Movement Behavior of the Monito Del Monte (Dromiciops Gliroides): New Insights Into the Ecology of a Unique Marsupial Lida M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chronostratigraphy of the Mammal-Bearing Paleocene of South America 51
Thierry SEMPERE biblioteca Y. Joirriiol ofSoiiih Ainorirari Euirli Sciriin~r.Hit. 111. No. 1, pp. 49-70, 1997 Pergamon Q 1‘197 PublisIlcd hy Elscvicr Scicncc Ltd All rights rescrvcd. Printed in Grcnt nrilsin PII: S0895-9811(97)00005-9 0895-9X 11/97 t I7.ol) t o.(x) -. ‘Inshute qfI Human Origins, 1288 9th Street, Berkeley, California 94710, USA ’Orstom, 13 rue Geoffroy l’Angevin, 75004 Paris, France 3Department of Geosciences, The University of Arizona, Tucson, Arizona 85721, USA Absfract - Land mammal faunas of Paleocene age in the southern Andean basin of Bolivia and NW Argentina are calibrated by regional sequence stratigraphy and rnagnetostratigraphy. The local fauna from Tiupampa in Bolivia is -59.0 Ma, and is thus early Late Paleocene in age. Taxa from the lower part of the Lumbrera Formation in NW Argentina (long regarded as Early Eocene) are between -58.0-55.5 Ma, and thus Late Paleocene in age. A reassessment of the ages of local faunas from lhe Rfo Chico Formation in the San Jorge basin, Patagonia, southern Argentina, shows that lhe local fauna from the Banco Negro Infeiior is -60.0 Ma, mak- ing this the most ancient Cenozoic mammal fauna in South,America. Critical reevaluation the ltaboraí fauna and associated or All geology in SE Brazil favors lhe interpretation that it accumulated during a sea-level lowsland between -$8.2-56.5 Ma. known South American Paleocene land inammal faunas are thus between 60.0 and 55.5 Ma (i.e. Late Paleocene) and are here assigned to the Riochican Land Maminal Age, with four subages (from oldest to youngest: Peligrian, Tiupampian, Ilaboraian, Riochican S.S.). -
Classification of Mammals 61
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful. -
Macroscale Analysis of Mistletoe Host Ranges in the Andean‐Patagonian
DR. GUILLERMO AMICO (Orcid ID : 0000-0002-3709-3111) Article type : Research Paper handling Editor: Dr. Diane Byers Macroscale Analysis of Mistletoe Host Ranges in the Andean-Patagonian Forest Article Guillermo C. Amico1*, Daniel L. Nickrent2 and Romina Vidal-Russell1 1 Laboratorio Ecotono, INIBIOMA CONICET (Universidad Nacional del Comahue) Quintral 1250, Bariloche, Río Negro, Argentina 2 Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901-6509 Corresponding author Corresponding author’s e-mail address: [email protected] This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as Accepted doi: 10.1111/plb.12900 This article is protected by copyright. All rights reserved. ABSTRACT The number of host species infected by a mistletoe (host range) is critical in that it influences prevalence, virulence and overall distribution of the parasite; however, macroecological analyses of this life history feature are lacking for many regions. The Andean-Patagonian forest, found along the southern Andes from 35˚S to Tierra del Fuego 55˚S, contains twelve mistletoe species in three families (Loranthaceae, Misodendraceae and Santalaceae). By tabulating herbarium records, the host ranges and geographical distributions of these mistletoes were explored. Our results show that these parasites occur on 43 plant species in 24 families but with varying degrees of specificity. All Misodendrum species and Desmaria mutabilis (Loranthaceae) are specialists that use Nothofagus as their primary hosts. Tristerix and Article Notanthera (Loranthaceae) and Antidaphne and Lepidoceras (Santalaceae) are generalists parasitizing more than six host species from several genera and families. -
A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation. -
A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade. -
Introduction in the Americas, Agreat Diversity of Bamboo Endemic Species Is Found in Brazil, North and Central Andes, Mexico and Central America
Theme: Environment: Ecology and Environmental Concerns Mexican national living bamboo collection ex situ conservation Ma. Teresa Mejia-Saulés and Rogelio Macías Ordóñez Instituto de Ecología A.C. Carretera antigua a Coatepec 351, El Haya, Xalapa, Ver. 91070 México. email: [email protected]@inecol.mx In the Americas, the highest bamboo diversity and endemism is found in Brazil, the northern and central Andes, Mexico and Central America. In 2003, there were 40 native species of bamboos described for Mexico in eleven bamboo genera. Recent work has brought this number to 56 species. More than the half (34) of the Mexican bamboo species are endemic. The Mexican bamboos grow in tropical dry and perennial forests, mixed pine-oak and pine-fire forests, pine forests, and cloud forests from sea level to 3,000 m elevation. Genera of described Mexican woody bamboos species (and spp number) are: Arthrostylidium(1), Aulonemia(1),Chusquea(22),Guadua(7),Merostachys (1),Olmeca(5),Otatea(11),Rhipidocladum(4). Herbaceous genera are Cryptochloa(1),Lithachne(1),Olyra(2). Many of them have a diversity of rustic uses such as material for roofs or walls, furniture, fences, baskets, walking sticks, handcrafts, beehives, agricultural tools as well as ornamental plants. Live collections at the Botanical Gardens that preserve plant genetic resources are curated for various purposes including scientific education and research. The Francisco Javier Clavijero Botanical Garden at the Instituto de Ecología, in Xalapa, Mexico, houses the Mexican national living bamboo collection. It was stablished in 2003 with the collaborative support of INECOL, Bamboo of the Americas, and the InstitutoTecnológico de Chetumal for the ex situ conservation of Mexican bamboo diversity, research and education. -
Poaceae: Bambusoideae) Lynn G
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 26 2007 Phylogenetic Relationships Among the One- Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae) Lynn G. Clark Iowa State University, Ames Soejatmi Dransfield Royal Botanic Gardens, Kew, UK Jimmy Triplett Iowa State University, Ames J. Gabriel Sánchez-Ken Iowa State University, Ames Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Clark, Lynn G.; Dransfield, Soejatmi; Triplett, Jimmy; and Sánchez-Ken, J. Gabriel (2007) "Phylogenetic Relationships Among the One-Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 26. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/26 Aliso 23, pp. 315–332 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENETIC RELATIONSHIPS AMONG THE ONE-FLOWERED, DETERMINATE GENERA OF BAMBUSEAE (POACEAE: BAMBUSOIDEAE) LYNN G. CLARK,1,3 SOEJATMI DRANSFIELD,2 JIMMY TRIPLETT,1 AND J. GABRIEL SA´ NCHEZ-KEN1,4 1Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA; 2Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK 3Corresponding author ([email protected]) ABSTRACT Bambuseae (woody bamboos), one of two tribes recognized within Bambusoideae (true bamboos), comprise over 90% of the diversity of the subfamily, yet monophyly of -
Systematics of Chusquea Section Chusquea, Section Swallenochloa, Section Verticillatae, and Section Serpentes (Poaceae: Bambusoideae) Lynn G
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1986 Systematics of Chusquea section Chusquea, section Swallenochloa, section Verticillatae, and section Serpentes (Poaceae: Bambusoideae) Lynn G. Clark Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Clark, Lynn G., "Systematics of Chusquea section Chusquea, section Swallenochloa, section Verticillatae, and section Serpentes (Poaceae: Bambusoideae) " (1986). Retrospective Theses and Dissertations. 7988. https://lib.dr.iastate.edu/rtd/7988 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques Is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing jiages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap pears to indicate this. 3. -
Marsupial 'Monito Del Monte' Dromiciops Gliroides from Chile
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Submitted, accepted and published by Wiley-Blackwell Biological Journal of the Linnean Society, 2009, 98, 568–576. With 3 figures Molecular characterization of an ancient Hepatozoon species parasitizing the ‘living fossil’ marsupial ‘Monito del Monte’ Dromiciops gliroides from Chile SANTIAGO MERINO1*, RODRIGO A. VÁSQUEZ2, JAVIER MARTÍNEZ3, JUAN LUIS CELIS-DIEZ2,4, LETICIA GUTIÉRREZ-JIMÉNEZ2, SILVINA IPPI2, 3 1 INOCENCIA SÁNCHEZ-MONSALVEZ and JOSUÉ MARTÍNEZ-DE LA PUENTE 1Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, J. Gutiérrez Abascal 2, E-28006 Madrid, Spain 2Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile 3Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain 4Centro de Estudios Avanzados en Ecología y Biodiversidad, Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile The Microbiotheriid Dromiciops gliroides, also known as ‘Monito del Monte’, is considered to be a threatened species and the only living representative of this group of South American marsupials. During the last few years, several blood samples from specimens of ‘Monito del Monte’ captured at Chiloé island in Chile have been investigated for blood parasites. Inspection of blood smears detected a Hepatozoon species infecting red blood cells. The sequences of DNA fragments corresponding to small subunit ribosomal RNA gene revealed two parasitic lineages belonging to Hepatozoon genus. These parasite lineages showed a basal position with respect to Hepatozoon species infecting rodents, reptiles, and amphibians but are phylogenetically distinct from Hepatozoon species infecting the order Carnivora. -
Forestry Department Food and Agriculture Organization of the United Nations
