264 Estimating Percentage Dry Weight in Diets Using a Microscopic

Total Page:16

File Type:pdf, Size:1020Kb

264 Estimating Percentage Dry Weight in Diets Using a Microscopic 264 TECHNICAL NOTES Estimating Percentage Dry has evaluated the accuracy of the tech- species. Species of grasses were iden- Weight in Diets Using a nique for estimating dry-weight per- tified by the occurrence and *position centages of plants in the diets of herbi- of such specialized epidermal cells as Microscopic Technique1 vores. cork cells, silica cells, silica-suberose DONNIE R. SPARKS AND The objective of this study was to couples, and asperities. The size and determine if dry-weight composition of shape of the ,guard and subsidiary cells JOHN C. MALECHEKZ a mixture of grasses and forbs could of the stomata were also reliable diag- Graduate Research Assistants, Range be accurately estimated by a micro- nostic features. Science Department, Colorado State scopic technique. The mixed samples were analyzed University, Fort Collins. by examining five slide mounts of Methods and Materials each mixture under a compound bi- nocular microscope. Twenty locations Highlight Samples that contained known were systematically observed on each amounts of grasses and forbs were Percent composition by dry weight slide. A location was considered as an was accurately estimated for 15 mix- artificially mixed. Four mixtures con- area of the slide delineated by a micro- tures of plants that are found in the tained Arizona fescue (Festuca arizon- scope field using 125-power magnifica- diets of some herbivores. The mix- ica), mountain muhly (Muhlenbergia tion. Only those fragments that were tures were sampled by recording the montana), Pennsylvania cinquefoil (Po- recognized as epidermal tissue (other frequency of occurrence of each spe- tentilla pensylvanica), and fringed sage- cies in 100 microscope fields using 125- than hairs) were recorded as positive wort (Artemisia frigida). Eleven mix- power magnification, converting fre- evidence for the nresence of a slant tures included from two to four of the quency to density, and calculating rel- species at a locatidn on the slide. ‘Each following species: western wheatgrass * ative density as an estimate of percent species present for each location was (Agropyron smithii), prairie sandreed composition by dry weight. Dry weight recorded. Frequency percentages (num- (Calamovilfa Zongifolia), summercypress percentages were predicted directly ber of fields that the species occurred from relative density. The microscopic (Kochia scoparia), and alfalfa (Medi- in out of 100 locations) were tabulated technique reported in this paper would cage sa tiva) . for each species in the mixture. The be an accurate means of determining All plants used in the mixtures were frequency percentages were converted the dry-weight composition of stomach actively growing when collected. The to particle density per field using a samples, esophageal samples, rumen plant material was oven dried and samples, and clipped herbage. table developed by Fracker and ground over a one-mm screen to re- Brischle (1944) and the relative den- duce all plant fragments to a uniform A rapid, reliable method for esti- sity, expressed as a percentage, of each size. The mixtures were compounded species in the mixture was calculated. mating plant species composition in of various combinations of species so The relative density of a species was the diets of herbivorous animals is no two samples were alike. The spe- needed. This need is emphasized by used to estimate the percentage dry cies and dry-weight composition of the the variety of methods used for report- weight of that species in the mixture. mixtures were unknown to the authors ing diets (Norris, 1943; Torell, 1956; Regression equations that express until after the sample estimates were Reppert, 1960; Vaughan, 1967). the relationshin between estimated recorded. Mixtures were washed over percentage dry *weight (X) and actual A problem encountered in the study a 200-mesh screen to insure mixing, to percentage dry weight (Y) were devel- of herbivore diets is the lack of a remove dirt, and to remove very small oped for three categories: grasses, forbs, method that can be checked for accu- plant fragments. A small portion of and grass-forb combinations. racy. The technician needs a method the mixture was spread evenly and that builds confidence in his own abil- mounted on a microscope slide using Results and Discussion ity to estimate the composition of a Hertwig’s Solution (Baumgartner and diet. The procedure should be as sim- Martin, 1939) and Hoyer’s Solution Prediction equations for grasses, ple as possible. Botanical analysis of (Baker and Wharten, 1952). The slides forbs, and grass-forb combinations are the diet should accurately reflect both were oven dried at 60 C. Five slides shown in Fig. 1, 2, and 3. The ratio the plant species eaten and the amount were prepared from each mixture. between estimated dry weight percent- of each that was eaten. Tissues