Astrophysical Applications of Gravitational Microlensing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
August 10Th 2019 August 2019 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message August 2019 Saturday, August 10th 2019 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Colleagues, Public Star Party follows at the I hope you found the third week of July exhilarating. The 50th Anniversary of the first Centennial Observatory moon landing was the common theme. I capped my observance by watching the C- SPAN replay of the CBS broadcast. It was not only exciting to watch the landing, but Club Officers to listen to Walter Cronkite and Wally Schirra discuss what Neil Armstrong and Buzz Robert Mayer, President Aldrin was relaying back to us. It was fascinating to hear what we have either accepted or rejected for years come across as something brand new. Hearing [email protected] Michael Collins break in from his orbit above in the command module also reminded me of the major role he played and yet others in the past have often overlooked – Gary Leavitt, Vice President fortunately, he is now receiving the respect he deserves. If you didn’t catch that, [email protected] then hopefully you caught some other commemoration, such as Turner Classic Movies showing For All Mankind, a spellbinding documentary of what it was like for Dr. Jay Hartwell, Secretary all of the Apollo astronauts who made it to the moon. Jim Tubbs, Treasurer / ALCOR For me, these moments of commemoration made reading the moon landing’s [email protected] anniversary issue from the Association of Lunar and Planetary Observers (ALPO) 208-404-2999 come to life as they wrote about the features these astronauts were examining – including the little craters named after the three astronauts. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
On the Variability of the Visual Binary WR 86?
A&A 384, 1012–1022 (2002) Astronomy DOI: 10.1051/0004-6361:20020085 & c ESO 2002 Astrophysics On the variability of the visual binary WR 86? WC7 with a β-Cephei companion S. J. Paardekooper1,P.M.Veen1,A.M.vanGenderen1, and K. A. van der Hucht2 1 Leiden Observatory, Postbus 9513, 2300 RA Leiden, The Netherlands 2 SRON National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands Received 30 August 2001 / Accepted 15 January 2002 Abstract. We discuss the variability of WR 86 (WC7 (+B0 III)), a known visual binary, confirmed by Hubble Space Telescope observations (Niemela et al. 1998). Photometric observations show a fairly smooth light curve with a time scale of ∼3.5 h and a light amplitude of ∼0m. 01. Because of the spectral classification of the visual companion (B0 III) it might well be a β-Cephei star. From observations taken in 1989, 1990 and 1995 we derive two photometric frequencies, 6.914 cd−1 and 7.236 cd−1, where only the latter is given in the recent VIIth catalogue of galactic Wolf-Rayet stars (van der Hucht 2001). Our spectroscopy reveals a slightly variable WR star and almost certainly a pulsating companion. Comparison with stellar models suggests that WR 86 consists of a 20 M β-Cephei star in combination with a WR star of initial mass 40 M ,atZ =0.04. We derive a distance to WR 86 of 2.1 0.8kpc. Key words. stars: binaries: general – stars: Wolf-Rayet – stars: individual: WR 86 1. Introduction 2. Observations and reductions The Wolf-Rayet (WR) star WR 86 (HD 156327) is a well The 1989 and 1990 photometric observations were known visual binary of 000. -
The Heavens in August a Study of Short Period Variables
100 SCIENTIFIC,AMERlCAN July 31, 1915 The Heavens in August A Study of Short Period Variables By Prof. Henry Norris Russell, Ph.D. HE warm clear nights of summer offer the amateur which is marked on our map, .and the second lies about and but 18 minutes of arc apart, while Neptune is only T the best chance for star-gazing in all the year, and, two fifths of the way from this to () Ophiuchi (also a degree away on the other side. This simultaneous fortunately, he has one of the finest portions of the shown on the map) and is the only bright star near conjunction of three planets is rather remarkable, but, heavens at his command in the splendid region of the this line. The character of the variation is in both as they rise less than an hour earlier than the Sun, Milky Way, which stretches from Cassiopeia and cases very similar to that of the stars previously de Neptune will be utterly invisible, though the other two Cygnus through Aquila to Sagittarius and Scorpio, and scribed. w Sagittarii varies from magnitude 4.3 to 5.1 planets may easily be seen with a telescope (provided forms a vast circle right across the summit of the vault in a period of 7.595 days, the ris� in brightness taking with suitable finding circles ) even in broad daylight, of heaven. about half as long as the fall, and the maximum being and in the same low-power field. The veriest novice can learn in an hour to identify a little more than twice the minimum light. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Instrumental Methods for Professional and Amateur
Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A. -
Chemical Evolution of the Galactic Bulge As Traced by Microlensed Dwarf and Subgiant Stars: II
UvA-DARE (Digital Academic Repository) Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars: II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc Bensby, T.; Feltzing, S.; Johnson, J.A.; Gould, A.; Adén, D.; Asplund, M.; Meléndez, J.; Gal- Yam, A.; Lucatello, S.; Sana, H.; Sumi, T.; Miyake, N.; Suzuki, D.; Han, C.; Bond, I.; Udalski, A. DOI 10.1051/0004-6361/200913744 Publication date 2010 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Bensby, T., Feltzing, S., Johnson, J. A., Gould, A., Adén, D., Asplund, M., Meléndez, J., Gal- Yam, A., Lucatello, S., Sana, H., Sumi, T., Miyake, N., Suzuki, D., Han, C., Bond, I., & Udalski, A. (2010). Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars: II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc. Astronomy & Astrophysics, 512, A41. https://doi.org/10.1051/0004- 6361/200913744 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material UvA-DAREinaccessible is a serviceand/or provided remove by it the from library the of website. -
