Fowl Typhoid and Pullorum Disease, Which Are Caused by Two Different Biovars of and Pullorum Salmonella Enterica Subsp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Macroscopic Embryonic Development of Guinea Fowl Compared to Other Domestic Bird Species 2 Araújo Et Al
R. Bras. Zootec., 48:e20190056, 2019 https://doi.org/10.1590/rbz4820190056 Reproduction Full-length research article Macroscopic embryonic Brazilian Journal of Animal Science ISSN 1806-9290 www.rbz.org.br development of Guinea fowl compared to other domestic bird species Itallo Conrado Sousa de Araújo1* , Luana Rudrigues Lucas2, Juliana Pinto Machado3 , Mariana Alves Mesquita3 1 Universidade Federal de Minas Gerais, Escola de Veterinária, Departamento de Zootecnia, Belo Horizonte, MG, Brasil. 2 Faculdade de Ciências da Saúde de Unaí, Faculdade de Veterinária, Unaí, MG, Brasil. 3 Universidade Federal de Goiás, Programa de Pós-graduação em Zootecnia, Goiânia, GO, Brasil. *Corresponding author: ABSTRACT - Since few studies have addressed the embryonic development of [email protected] Guinea fowl (Numida meleagris), the objective of the present study was to evaluate Received: March 28, 2019 its embryonic development in the Cerrado region of Brazil and compare the results to Accepted: August 25, 2019 published descriptions of the embryonic development of other domestic bird species. How to cite: Araújo, I. C. S.; Lucas, L. R.; Machado, J. P. and Mesquita, M. A. 2019. The commercialized weight for Guinea fowl eggs used in the experiment was found to Macroscopic embryonic development of Guinea be 37.57 g, while egg fertility was 92%. Embryo growth rate (%) was higher on the fowl compared to other domestic bird species. sixth day of incubation relative to other days. The heart began beating on the third day Revista Brasileira de Zootecnia 48:e20190056. of development, while eye pigmentation and upper and lower limb buds appeared on https://doi.org/10.1590/rbz4820190056 the sixth day. -
Clapper Rail (Rallus Longirostris) Studies in Alabama Dan C
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquila Digital Community Northeast Gulf Science Volume 2 Article 2 Number 1 Number 1 6-1978 Clapper Rail (Rallus longirostris) Studies in Alabama Dan C. Holliman Birmingham-Southern College DOI: 10.18785/negs.0201.02 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Holliman, D. C. 1978. Clapper Rail (Rallus longirostris) Studies in Alabama. Northeast Gulf Science 2 (1). Retrieved from https://aquila.usm.edu/goms/vol2/iss1/2 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Holliman: Clapper Rail (Rallus longirostris) Studies in Alabama Northeast Gulf Science Vol. 2, No.1, p. 24-34 June 1978 CLAPPER RAIL (Rallus longirostris) STUDIES IN ALABAMAl Dan C. Holliman Biology Department Birmingham-Southern College Birmingham, AL 35204 ABSTRACT: The habitat and distribution of the clapper rail Rallus longirostris saturatus in salt and brackish-mixed marshes of Alabama is described. A total of 4,490 hectares of habitat is mapped. Smaller units of vti'getation are characterized in selected study areas. A comparison of these plant communities and call, count data is shown for each locality. Concentrations of clapper rails generally occurrecj in those habitats with the higher percentage of Spartina alterniflora. A census techni que utilizing taped calls is described. Trapping procedures are given for drift fences and funnel traps. -
A Baraminological Analysis of the Land Fowl (Class Aves, Order Galliformes)
Galliform Baraminology 1 Running Head: GALLIFORM BARAMINOLOGY A Baraminological Analysis of the Land Fowl (Class Aves, Order Galliformes) Michelle McConnachie A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2007 Galliform Baraminology 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ Timothy R. Brophy, Ph.D. Chairman of Thesis ______________________________ Marcus R. Ross, Ph.D. Committee Member ______________________________ Harvey D. Hartman, Th.D. Committee Member ______________________________ Judy R. Sandlin, Ph.D. Assistant Honors Program Director ______________________________ Date Galliform Baraminology 3 Acknowledgements I would like to thank my Lord and Savior, Jesus Christ, without Whom I would not have had the opportunity of being at this institution or producing this thesis. I would also like to thank my entire committee including Dr. Timothy Brophy, Dr. Marcus Ross, Dr. Harvey Hartman, and Dr. Judy Sandlin. I would especially like to thank Dr. Brophy who patiently guided me through the entire research and writing process and put in many hours working with me on this thesis. Finally, I would like to thank my family for their interest in this project and Robby Mullis for his constant encouragement. Galliform Baraminology 4 Abstract This study investigates the number of galliform bird holobaramins. Criteria used to determine the members of any given holobaramin included a biblical word analysis, statistical baraminology, and hybridization. The biblical search yielded limited biosystematic information; however, since it is a necessary and useful part of baraminology research it is both included and discussed. -
