will be able to acquire even a fraction of his ability in seizing the moments by recognizing fleeting opportunities in astronomy. I am grateful to Rick Pogge, Chris Kochanek and many others in the department for providing a lot of great technical help and having interesting science discussions together. And I greatly appreciate many faculty in the department for creating an intellectually stimulating environment which is also very student-friendly. Daily coffee has become an indispensable part of my life. The department staff are always helpful, and I especially thank David Will for solving many of my computer problems. vii I have spent a great time with many graduate students and several postdocs at OSU. I first thank Zheng for having provided me many great advice when I first got to OSU, and for him being a role-model student and astronomer. He shows me how high someone with a similar background as me can possibly achieve in astronomy. I thank Jose, Vimal, Dale, Himel and others for having a lot of interesting discussions and experience together. And I appreciate having many great office mates, Frank, Molly, Ondrej, Kelly, Rob, Deokkeun, etc., during the last five years. Szymon and Xinyu have been great friends and colleagues. I could not possibly have finished my PhD work without many colleagues outside Ohio State. In particular, I thank Andrzej Udalski for being an exemplary astronomer. I never fail to be thrilled by the first-rate data he and the OGLE team have produced. A lot of crucial data I have analyzed come from many “amateur” astronomers: Jennie McCormick, Grant Christie and Berto Monard, to name a few. They are amateurs only in the sense that they are not paid for their observations, otherwise what they do are extraordinarily professional. Their fascination in the sky, enthusiasm and dedication have been a constant source of inspiration to me. I thank all my observer colleagues for offering me the privilege in being the first to see many beautiful light curves and realize the exotic extrasolar worlds that they reveal. The precious moments of discovery transcend anything else. viii I wish to express my deep gratitude to Profs. Dawei Yang, Tianyi Huang, Qiusheng Gu and Dr. Jin Zhu for their selfless help and great guidance at various important stages before I entered the graduate school. At last, I thank my mother and father, who put my education, both in acquiring knowledge and in being a decent member of the society, as the first priority in their life. Without their unequivocal support and sacrifice, I would have never been anywhere near the position I am at today to write this dissertation. ix VITA March 18, 1982 . Born – Chengde, Hebei, China 2004 ........................... B.S. Astronomy, Nanjing University, China 2004 – 2005 . University Fellow, The Ohio State University 2005 – 2006 .
Recommended publications
  • August 10Th 2019 August 2019 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message August 2019 Saturday, August 10th 2019 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Colleagues, Public Star Party follows at the I hope you found the third week of July exhilarating. The 50th Anniversary of the first Centennial Observatory moon landing was the common theme. I capped my observance by watching the C- SPAN replay of the CBS broadcast. It was not only exciting to watch the landing, but Club Officers to listen to Walter Cronkite and Wally Schirra discuss what Neil Armstrong and Buzz Robert Mayer, President Aldrin was relaying back to us. It was fascinating to hear what we have either accepted or rejected for years come across as something brand new. Hearing [email protected] Michael Collins break in from his orbit above in the command module also reminded me of the major role he played and yet others in the past have often overlooked – Gary Leavitt, Vice President fortunately, he is now receiving the respect he deserves. If you didn’t catch that, [email protected] then hopefully you caught some other commemoration, such as Turner Classic Movies showing For All Mankind, a spellbinding documentary of what it was like for Dr. Jay Hartwell, Secretary all of the Apollo astronauts who made it to the moon. Jim Tubbs, Treasurer / ALCOR For me, these moments of commemoration made reading the moon landing’s [email protected] anniversary issue from the Association of Lunar and Planetary Observers (ALPO) 208-404-2999 come to life as they wrote about the features these astronauts were examining – including the little craters named after the three astronauts.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • On the Variability of the Visual Binary WR 86?
