The Carboxyl Transferase Component of Acetyl Coa Carboxylase: Structural Evidence for Intersubunit Translocation of the Biotin Prosthetic Group

Total Page:16

File Type:pdf, Size:1020Kb

The Carboxyl Transferase Component of Acetyl Coa Carboxylase: Structural Evidence for Intersubunit Translocation of the Biotin Prosthetic Group Proceedings of the National Academy of Sciences Vol. 68, No. 3, pp. 653-657, March 1971 The Carboxyl Transferase Component of Acetyl CoA Carboxylase: Structural Evidence for Intersubunit Translocation of the Biotin Prosthetic Group RAS B. GUCHHAIT, JOEL MOSS, WALTER SOKOLSKI, AND M. DANIEL LANE Department of Physiological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Communicated by Albert L. Lehninger, January 11, 1971 ABSTRACT An essential protein component of acetyl berts, et al. (3), which is free of biotin and appears to function CoA carboxylase, isolated and extensively purified from in the second half-reaction. The precise role of Eb, whether cell-free extracts of Escherichia coli, has been identified as malonyl CoA:d-biotin carboxyl transferase. This enzyme, catalytic, structural, or otherwise, has remained obscure. which does not contain covalently-bound biotin, catalyzes The present investigation reveals that a protein isolated carboxyl transfer from malonyl CoA to free d-biotin, a from E. coli, having characteristics similar to those reported model reaction for the second step in the carboxylation of for Eb, catalyzes BC- and CCP-independent carboxyl transfer acetyl CoA. The transcarboxylation product, after stabil- ization by methylation, was identified as 1'-N-carboxy-d- from malonyl CoA to free d-biotin to form free carboxybiotin. biotin dimethyl ester. These results indicate the presence This malonyl CoA: d-biotin carboxyl transferase, which has of a biotin site on the carboxyl transferase, distinct from been extensively purified, is devoid of biotin and is required that on the biotin carboxylase, which carries out the first in combination with BC and CCP for acetyl CoA carboxyla- step in the overall process. In addition, the carboxyl tion. transferase catalyzes a slower abortive decarboxylation of malonyl CoA, thus indicating that carboxyl abstraction and protonation do not require the participation of EXPERIMENTAL PROCEDURE biotin. E. coli B cells (grown to '/4 log phase) grown on enriched It is now evident that the half-reactions of acetyl CoA carboxylation are catalyzed by biotin carboxylase and medium were purchased from Grain Processing Corp., carboxyl transferase. Both components are devoid of Muscatine, Iowa. E. coli SA 283, a biotin auxotroph, was biotin and have specific binding sites for free d-biotin, as grown in the presence of [2'-'4C] d-biotin as described (5). well as for their respective substrates; hence, the acetyl Biotin carboxylase assays, materials, and other procedures not CoA carboxylation mechanism must involve intetsubunit described herein were as reported (5, 6). CoA translocation of the carboxylated biotinyl group, which is Acetyl carboxyl- bound covalently to carboxyl-carrier-protein, a non- ation was determined at 30°C by measuring ['4C]bicarbonate catalytic polypeptide. incorporation into malonyl CoA under assay conditions simi- lar to those of Alberts and Vagelos (3). [2-'4C]malonyl CoA It is now well established that the reactions catalyzed by was chemically synthesized by the method of Trams and acetyl CoA carboxylase and other biotin-dependent carbox- Brady (8) and [3-'4C]malonyl CoA was enzymatically syn- ylases (1, 2) proceed via the minimal 2-step reaction sequence thesized according to Gregolin, et al. (9); both labeled thio- shown below: esters were purified as described (9). Acetyl CoA was prepared Me2 + by the method of Simon and Shemin (10). Protein concentra- Enz-biotin + HCO3- + ATP = Enz-biotin-CO2, + tion was determined spectrophotometrically (11). ADP + Pi (1) Steps in the preparation of carboxyl transferase Enz-biotin-CO2- + Acceptor =± Enz-biotin + Cell-free extracts of E. coli are prepared in 0.1 M potassium