of plants that were used in ages (relative densityj and actual dry A microscopic technique for identi- the mixtures were prepared and weight percentages was approximately fication of plants eaten by herbivores mounted on microscope slides in the 1 : 1 for all three categories. Student’s that thoroughly masticate their food same manner for study as reference t-test showed that there was no signifi- was described by Baumgartner and material. Identification of each spe- cant difference (P < .Ol) between re- Martin (1939) and the technique was cies in the mixtures was based on epi- gression equatio& for grasses and forbs later refined by Dusi (1949). This basic dermal characteristics (Davies, 1959; and that the calculated regression technique has been employed fre- Brusven and Mulkern, 1960; Storr, equations for grasses, forbs, and grass- quently in recent years by numerous 1961). These workers found that epi- forb combinations were not statistically other researchers. However, no one dermal characteristics of grasses and different from the equation Y = X. forbs were variable with different Therefore, the percent composition lPublished with the approval of the stages of maturity. Histological fea- based on dry weight of the mixtures Director of the Colorado Agricultural tures such as size and shape of epider- could be predicted directly from the Experiment Station as Scientific Series ma1 hairs, presence or absence of hairs, relative density. Paper No. 1230. 2 Present address: Range Science De- cell shapes, and crystals included in For 11 of the 15 mixtures, the num- partment, Texas A&M University, epidermal cells provided diagnostic ber of epidermal fragments of each College Station. characteristics for identification of forb species at a location was recorded in 265 Y = 1.20 + 0.962 X J 00 * r’s .98 60 ; 60 i m .(D 3” T i 40 = 40. ” : . 2 a 0 10 40 60 80 100 Rolatave Density Relative Density Rclat,ve Denroty FIG. 1. Relationship of relative density to FIG.2. Relationship of relative density to FIG. 3. Relationship of relative density to actual percent composition by weight actual percent composition by weight actual percent composition by weight for four grasses. for four forbs. for four grasses and four forbs. addition to recording frequency. An consistent with other species or at DAVIES, I. 1959. The use of epider- estimate of the dry-weight percentages other stages of maturity. However, ma1 characteristics for the identifi- for each species was computed from unless the slant Darts in. the diet be- cation of grasses in the leafy stage. the totals. A paired t-test showed no ing analyze; are &ossly different from Brit. Grassland Sot. J. 14:7-16. significant difference (P < .Ol) be- these in our studies, the added accu- DUSI, J. L. 1949. Methods for the tween the estimates obtained from the racy gained by using a prediction determination of food habits by “particle count” technique and the equation more complicated than Y = plant microtechniques and histology “frequency conversion” technique. Ei- X will probably not be worthwhile. If and their application to cottontail ther can be used with a similar degree the specific gravity of a species or the rabbit food habits. J. Wildl. Man- of accuracy, but it is much easier and phenological stage of a species is sus- age. 13:295-298. faster for the technician to determine pected of being different from that FRACKER, S. B., AND J. A. BRISCHLE. if a species is present or absent than used in this study, the investigator can 1944. Measuring the local distribu- to count all recognizable fragments. easily compound mixtures and develop tion of Ribes. Ecology 25:283-303. The “frequency conversion” technique regression equations for estimating dry- HEADY, H. F., AND G. M. VAN DYNE. reported in this paper is recommended. weight percentages. 1965. Prediction of weight compo- There are two requirements that The microscoDe techniaue renorted sition from point samples on clipped must be met before frequency percent- in the present ‘paper cokd also be herbage. J. Range Manage. 18:144- age can be converted to density (Curtis used to determine the species composi- 148. tion of clipped herbage and the weights and McIntosh, 1950). The plant frag- NORRIS, J. J. 1943. Botanical analy- contributed by each species present. ments must be distributed randomly ses of stomach contents as a method Thus, it should be possible to accu- over the slide, and the density of par- of determining forage consumption rately estimate the yields of individual ticles must be such that the most com- of range sheep. Ecology 24: 244-25 1. mon species does not occur in more components in botanical studies. REPPERT, J. N. 1960. Forage prefer- than 86% of the microscope fields. A LITERATURE CITED ence and grazing habits of cattle at random distribution can be attained the Eastern Colorado Range Station. by reducing the particles to a uniform BAKER, E. W., AND B. W. WHARTEN. J. Range Manage. 13:58-65. size and thoroughly mixing them. A 1952. An introduction to acarology.