Hybridization & Zoogeographic Patterns in Pheasants
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Johnsgard Collection Papers in the Biological Sciences 1983 Hybridization & Zoogeographic Patterns in Pheasants Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/johnsgard Part of the Ornithology Commons Johnsgard, Paul A., "Hybridization & Zoogeographic Patterns in Pheasants" (1983). Paul Johnsgard Collection. 17. https://digitalcommons.unl.edu/johnsgard/17 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Johnsgard Collection by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HYBRIDIZATION & ZOOGEOGRAPHIC PATTERNS IN PHEASANTS PAUL A. JOHNSGARD The purpose of this paper is to infonn members of the W.P.A. of an unusual scientific use of the extent and significance of hybridization among pheasants (tribe Phasianini in the proposed classification of Johnsgard~ 1973). This has occasionally occurred naturally, as for example between such locally sympatric species pairs as the kalij (Lophura leucol11elana) and the silver pheasant (L. nycthelnera), but usually occurs "'accidentally" in captive birds, especially in the absence of conspecific mates. Rarely has it been specifically planned for scientific purposes, such as for obtaining genetic, morphological, or biochemical information on hybrid haemoglobins (Brush. 1967), trans ferins (Crozier, 1967), or immunoelectrophoretic comparisons of blood sera (Sato, Ishi and HiraI, 1967). The literature has been summarized by Gray (1958), Delacour (1977), and Rutgers and Norris (1970). Some of these alleged hybrids, especially those not involving other Galliformes, were inadequately doculnented, and in a few cases such as a supposed hybrid between domestic fowl (Gallus gal/us) and the lyrebird (Menura novaehollandiae) can be discounted. -
Chapter 3. Capture and Marking
CHAPTER 3. CAPTURE AND MARKING A. Overview Scientific studies of birds often require that birds be captured to gather morphometric data and to collect samples for pathological, genetic, and biogeochemical analysis. These data and samples can be used to understand evolutionary relationships, genetics, population structure and dynamics, comparative anatomy and physiology, adaptation, behavior, parasites and diseases, geographic distributions, migration, and the general ecology of wild populations of birds. This knowledge informs us about avian biology and natural history and is necessary to effect science-based conservation and management policies for game and non-game species, endangered species, economically important species, and bird habitat conservation (White and Garrott 1990). Capture is generally necessary to mark birds, which allows scientists to investigate demography, migration/movement patterns, or identify specific individuals after release (Day et al. 1980). Many techniques have been developed to capture and mark birds (Nietfeld et al. 1994; Bub 1995). The assumption that marking does not affect the birds is critical because it is the basis for generalizing the data to unmarked birds (Murray and Fuller 2000). The purpose of this section is not to describe capture and marking techniques, but instead to discuss the effects that different capture and marking techniques have on a bird’s short- and long-term physiological well-being and survival. The more commonly used methods are covered and described briefly, but the focus is on the potential impacts of the method. Thus, even if a particular method is not covered, the researcher is alerted to concerns that may arise and questions to be considered in refining methods so as to reduce impacts. -
The Vocal Behavior of the American Crow, Corvus Brachyrhynchos
THE VOCAL BEHAVIOR OF THE AMERICAN CROW, CORVUS BRACHYRHYNCHOS THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Sciences in the Graduate School of The Ohio State University By Robin Tarter, B.S. ***** The Ohio State University 2008 Masters Examination Committee Approved by Dr. Douglas Nelson, Advisor Dr. Mitch Masters _________________________________ Dr. Jill Soha Advisor Evolution, Ecology and Organismal Biology Graduate Program ABSTRACT The objective of this study was to provide an overview of the vocal behavior of the American crow, Corvus brachyrhynchos, and to thereby address questions about the evolutionary significance of crow behavior. I recorded the calls of 71 birds of known sex and age in a family context. Sorting calls by their acoustic characteristics and behavioral contexts, I identified and hypothesized functions for 7 adult and 2 juvenile call types, and in several cases found preferential use of a call type by birds of a particular sex or breeding status. My findings enrich our understanding of crow social behavior. I found that helpers and breeders played different roles in foraging and in protecting family territories from other crows and from predators. My findings may also be useful for human management of crow populations, particularly dispersal attempts using playbacks of crows’ own vocalizations. ii ACKNOWLEDGEMENTS I would like to thank Dr. Kevin McGowan of Cornell, Dr. Anne Clark of Binghamton University, and Binghamton graduate student Rebecca Heiss for allowing me to work with their study animals. McGowan, Clark and Heiss shared their data with me, along with huge amounts of information and insight about crow behavior. -