Carboxylated phosphate buffer, pH 7, using a Manton-Gaulin submicron Acceptor (2) dispersor. The enzyme is purified by fractionation with am- (e.g., acetyl CoA) (e.g., malonyl CoA) monium sulfate (between 25 and 42% saturation), adsorption Unlike the carboxylases from higher organisms, which retain on and elution from calcium phosphate gel, and ion-exchange their structural chromatography on DEAE-cellulose and phosphocellulose. integrity during purification (2), Escherichia This coli acetyl CoA carboxylase is readily resolved into three es- procedure, which will be reported in detail elsewhere, sential protein components (3, 4): (a) biotin carboxylase results in preparations that are at least 200-fold purified (BC), which catalyzes the ATP- and divalent cation-depen- and have a specific activity in the carboxyl transferase assay dent carboxylation of biotin (4-6) and presumably participates of approximately 100 milliunits per mg of protein. in the first half-reaction [Reaction (1)], (b) carboxyl-carrier- Malonyl CoA decarboxylase assay protein (CCP), a polypeptide of about 9000 daltons, which contains a covalently-bound biotin prosthetic group (7), The rate of malonyl CoA decarboxylation is determined in a and (c) a third protein component, referred to as Eb by Al- reaction mixture (0.5 ml, pH 6.7) containing 100 mM imid- azole HCI buffer, 85 ,uM [2-14C]- or [3-14C]malonyl CoA Abbreviations: BC, biotin carboxylase; CCP, carboxyl-carrier- (4-6 X 103 cpm per nmol), 0.3 mg of bovine serum albumin, protein; MCD, malonyl CoA decarboxylase. and up to 10 milliunits of carboxyl transferase. At 5, 10, 15, 653 Downloaded by guest on September 28, 2021 654 Biochemistry: Guchhait et al. Proc. Nat. Acad. Sci. USA 68 (1971) product during the work-up subsequent to the enzymatic reaction are volatilized; this procedure leaves behind the re- sidual acid-stable '4C from unused substrate. The rate of car- boxyl transfer is equal to the difference between the rate of dis- appearance of acid-stable 14C in the presence and absence of free d-biotin. Linear transfer rates are obtained for 10 min with up to 2 milliunits of carboxyl transferase. One unit of carboxyl transferase catalyzes the formation of 1 Mimol of free carboxybiotin per min from malonyl CoA and free d-biotin under these conditions. RESULTS Isolation of Eb, an essential component of the carboxylase system that possesses malonyl CoA decarboxylase activity Investigations in this laboratory (J. Moss, unpublished ob- 200 ELUATE VOLUME ml servations) have shown that several biotin-dependent carbox- ylases catalyze a slow, avidin-insensitive, decarboxylation of FIG. 1. Cochromatography of Eb and malonyl CoA decar- their respective carboxylated acceptor substrates, e.g., mal- boxylase (MCD). (A) Calcium phosphate gel-purified enzyme onyl CoA decarboxylation by liver acetyl CoA carboxylase. (1.46 g of protein, see preparation of carboxyl transferase in Hence, these enzymes can labilize the a-carboxyl group of Experimental Procedure) in 10 mM potassium phosphate buffer, their carboxylated acceptors (e.g., malonyl CoA) and insert a pH 7.0, containing 1 mM EDTA and 5 mM ,-mercaptoethanol proton without the participation of the biotin prosthetic was applied to a 4.5 X 50 cm DEAE-cellulose column and group. component E. eluted with a 2-liter linear phosphate gradient (50-400 mM, pH 7) Our suspicion that the Eb of the coli also containing EDTA and fl-mercaptoethanol. The eluted frac- acetyl CoA carboxylase system might catalyze this abortive tions were assayed for MCD activity and for the ability to restore reaction proved correct and provided a means to assay and acetyl CoA carboxylase [in the presence of 0.96 mg of a combined follow this component during fractionation. After partial biotin carboxylase-carboxyl-carrier-protein preparation, calcium resolution from the biotin carboxylase and carboxyl-carrier- phosphate gel-purified enzyme from Step 3 of the biotin car- protein components by ammonium sulfate and calcium phos- boxylase purification procedure (5)]. The enzymatically-active