Recommended publications
  • Iso 4365:2005(E)
    This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-905635 INTERNATIONAL ISO STANDARD 4365 Second edition 2005-02-01 Liquid flow in open channels — Sediment in streams and canals — Determination of concentration, particle size distribution and relative density Mesure de débit des liquides dans les canaux découverts — Sédiments dans les cours d'eau et dans les canaux — Détermination de la concentration, de la distribution granulométrique et de la densité relative Reference number ISO 4365:2005(E) © ISO 2005 This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-905635 ISO 4365:2005(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. © ISO 2005 All rights reserved.
    [Show full text]
  • LNG CUSTODY TRANSFER HANDBOOK 5Th Edition: 2017 GIIGNL Document Status and Purpose
    LNG CUSTODY TRANSFER HANDBOOK 5th Edition: 2017 GIIGNL Document status and purpose This fifth (2017) edition of the GIIGNL LNG transfer and LNG transfer from an onshore This latest version replaces all previous editions Custody Transfer Handbook reflects GIIGNL’s terminal to small scale LNG carriers. More than of the custody transfer handbook. Please always understanding of best current practice at the pointing at the differences and highlighting the consult the GIIGNL website www.giignl.org to time of publication. points of attention when dealing with these new check for the latest version of this handbook, operations, this fifth version provides answers esp. when referring to a pdf download or a The purpose of this handbook is to serve as a and solutions for setting up (slightly) altered or printout of this handbook reference manual to assist readers to new custody transfer procedures. As a reminder, understand the procedures and equipment (Photo front cover : © Fluxys Belgium – P. Henderyckx) it is not specifically intended to work out available to and used by the members of GIIGNL procedures for overland LNG custody transfer to determine the energy quantity of LNG operations involving LNG trucks, containers or transferred between LNG ships and LNG trains, or for small scale LNG transfer such as terminals. It is neither a standard nor a bunkering or refueling of ships and trucks. For specification. these, kind reference is made to the GIIGNL This handbook is not intended to provide the Retail LNG / LNG as a fuel handbook. reader with a detailed LNG ship-shore custody No proprietary procedure, nor particular transfer procedure as such, but sets out the manufacture of equipment, is recommended or practical issues and requirements to guide and implied suitable for any specific purpose in this facilitate a skilled operator team to work out a handbook.
    [Show full text]
  • (Specific Gravity) of Viscous Materials by Bingham Pycnometer1
    Designation: D 1480 – 07 An American National Standard Standard Test Method for Density and Relative Density (Specific Gravity) of Viscous Materials by Bingham Pycnometer1 This standard is issued under the fixed designation D 1480; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval. 1. Scope* temperature, t1, to the mass of an equal volume of water at a 1.1 This test method covers two procedures for the mea- reference temperature, t2; or it is the ratio of the density of the surement of the density of materials which are fluid at the material at t1 to the density of water at t2. When the reference desired test temperature. Its application is restricted to liquids temperature is 4°C (the temperature at which the relative of vapor pressures below 600 mm Hg (80 kPa) and viscosities density of water is unity), relative density (specific gravity) and below 40 000 cSt (mm2/s) at the test temperature. The method density are numerically equal. is designed for use at any temperature between 20 and 100°C. 4. Summary of Test Method It can be used at higher temperatures; however, in this case the precision section does not apply. 4.1 The liquid sample is introduced into the pycnometer, equilibrated to the desired temperature, and weighed. The NOTE 1—For the determination of density of materials which are fluid density or specific gravity is then calculated from this weight at normal temperatures, see Test Method D 1217.