Derogation Reporting for 2007
Report on derogations in 2007, Birds Directive 79/409/EEC Article 9 COMPOSITE EUROPEAN COMMISSION REPORT ON DEROGATIONS IN 2007 ACCORDING TO ARTICLE 9 OF DIRECTIVE 79/409/EEC ON THE CONSERVATION OF WILD BIRDS DECEMBER 2009 1 Report on derogations in 2007, Birds Directive 79/409/EEC Article 9 CONTENTS Introduction........................................................................................................... 3 1 Methodology................................................................................................. 4 2 Overview of derogations across the EU........................................................ 7 3 Member State reports.................................................................................. 12 3.1 Austria................................................................................................. 12 3.2 Belgium............................................................................................... 14 3.3 Bulgaria............................................................................................... 15 3.4 Cyprus................................................................................................. 16 3.5 Czech Republic................................................................................... 17 3.6 Denmark.............................................................................................. 18 3.7 Estonia................................................................................................. 19 3.8 Finland ............................................................................................... -
American Crow Corvus Brachyrhynchos
American crow Corvus brachyrhynchos Kingdom: Animalia FEATURES Phylum: Chordata The American crow is a large bird (17 to 21 inches) Class: Aves with a large, strong bill. Its nostrils are covered by Order: Passeriformes bristles. Both the male and the female are entirely black in color. Family: Corvidae ILLINOIS STATUS BEHAVIORS common, native The American crow is a common, statewide, permanent resident of Illinois. Some crows do © U.S. Army Corps of Engineers migrate, and those that migrate start spring migration in February or March. Nesting season occurs during the period March through May with one brood raised per year. The nest is built of sticks, bark and vines and lined with bark, mosses, grasses, feathers and other materials. It is placed in the crotch of a tree or near the tree trunk on a horizontal branch, from 10 to 70 feet above the ground. Both the male and the female construct the nest in a process that takes nearly two weeks. The female lays two to seven green-blue to pale-blue eggs that are marked with darker colors. The incubation period lasts for 18 days, and both male and female share incubation duties. Fall migration includes mainly crows moving into Illinois from more northerly states and northern Illinois crows moving adult into central Illinois. The American crow makes a “caw” noise. It eats corn, sumac berries, poison ivy ILLINOIS RANGE berries, insects, dead animals, eggs and nestlings of other birds and most anything edible. It lives in open or semi-open areas, woodland edges, woodlands, shores, river groves and farm fields. -
Home Range and Habitat Use of Breeding Common Ravens (Corvus
HOME RANGE AND HABITAT USE OF BREEDING COMMON RAVENS IN REDWOOD NATIONAL AND STATE PARKS by Amy Leigh Scarpignato A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Masters of Science In Natural Resources: Wildlife August, 2011 ABSTRACT Home range and habitat use of breeding Common Ravens in Redwood National and State Parks Amy Scarpignato Very little is known about home range and habitat use of breeding Common Ravens (Corvus corax) in Redwood National and State Parks (RNSP) despite their identification as nest predators of the Marbled Murrelet (Brachyramphus marmoratus). I used radio telemetry to examine home range, habitat use, and foraging behavior of breeding Common Ravens in RNSP during 2009 (n = 3) and 2010 (n = 8). I estimated home range and core-use area size, calculated home range overlap between adjacent ravens, and quantified site fidelity by calculating overlap between years for the same individuals. I used Resource Utilization Functions (RUFs) to examine raven resource use within the home range. Average home range size of ravens in RNSP was 182.5 ha (range 82-381 ha) and average core-use area was 31.4 ha (range 5-71 ha). The most supported habitat use models were the global and human models followed by the old-growth model. All beta coefficients in models of individual birds differed from zero suggesting that the variables in the models had a strong influence on home range use. Home range use of individual ravens was generally higher near roads (n = 6), old-growth edge (n = 7), bare ground (n = 6), and in mixed hardwood (n = 5) and prairie habitats (n = 5). -