phate gel fractionation, the malonyl CoA decarboxylase activ- fractions were pooled, and the protein was precipitated with 60%- ity was purified further by ion-exchange chromatography on saturated ammonium sulfate. (B) After dialysis against 25 mM DEAE-cellulose (Fig. 1A) and phosphocellulose (Fig. 1B). potassium phosphate buffer, pH 7, containing 1 mM EDTA and ,B-mercaptoethanol, half of the protein (25 mg) recovered In order to determine whether the enzyme having malonyl an from A was applied to a 1.5 X 30 cm column of phosphocellulose. CoA decarboxylase activity is essential component of the Elution was with a 500-ml phosphate gradient (25-300 mM, pH 7) acetyl CoA carboxylase system, the column fractions were containing EDTA and f3-mercaptoethanol. The eluted fractions assayed both for biotin-independent malonyl CoA decarbox- were assayed and the active fractions precipitated as in A. ylase activity and for their ability to restore acetyl CoA carboxylase activity to an enzyme preparation containing and 20 min of incubation at 300C, 0.1-ml aliquots are trans- TABLE 1. Reconstitution ofacetyl CoA carboxylase activity ferred to scintillation vials containing 0.1 ml of 6 N HCL. The acidified solutions are taken to dryness at 95°C; water and scintillator are added, and the residual acid-stable 14C is Specific enzyme activity Acetyl- determined. The [14C]C02 or [2-14C]acetic acid generated are CoA volatile under these conditions, whereas [2-14C]malonyl CoA Malonyl-CoA carboxyl- is not. Biotin decar- Carboxyl ated/5 carboxylase boxylase transferase min Carboxyl transferase assay Enzyme (munits/mg) (munits/mg) (munits/mg) (nmol) Malonyl CoA: d-biotin carboxyl transferase (CT) catalyzes BC-CCP* 2.9 0.05 0.2 3.5 transcarboxylation from malonyl CoA to free d-biotin (Reac- MCDt 0.0 8 96 0.0 tion 3), a model reaction for the reverse of the second step BC-CCP* (Reaction 2). + MCDt -----40 Malonyl CoA + d-biotin > * Combined biotin carboxylase (BC)- and carboxyl-carrier- CT protein (CCP)- containing enzyme preparation; calcium phos- acetyl CoA + carboxy-d-biotin (3) phate gel purified enzyme from Step 3 of the biotin carboxylase purification procedure (5). 0.96 mg was used to measure acetyl The (free) biotin-dependent formation of [2-14C]acetyl CoA CoA carboxylase activity.
Recommended publications
  • A New Mode of B Binding and the Direct Participation of A
    Research Article 997 A new mode of B12 binding and the direct participation of a potassium ion in enzyme catalysis: X-ray structure of diol dehydratase Naoki Shibata1, Jun Masuda1, Takamasa Tobimatsu2, Tetsuo Toraya2*, Kyoko Suto1, Yukio Morimoto1 and Noritake Yasuoka1* Background: Diol dehydratase is an enzyme that catalyzes the adenosylcobalamin Addresses: 1Department of Life Science, Himeji (coenzyme B ) dependent conversion of 1,2-diols to the corresponding Institute of Technology, 1475-2 Kanaji, Kamigori, 12 Ako-gun, Hyogo 678-1297, Japan and 2Department aldehydes. The reaction initiated by homolytic cleavage of the cobalt–carbon bond of Bioscience and Biotechnology, Faculty of α β γ of the coenzyme proceeds by a radical mechanism. The enzyme is an 2 2 2 Engineering, Okayama University, Tsushima-Naka, heterooligomer and has an absolute requirement for a potassium ion for catalytic Okayama 700-8530, Japan. activity. The crystal structure analysis of a diol dehydratase–cyanocobalamin *Corresponding authors. complex was carried out in order to help understand the mechanism of action of E-mail: [email protected] this enzyme. [email protected] Results: The three-dimensional structure of diol dehydratase in complex with Key words: B12 enzyme, diol dehydratase, radicals, cyanocobalamin was determined at 2.2 Å resolution. The enzyme exists as a reaction mechanism, TIM barrel αβγ dimer of heterotrimers ( )2. The cobalamin molecule is bound between the Received: 16 March 1999 α and β subunits in the ‘base-on’ mode, that is, 5,6-dimethylbenzimidazole of Revisions requested: 7 April 1999 the nucleotide moiety coordinates to the cobalt atom in the lower axial position.