    [Show full text]
  • Isofi Density and Stabititg
    HIGHWAY RESEARCH BOARD Bulletin 93 iSofI Density and Stabititg National Academy of Sciences— National Research Council II HIGHWAY RESEARCH BOARD Officers and Members of the Executive Committee 1954 OFFICERS G. DONALD KENNEDY, Chairman K. B. WOODS, Vice Chairman FRED BURGGRAF, Director ELMER M. WARD, Assistant Director Executive Committee FRANCIS V. DU PONT, Commissioner, Bureau of Public Roads HAL H. HALE, Executive Secretary, American Association of State Highway Officials Louis JORDAN, Executive Secretary, Division of Engineering and Industrial Re• search, National Research Council R. H. BALDOCK, State Highway Engineer, Oregon State Highway Commission PYKE JOHNSON, Consultant, Automotive Safety Foundation G. DONALD KENNEDY, Executive Vice President, Portland Cement Association 0. L. KiPP, Assistant Commissioner and Chief Engineer, Minnesota Department of Highways BURTON W. MARSH, Director, Safety and Traffic Engineering Department, Ameri• can Automobile Association C. H. SCHOLER, Head, Applied Mechanics Department, Kansas State College REX M. WHITTON, Chief Engineer, Missouri State Highway Department K. B. WOODS, Director, Joint Highway Research Project, Purdue University Editorial Staff FRED BURGGRAF ELMER M. WARD W. J. MILLER 2101 Constitution Avenue Washington 25, D. C. The opinions and conclusions expiessed in this publication are those of the authors and not necessaiily those of the Highway Research Board HIGHWAY RESEARCH BOARD BuUetin 93 Sof I Density and StahiUty PRESENTED AT THE Thirty-Third Annual Meeting January 12-15, 1954 1954 Washington, D. C. Department of Soils Frank R. Olmstead, Chairman; Chief, Soils Section, Bureau of Public Roads COMMITTEE ON COMPACTION OF EMBANKMENTS, SUBGRADES AND BASES L.D. Hicks, Chairman; Chief Soils Engineer North Carolina State Highway and Public Works Commission W.
    [Show full text]
  • Relative Density Apparatus
    03.09 product manual H-3750.2F & H-3750.5F Relative Density Apparatus Introduction Product Description Apparatus determines the relative density of cohesionless, free-draining soils and provides well-defined results on soils that do not respond well to conventional moisture-density impact compaction testing. Soils for which this method is appropriate may contain up to 12 percent of soil particles passing a No. 200 (75µm) sieve, depending on the distribution of particle sizes, which causes them to have free-draining characteristics. Relative density of cohesionless soils uses vibratory compaction to obtain maximum density and pouring to obtain minimum density. Complete set includes: Vibrating table H-3756.2F, relative density mold sets H-3757 and H-3758 and relative density gauge set H-3759. Meets ASTM D4253, D4254. Shipping wt. 925 lbs. (420kg) Models covered in manual include: 230V 60Hz, 12 amps 1ph AC— H-3750.2F 230V 50Hz, 12 amps 1ph AC— H-3750.5F Relative Density of Cohesionless Soils This method of test is intended for determining the relative density of cohesionless free-draining soils for which impact compaction will not produce a well defined moisture density relationship curve and the maximum density by impact methods will generally be less than by vibratory methods. Definition Relative density is defined as the state of compactness of a soil with respect to the loosest and densest states at which it can be placed by the laboratory procedures described in this method. It is expressed as the ratio of: (1) the difference between the void ratio of a cohesionless soil in the loosest state and any given void ratio, to (2) the difference between its void ratios in the loosest and densest states.
    [Show full text]
  • Biohall Labware
    Serving Science Proudly... Product Catalogue www.qtechcorp.com [email protected] Welcome to Questron Technologies With immense pleasure we welcome you to our new catalog for 2018-19. At Questron Technologies we have strived hard to identify the gaps in the market space and the requirements of research fraternity. Biotechnologists at the heart of operations have ensured the requirements being fulfilled with right product with right quality and most importantly at the right cost. With the same Zeal we wish to continue the same forever. Our Raw Material : Ÿ We use low expansion Borosilicate 3.3 as per ASTM E-438 Type –I. Ÿ Borosilicate 3.3 is highly resistant to almost all Chemicals, salt solutions and other organic solvents . Ÿ The labware are highly heat resistant, high resistance to thermal shock & high mechanical strength. Ÿ Thermal expansion between 0-300/°C is 33 x 10-7/°C and thermal conductivity 0.0027 cal/cm³/°C/Sec. Ÿ Borosilicate 3.3 can handle temperature up to 240 degree Celsius for continuous usage under general laboratory conditions , whereas it can withstanding temperature around 400-450 degree Celsius for short term usage . Accuracy and quality : Ÿ We are committed to produce highly accurate Labware with an in-house ISO 17025:2005 accredited laboratory, well equipped with the latest equipments for calibration under well controlled environment. Ÿ Each product undergoes numerous tests right from visual inspection of newly produced material, followed by dimensional checks, caliberation and marking and then recalibration post printing and finally visual inspections before and during packaging. Ÿ We are an ISO 9001:2015 and CE certified company and we conduct periodical internal audits to keep check over all the quality systems implemented and ensure our commitment to quality is well experienced by our customers.