Forestry Department Food and Agriculture Organization of the United Nations International Network for Bamboo and Rattan (INBAR) GLOBAL FOREST RESOURCES ASSESSMENT 2005 REPORT ON BAMBOO THEMATIC STUDY IN THE FRAMEWORK OF FAO FRA 2005 FOR LATIN AMERICA (BRAZIL, CHILE, ECUADOR, MEXICO, PERU) CARLOS KAHLER G. FOREST ENGINEER MAY, 2005 Global Forest Resources Assessment 2005 Working Paper 123 Rome, 2006 FRA WP 123 Country Report on Bamboo Resources Latin America 1. INTRODUCTION .................................................................................................................................. 2 2. SUMMARY OF THE BAMBOO THEMATIC STUDY (BTS)............................................................... 3 2.1 GENERAL ANALYSIS FOR THE STATE OF INFORMATION............................................................................ 3 2.2 SUMMARY OF INFORMATION, PER SUBJECT AND PER COUNTRY ................................................................ 5 2.3 EXPERIENCES IN REMOTE SENSING APPLICATIONS AND GEOGRAPHIC INFORMATION SYSTEMS, FOR BAMBOO RESOURCES IN THE REGION. ......................................................................................................... 10 3. BAMBOO RESOURCES IN THE REGION – REVISION OF COMPLEMENTING SOURCES OF INFORMATION ............................................................................................................................................ 15 3.1 BAMBOO RESOURCES: STOCKS AND BIODIVERSITY ............................................................................... 15 3.2 -
The Biodynamics of Arboreal Locomotion in the Gray Short
THE BIODYNAMICS OF ARBOREAL LOCOMOTION IN THE GRAY SHORT- TAILED OPOSSUM (MONODELPHIS DOMESTICA) A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Andrew R. Lammers August 2004 This dissertation entitled THE BIODYNAMICS OF ARBOREAL LOCOMOTION IN THE GRAY SHORT- TAILED OPOSSUM (MONODELPHIS DOMESTICA) BY ANDREW R. LAMMERS has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Audrone R. Biknevicius Associate Professor of Biomedical Sciences Leslie A. Flemming Dean, College of Arts and Sciences LAMMERS, ANDREW R. Ph.D. August 2004. Biological Sciences The biodynamics of arboreal locomotion in the gray short-tailed opossum (Monodelphis domestica). (147 pp.) Director of Dissertation: Audrone R. Biknevicius Most studies of animal locomotor biomechanics examine movement on a level, flat trackway. However, small animals must negotiate heterogenerous terrain that includes changes in orientation and diameter. Furthermore, animals which are specialized for arboreal locomotion may solve the biomechanical problems that are inherent in substrates that are sloped and/or narrow differently from animals which are considered terrestrial. Thus I studied the effects of substrate orientation and diameter on locomotor kinetics and kinematics in the gray short-tailed opossum (Monodelphis domestica). The genus Monodelphis is considered the most terrestrially adapted member of the family Didelphidae, but nevertheless these opossums are reasonably skilled at climbing. The first study (Chapter 2) examines the biomechanics of moving up a 30° incline and down a 30° decline. Substrate reaction forces (SRFs), limb kinematics, and required coefficient of friction were measured. -
Loranthaceae) on the Cactus Echinopsis Chilensis
Revista Chilena de Historia Natural 73: 525-531, 2000 Factors affecting the circular distribution of the leafless mistletoe Tristerix aphyllus (Loranthaceae) on the cactus Echinopsis chilensis Factores que afectan la distribuci6n circular del muerdago sin hojas Tristerix aphyllus (Loranthaceae) sobre el cacto Echinopsis chilensis CAREZZA BOTTO-MAHAN', RODRIGO MEDEL', ROSANNA GINOCCHI02 & GLORIA MONTENEGR03 'Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile, e-mai I: rmedel@ abello.dic. uchile.cl 2Departamento de Ecologfa, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. 3Departamento de Ciencias Vegetales, Facultad de Agronomfa y de Ingenierfa Forestal, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago, Chile ABSTRACT We describe the pattern of emergence of the holoparasitic mistletoe Tristerix aphyllus from its cactus host Echinopsis chilensis in a semiarid Chilean ecosystem. The observed circular distribution of the parasite inflorescence differed significantly from a uniform distribution based on a random process. We quantified the circular distribution of the seeds defecated on the cactus surface by Mimus thenca, the only bird responsible of seed dispersal. Our data did not support the idea of a directional seed deposition by the bird. To test the hypothesis that the observed circular distribution can be attributable to a differential seed survival due to microsite temperature variation, we infected cacti with seeds ofT. aphyllus every 30°and quantified the temperature associated to each angle. Our results revealed that even though seeds located in angles with higher sun exposure had the lowest haustoria! disk formation, this variation in mortality is not sufficient to explain the angular polarity observed in this species.