    A&A 384, 1012–1022 (2002) Astronomy DOI: 10.1051/0004-6361:20020085 & c ESO 2002 Astrophysics On the variability of the visual binary WR 86? WC7 with a β-Cephei companion S. J. Paardekooper1,P.M.Veen1,A.M.vanGenderen1, and K. A. van der Hucht2 1 Leiden Observatory, Postbus 9513, 2300 RA Leiden, The Netherlands 2 SRON National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands Received 30 August 2001 / Accepted 15 January 2002 Abstract. We discuss the variability of WR 86 (WC7 (+B0 III)), a known visual binary, confirmed by Hubble Space Telescope observations (Niemela et al. 1998). Photometric observations show a fairly smooth light curve with a time scale of ∼3.5 h and a light amplitude of ∼0m. 01. Because of the spectral classification of the visual companion (B0 III) it might well be a β-Cephei star. From observations taken in 1989, 1990 and 1995 we derive two photometric frequencies, 6.914 cd−1 and 7.236 cd−1, where only the latter is given in the recent VIIth catalogue of galactic Wolf-Rayet stars (van der Hucht 2001). Our spectroscopy reveals a slightly variable WR star and almost certainly a pulsating companion. Comparison with stellar models suggests that WR 86 consists of a 20 M β-Cephei star in combination with a WR star of initial mass 40 M ,atZ =0.04. We derive a distance to WR 86 of 2.1 0.8kpc. Key words. stars: binaries: general – stars: Wolf-Rayet – stars: individual: WR 86 1. Introduction 2. Observations and reductions The Wolf-Rayet (WR) star WR 86 (HD 156327) is a well The 1989 and 1990 photometric observations were known visual binary of 000.
    [Show full text]
  • The Heavens in August a Study of Short Period Variables
    100 SCIENTIFIC,AMERlCAN July 31, 1915 The Heavens in August A Study of Short Period Variables By Prof. Henry Norris Russell, Ph.D. HE warm clear nights of summer offer the amateur which is marked on our map, .and the second lies about and but 18 minutes of arc apart, while Neptune is only T the best chance for star-gazing in all the year, and, two fifths of the way from this to () Ophiuchi (also a degree away on the other side. This simultaneous fortunately, he has one of the finest portions of the shown on the map) and is the only bright star near conjunction of three planets is rather remarkable, but, heavens at his command in the splendid region of the this line. The character of the variation is in both as they rise less than an hour earlier than the Sun, Milky Way, which stretches from Cassiopeia and cases very similar to that of the stars previously de­ Neptune will be utterly invisible, though the other two Cygnus through Aquila to Sagittarius and Scorpio, and scribed. w Sagittarii varies from magnitude 4.3 to 5.1 planets may easily be seen with a telescope (provided forms a vast circle right across the summit of the vault in a period of 7.595 days, the ris� in brightness taking with suitable finding circles ) even in broad daylight, of heaven. about half as long as the fall, and the maximum being and in the same low-power field. The veriest novice can learn in an hour to identify a little more than twice the minimum light.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Instrumental Methods for Professional and Amateur
    Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A.
    [Show full text]
  • Chemical Evolution of the Galactic Bulge As Traced by Microlensed Dwarf and Subgiant Stars: II
    UvA-DARE (Digital Academic Repository) Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars: II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc Bensby, T.; Feltzing, S.; Johnson, J.A.; Gould, A.; Adén, D.; Asplund, M.; Meléndez, J.; Gal- Yam, A.; Lucatello, S.; Sana, H.; Sumi, T.; Miyake, N.; Suzuki, D.; Han, C.; Bond, I.; Udalski, A. DOI 10.1051/0004-6361/200913744 Publication date 2010 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Bensby, T., Feltzing, S., Johnson, J. A., Gould, A., Adén, D., Asplund, M., Meléndez, J., Gal- Yam, A., Lucatello, S., Sana, H., Sumi, T., Miyake, N., Suzuki, D., Han, C., Bond, I., & Udalski, A. (2010). Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars: II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc. Astronomy & Astrophysics, 512, A41. https://doi.org/10.1051/0004- 6361/200913744 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material UvA-DAREinaccessible is a serviceand/or provided remove by it the from library the of website.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • Astronomy with Small Telescopes
    Astronomy With Small Telescopes Bohdan Paczy´nski Princeton University Observatory, Princeton, NJ 08544 [email protected] ABSTRACT The All Sky Automated Survey (ASAS) is monitoring all sky to about 14 mag with a cadence of about 1 day; it has discovered about 105 variable stars, most of them new. The instrument used for the survey had aperture of 7 cm. A search for planetary transits has lead to the discovery of about a dozen confirmed planets, so called ’hot Jupiters’, providing the information of planetary masses and radii. Most discoveries were done with telescopes with aperture of 10 cm. We propose a search for optical transients covering all sky with a cadence of 10 - 30 minutes and the limit of 12 - 14 mag, with an instant verification of all candidate events. The search will be made with a large number of 10 cm instruments, and the verification will be done with 30 cm instruments. We also propose a system to be located at the L1 point of the Earth - Sun system to detect ’killer asteroids’. With a limiting magnitude of about 18 mag it could detect 10 m boulders several hours prior to their impact, provide warning against Tunguska-like events, as well as to provide news about spectacular but harmless more modest impacts. Subject headings: techniques: photometric — surveys — celestial mechanics — mete- oroids — stars: variable — gamma rays: bursts arXiv:astro-ph/0609161v3 7 Nov 2006 1. Introduction The goal of this paper is to point out that there are many tasks for which small and even very small telescopes are not only useful, but even indispensable.