    [Show full text]
  • What Is Fluid Mechanics?
    What is Fluid Mechanics? A fluid is either a liquid or a gas. A fluid is a substance which deforms continuously under the application of a shear stress. A stress is defined as a force per unit area Next, what is mechanics? Mechanics is essentially the application of the laws of force and motion. Fluid statics or hydrostatics is the study of fluids at rest. The main equation required for this is Newton's second law for non-accelerating bodies, i.e. ∑ F = 0 . Fluid dynamics is the study of fluids in motion. The main equation required for this is Newton's second law for accelerating bodies, i.e. ∑ F = ma . Mass Density, ρ, is defined as the mass of substance per unit volume. ρ = mass/volume Specific Weight γ, is defined as the weight per unit volume γ = ρ g = weight/volume Relative Density or Specific Gravity (S.g or Gs) S.g (Gs) = ρsubstance / ρwater at 4oC Dynamic Viscosity, µ µ = τ / (du/dy) = (Force /Area)/ (Velocity/Distance) Kinematic Viscosity, v v = µ/ ρ Primary Dimensions In fluid mechanics there are only four primary dimensions from which all other dimensions can be derived: mass, length, time, and temperature. All other variables in fluid mechanics can be expressed in terms of {M}, {L}, {T} Quantity SI Unit Dimension Area m2 m2 L2 Volume m3 m3 L3 Velocity m/s ms-1 LT-1 Acceleration m/s2 ms-2 LT-2 -Angular velocity s-1 s-1 T-1 -Rotational speed N Force kg m/s2 kg ms-2 M LT-2 Joule J energy (or work) N m, kg m2/s2 kg m2s-2 ML2T-2 Watt W Power N m/s Nms-1 kg m2/s3 kg m2s-3 ML2T-3 Pascal P, pressure (or stress) N/m2, Nm-2 kg/m/s2 kg m-1s-2 ML-1T-2 Density kg/m3 kg m-3 ML-3 N/m3 Specific weight kg/m2/s2 kg m-2s-2 ML-2T-2 a ratio Relative density .
    [Show full text]
  • Isomerized Alpha Olefins C16 And
    Safe Handling and Storage of Isomerized 1-Hexadecene and Isomerized 1-Octadecene Isomerized 1-Hexadecene and 1-Octadecene 2013 Final.doc THIS PAGE INTENTIONALLY LEFT BLANK TABLE OF CONTENTS PRODUCT STEWARDSHIP .....................................................................................…..2 INTRODUCTION .....................................................................................…..3 PART 1 SPECIFICATIONS, PROPERTIES AND TEST METHODS Isomerized Alpha Olefin 16 Specifications..............................................................................4 Isomerized Alpha Olefin 18 Specifications..............................................................................4 Properties ................................................................................................................................4 Recommended Test Methods .................................................................................................6 PART 2 SAMPLING AND HANDLING Training ...................................................................................................................................7 Recommended Practice for Sampling ....................................................................................7 Static Electricity and Grounding ..............................................................................................8 Product Loading/Unloading Requirements .............................................................................8 Safety References ...............................................................................................................
    [Show full text]
  • Stiffness Prediction Methods for Additively Manufactured Lattice
    Stiffness Prediction Methods for Additively Manufactured Lattice Structures by Charlotte Méry Folinus Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Bachelor of Science in Engineering as Recommended by the Department of Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author................................................................ Department of Mechanical Engineering May 8, 2020 Certified by. Anette "Peko" Hosoi Neil and Jane Pappalardo Professor of Mechanical Engineering Associate Dean of Engineering Thesis Supervisor Accepted by . Maria Yang Professor of Mechanical Engineering Undergraduate Officer 2 Stiffness Prediction Methods for Additively Manufactured Lattice Structures by Charlotte Méry Folinus Submitted to the Department of Mechanical Engineering on May 8, 2020, in partial fulfillment of the requirements for the degree of Bachelor of Science in Engineering as Recommended by the Department of Mechanical Engineering Abstract Since the initial 300 pair release of the Futurecraft 4D in April 2017, adidas has scaled its 4D program to mass produce additively manufactured shoe midsoles. The 4D midsoles are constructed from lattice structures, and if there is variation in the manufacturing process, the structure’s material and/or geometric properties may be altered. This means midsoles may have the same geometry but different material properties and thus different stiffnesses, and they may also have the same material properties but different overall stiffness due to geometric changes. The current quality control test is slow, expensive, and does not scale well. This thesis explores two potential techniques: using ultrasonic waves to determine the lattices’ acoustic properties, and weighing them to determine their mass.