Bird Biodiversity in Heavy Metal Songs
Journal of Geek Studies jgeekstudies.org Bird biodiversity in heavy metal songs Henrique M. Soares1, João V. Tomotani2, Barbara M. Tomotani 3, Rodrigo B. Salvador3 1 Massachusetts Institute of Technology. Cambridge, MA, U.S.A. 2 Escola Politécnica, Universidade de São Paulo. São Paulo, SP, Brazil. 3 Museum of New Zealand Te Papa Tongarewa. Wellington, New Zealand. Emails: [email protected]; [email protected]; [email protected]; [email protected] Birds have fascinated humankind since 1), birds are not typically seen as badass forever. Their ability to fly, besides being a enough to feature on heavy metal album constant reminder of our own limitations, covers and songs, even though sometimes was a clear starting point to link birds to they already have the right makeup for it deities and the divine realm (Bailleul-LeSu- (Fig. 2). er, 2012). Inevitably, these animals became very pervasive in all human cultures, myths As we highlighted above, the birds’ and folklore (Armstrong, 1970). In fact, they power of flight is their main feature, but are so pervasive that they have found their they have another power up their feathery way to perhaps the most unlikely cultural sleeves. And this feat is one that people tend niche: Heavy Metal. to consider one of the most human endeav- ors of all: music. Most birds are deemed With some exceptions, such as raptors melodious creatures, like the slate-colored (Accipitriformes) and ravens/crows1 (Fig. solitaire (Myadestes unicolor) from Central Figure 1. Examples of album covers with birds: Devil’s Ground, by Primal Fear (Nuclear Blast, 2004), and the fan- tastic Winter Wake, by Elvenking (AFM, 2006). -
Richard Bach
The Bridge Across Forever: A Lovestory By Richard Bach Publication Date: October 1989 Publisher: Random House Publishing Group ISBN: 9780440108269 ISBN: 0440108268 Synopsis If you've ever felt alone in a world of strangers, missing someone you've never met, you'll find a message from your love in The Bridge Across Forever. Annotation Bach's first person account of his search for the soulmate he knew he was born to meet. a moving honest love story from the author of Jonathon Liningston Seagull. Review by Publishers Weekly An extended dialogue between Bach and his inner child comprises the latest book from the author of Jonathan Livingston Seagull. While hang-gliding one afternoon, Bach is reminded of a promise he made to himself when he was a child: to write a book containing the sum of all he has learned and deliver it to his nine-year-old self, Dickie. But Bach finds that Dickie is angry and hurt at having been locked away for the last 50 years. Slowly a dialogue emerges, as Bach tries to pass on his years of experience and in return relives some buried memories, particularly the events surrounding the death of his brother Bobby. What results is a kind of Richard Bach primer, summing up the author's thoughts on time, love, death and God and laying out a belief system not unlike George Bernard Shaw's idea of the Life Force. Participating in this shared voyage of discovery is Bach's wife, who contributes her own insights and acts as a kind of reality check on her husband. -
Western Field Ornithologists September 2020 Newsletter
Western Field Ornithologists September 2020 Newsletter Black Skimmers, Marbled Godwits, and Forster’s Terns. Imperial Beach, San Diego County. 3 September 2009. Photo by Thomas A. Blackman. Christopher Swarth, Newsletter Editor http://westernfieldornithologists.org/ What’s Inside…. Farewell from President Kurt Leuschner Welcome to New Board Members Alan Craig Remembers the Early Days of WFO Jon and Kimball on Bird Taxonomy and the NACC Western Regional Bird Highlights by Paul Lehman Steve Howell: A Big Year by Foot in Town Over-eager Nuthatches and Willing Sapsuckers Meet the WFO Board Members Awards and new WFO Leadership Kimball’s Life and Covid-time in a New Home Book reviews Student Research Field Notes and Art Announcements and News Kurt Leuschner’s President’s Farewell These past two years have been an interesting time to be the President of Western Field Ornithologists. We had one of our most successful conferences in Albuquerque, and just before the lockdown we completed a very memorable WFO field trip to Tasmania. We accomplished a lot together, and I look forward to assisting with future planning when the world opens up again – and it will! While we may not know exactly what lies ahead, we certainly won’t take anything for granted. We’re in the midst of a worldwide discourse about the serious impacts of social injustice. How the ornithological community can help improve the experiences of minorities in field ornithology continues to be on our minds as we move forward into 2021. Our new WFO Diversity and Inclusivity subcommittee has met two times already, and we will continue to discover and to implement ways to bring more under- represented groups into the world of birds.