    [Show full text]
  • Cosmological Narrative in the Synagogues of Late Roman-Byzantine Palestine
    COSMOLOGICAL NARRATIVE IN THE SYNAGOGUES OF LATE ROMAN-BYZANTINE PALESTINE Bradley Charles Erickson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Religious Studies. Chapel Hill 2020 Approved by: Jodi Magness Zlatko Plese David Lambert Jennifer Gates-Foster Maurizio Forte © 2020 Bradley Charles Erickson ALL RIGHTS RESERVED ii ABSTRACT Bradley Charles Erickson: Cosmological Narrative in the Synagogues of Late Roman-Byzantine Palestine (Under the Direction of Jodi Magness) The night sky provided ancient peoples with a visible framework through which they could view and experience the divine. Ancient astronomers looked to the night sky for practical reasons, such as the construction of calendars by which time could evenly be divided, and for prognosis, such as the foretelling of future events based on the movements of the planets and stars. While scholars have written much about the Greco-Roman understanding of the night sky, few studies exist that examine Jewish cosmological thought in relation to the appearance of the Late Roman-Byzantine synagogue Helios-zodiac cycle. This dissertation surveys the ways that ancient Jews experienced the night sky, including literature of the Second Temple (sixth century BCE – 70 CE), rabbinic and mystical writings, and Helios-zodiac cycles in synagogues of ancient Palestine. I argue that Judaism joined an evolving Greco-Roman cosmology with ancient Jewish traditions as a means of producing knowledge of the earthly and heavenly realms. iii ACKNOWLEDGEMENTS I wish to express my sincere appreciation to my adviser, Dr.
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • Tracing the Outer Structure of the Sagittarius Dwarf Galaxy: Detections at Angular Distances Between 10 and 34 Degrees ∗
    Tracing the Outer Structure of the Sagittarius Dwarf Galaxy: Detections at Angular Distances Between 10 and 34 Degrees ∗ Mario Mateo1 e-mail: [email protected] Edward W. Olszewski2 e-mail: [email protected] Heather L. Morrison3 e-mail: [email protected] Received ; accepted ∗BasedonobservationsobtainedwiththeBlancoTelescopeatCTIO,whichisoperated by the National Optical Astronomy Observatory, under contract to AURA. 1Department of Astronomy, University of Michigan, 821 Dennison Bldg., Ann Arbor, MI 48109–1090 2Steward Observatory, 933 N. Cherry, University of Arizona, Tucson, AZ 85721-0065 3Cottrell Scholar of Research Corporation, and NSF Career Fellow; Department of Astronomy and Department of Physics, Case Western Reserve University, Cleveland OH 44106 –2– ABSTRACT We have obtained deep photometric data in 24 fields along the southeast extension of the major axis of the Sagittarius dwarf spheroidal (Sgr dSph) galaxy, and in four fields along the northwest extension. Using star counts at the expected position of the Sgr upper main-sequence within the resulting color-magnitude diagrams (CMDs), we unambiguously detect Sgr stars in the southeast over the range 10–34◦ from the galaxy’s center. If Sgr is symmetric, this implies a true major-axis diameter of at least 68◦, or nearly 30 kpc if all portions of Sgr are equally distant from the Sun. Star counts parallel to the galaxy’s minor-axis reveal that Sgr remains quite broad far from its center. This suggests that the outer portions of Sgr resemble a stream rather than an extension of the ellipsoidal inner regions of the galaxy. The inferred V-band surface brightness (SB) profile ranges from 27.3-30.5 mag arcsec−2 over this radial range and exhibits a change in slope ∼ 20◦ from the center of Sgr.
    [Show full text]