    [Show full text]
  • Density/Relative Density of Light Hydrocarbons by Pressure Thermohydrometer
    0-96-106_5b_Fuelaa_Layout 1 11/5/12 11:42 AM Page 103 Density/Relative Density of Light Hydrocarbons by Pressure Thermohydrometer Test Method Density and relative density measurements of light hydrocarbons, including LPG, are used for transportation, storage and regulatory purposes. The measurement is made by floating a thermohydrometer in a sample that has been introduced into a pressure cylinder. Pressure Hydrometer Cylinder • Conforms to ASTM D1657 and related specifications • Built-in safety relief valve Transparent plastic cylinder mounted between machined aluminum end plates and surrounded by stainless steel safety guard. Use together with ASTM 310H Thermohydrometer to determine density or relative density of LPG and light hydrocarbons. Equipped with inlet, outlet and vapor vent valves for admitting sample and purging cylinder. End plates have positive sealing buna-N O-rings and are joined by sturdy steel support rods. Top plate detaches easily without tools for insertion or removal of thermohydrometer. Safety relief valve prevents unsafe pressure build-up inside cylinder. Mounted on a finished steel base. Specifications Dimensions dia.xh,in.(cm) 1 3 Conforms to the specifications of: 8 ⁄4x23 ⁄4 (21x60) ASTM D1657; GPA 2140; Net Weight: 5 lbs (2.3kg) IP 235; IS0 3993; NF M 41-008 Safety relief valve: 200psi (1.4MPa) Ordering Information Catalog No. K26150 Pressure Hydrometer Cylinder Accessories 251-000-001 ASTM 101H Thermohydrometer Nominal Relative Density Range: 0.500 to 0.650 Standard Temperature, °F: 60/60 Temperature Range,
    [Show full text]
  • Iso 28641:2010(E)
    This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-912283 INTERNATIONAL ISO STANDARD 28641 First edition 2010-06-01 Rubber compounding ingredients — Organic chemicals — General test methods Ingrédients de mélange du caoutchouc — Produits chimiques organiques — Méthodes d'essai générales Reference number ISO 28641:2010(E) © ISO 2010 This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-912283 ISO 28641:2010(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. COPYRIGHT PROTECTED DOCUMENT © ISO 2010 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.
    [Show full text]
  • Physics and Chemistry for Firefighters
    V. 1. FIRE SERVICE TECHNOLOGY, EQUIPMENT & MEDIA - PHYSICS & CHEMISTRY FOR FIREFIGHTERS Chapter 1 - Physical properties of matter Matter is the name given to all material things -anything that has mass and occupies space. Solids, liquids, gases and vapours are all matter. The amount of matter is known as the mass, and is measured in kilograms. In everyday life, the MASS of a solid is measured in kilograms, although for liquids, gases and vapours, we are more accustomed to using VOLUME, the amount of space occupied by a given substance, simply because it is easier to measure. Thus, we talk about litres of petrol and cubic metres of gas. However, gases, vapours and liquids also have mass which can be expressed in kilograms. Density Understanding density is extremely important for a firefighter. Understanding density is extremely important for a firefighter. For example, the density of a gas or vapour determines whether it will tend to rise or sink in air, and be found in the greatest concentrations at the upper or lower levels in a building. The density of a burning liquid partly decides whether it is possible to cover it with water to extinguish the fire, or whether the firefighter will need to use foam or other another extinguishing medium. However, another important factor is how well the burning liquid mixes with water, a property known as miscibility. Imagine two solid rods, both the same length and width, one made of wood and one from iron. Though they are the same size, the iron rod weighs much more than the wooden rod.
    [Show full text]