16Th HEAD Meeting Session Table of Contents
16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113 -
Astronomy with Small Telescopes
Astronomy With Small Telescopes Bohdan Paczy´nski Princeton University Observatory, Princeton, NJ 08544 [email protected] ABSTRACT The All Sky Automated Survey (ASAS) is monitoring all sky to about 14 mag with a cadence of about 1 day; it has discovered about 105 variable stars, most of them new. The instrument used for the survey had aperture of 7 cm. A search for planetary transits has lead to the discovery of about a dozen confirmed planets, so called ’hot Jupiters’, providing the information of planetary masses and radii. Most discoveries were done with telescopes with aperture of 10 cm. We propose a search for optical transients covering all sky with a cadence of 10 - 30 minutes and the limit of 12 - 14 mag, with an instant verification of all candidate events. The search will be made with a large number of 10 cm instruments, and the verification will be done with 30 cm instruments. We also propose a system to be located at the L1 point of the Earth - Sun system to detect ’killer asteroids’. With a limiting magnitude of about 18 mag it could detect 10 m boulders several hours prior to their impact, provide warning against Tunguska-like events, as well as to provide news about spectacular but harmless more modest impacts. Subject headings: techniques: photometric — surveys — celestial mechanics — mete- oroids — stars: variable — gamma rays: bursts arXiv:astro-ph/0609161v3 7 Nov 2006 1. Introduction The goal of this paper is to point out that there are many tasks for which small and even very small telescopes are not only useful, but even indispensable. -
Cosmological Narrative in the Synagogues of Late Roman-Byzantine Palestine
COSMOLOGICAL NARRATIVE IN THE SYNAGOGUES OF LATE ROMAN-BYZANTINE PALESTINE Bradley Charles Erickson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Religious Studies. Chapel Hill 2020 Approved by: Jodi Magness Zlatko Plese David Lambert Jennifer Gates-Foster Maurizio Forte © 2020 Bradley Charles Erickson ALL RIGHTS RESERVED ii ABSTRACT Bradley Charles Erickson: Cosmological Narrative in the Synagogues of Late Roman-Byzantine Palestine (Under the Direction of Jodi Magness) The night sky provided ancient peoples with a visible framework through which they could view and experience the divine. Ancient astronomers looked to the night sky for practical reasons, such as the construction of calendars by which time could evenly be divided, and for prognosis, such as the foretelling of future events based on the movements of the planets and stars. While scholars have written much about the Greco-Roman understanding of the night sky, few studies exist that examine Jewish cosmological thought in relation to the appearance of the Late Roman-Byzantine synagogue Helios-zodiac cycle. This dissertation surveys the ways that ancient Jews experienced the night sky, including literature of the Second Temple (sixth century BCE – 70 CE), rabbinic and mystical writings, and Helios-zodiac cycles in synagogues of ancient Palestine. I argue that Judaism joined an evolving Greco-Roman cosmology with ancient Jewish traditions as a means of producing knowledge of the earthly and heavenly realms. iii ACKNOWLEDGEMENTS I wish to express my sincere appreciation to my adviser, Dr. -
GTO Keypad Manual, V5.001
ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN! -
Tracing the Outer Structure of the Sagittarius Dwarf Galaxy: Detections at Angular Distances Between 10 and 34 Degrees ∗
Tracing the Outer Structure of the Sagittarius Dwarf Galaxy: Detections at Angular Distances Between 10 and 34 Degrees ∗ Mario Mateo1 e-mail: [email protected] Edward W. Olszewski2 e-mail: [email protected] Heather L. Morrison3 e-mail: [email protected] Received ; accepted ∗BasedonobservationsobtainedwiththeBlancoTelescopeatCTIO,whichisoperated by the National Optical Astronomy Observatory, under contract to AURA. 1Department of Astronomy, University of Michigan, 821 Dennison Bldg., Ann Arbor, MI 48109–1090 2Steward Observatory, 933 N. Cherry, University of Arizona, Tucson, AZ 85721-0065 3Cottrell Scholar of Research Corporation, and NSF Career Fellow; Department of Astronomy and Department of Physics, Case Western Reserve University, Cleveland OH 44106 –2– ABSTRACT We have obtained deep photometric data in 24 fields along the southeast extension of the major axis of the Sagittarius dwarf spheroidal (Sgr dSph) galaxy, and in four fields along the northwest extension. Using star counts at the expected position of the Sgr upper main-sequence within the resulting color-magnitude diagrams (CMDs), we unambiguously detect Sgr stars in the southeast over the range 10–34◦ from the galaxy’s center. If Sgr is symmetric, this implies a true major-axis diameter of at least 68◦, or nearly 30 kpc if all portions of Sgr are equally distant from the Sun. Star counts parallel to the galaxy’s minor-axis reveal that Sgr remains quite broad far from its center. This suggests that the outer portions of Sgr resemble a stream rather than an extension of the ellipsoidal inner regions of the galaxy. The inferred V-band surface brightness (SB) profile ranges from 27.3-30.5 mag arcsec−2 over this radial range and exhibits a change in slope ∼ 20◦ from the center of Sgr.