    [Show full text]
  • Chemistry and Functions of Proteins
    TVER STATE MEDICAL UNIVERSITY BIOCHEMISTRY DEPARTMENT CHEMISTRY AND FUNCTIONS OF PROTEINS ILLUSTRATED BIOCHEMISTRY Schemes, formulas, terms and algorithm of preparation The manual for making notes of lectures and preparation for classes Tver, 2018 AMINO ACIDS -amino acids -These are organic acids with at least a minimum of one of its hydrogen atoms in the carbon chains substituted by an amino group.( Show the radical, amino and carboxyl groups) NH2 R | C – H | COOH Proteinogenous and Nonproteinogenous Amino acids - Major proteinogenous (standard) amino acids. (Give the names of each amino acid) R R 1 H – 2 CH3 – 12 HO – CH2 – (CH3)2 CH – 3 CH3 – CH – (CH3)2 CH – CH2 – 4 13 | CH3 – CH2 – CH – OH 5 | CH 3 6 14 HS – CH2 – HOOC – CH2 – 15 CH3 – S – CH2 – CH2 – 7 HOOC – CH2 – CH2 – NH2 | – C – H - | COOH 8 16 NH2 – CO – CH2 – 9 NH2 – CO – CH2 – CH2 – 17 10 NH2 – (CH2)3 – CH2 – 18 NH2 – C – NH – (CH2)3 – CH2 – 11 || NH 19 20 СООН NH -Glycine -Arginine Alanine -Serine -Valine -Threonine Leucine -Cysteine Isoleucine -Methionine Aspartic acid -Phenylalanine Glutamic acid -Tyrosine Asparagine -Tryptophan Glutamine -Histidine Lysine -Proline •Rare proteinogenous (standard) amino acids. ( Derivatives of lysine, proline and tyrosine) NH2 | H2N – CH2 – CH – (CH2)2 – CH | | OH COOH •Nonproteinogenous amino acids. (Name and show them) NH2 NH2 | | H2N – (CH2)3 – CH HS – (CH2)2 – CH | | COOH COOH NH2 | NH2 – C – HN – (CH2)3 – CH || | O COOH Ornithine Homocysteine Citrulline 2 CLASSIFICATION OF PROTEINOGENOUS (STANDARD) AMINO ACIDS Amino acids are classified by: *The structure of the radical (show); - aliphatic amino acids -monoaminodicarboxylic amino acids -amides of amino acids -diaminomonocarboxylic amino acids -hydroxy amino acids -sulfur-containing amino acids -cyclic (aromatic and heterolytic) amino acids *the polarity of the radical (show); -Non-polar (hydrophobic –Ala, Val, Leu, Ile, Trp, Pro.) -Polar (hydrophilic).
    [Show full text]
  • Chapter 7. "Coenzymes and Vitamins" Reading Assignment
    Chapter 7. "Coenzymes and Vitamins" Reading Assignment: pp. 192-202, 207-208, 212-214 Problem Assignment: 3, 4, & 7 I. Introduction Many complex metabolic reactions cannot be carried out using only the chemical mechanisms available to the side-chains of the 20 standard amino acids. To perform these reactions, enzymes must rely on other chemical species known broadly as cofactors that bind to the active site and assist in the reaction mechanism. An enzyme lacking its cofactor is referred to as an apoenzyme whereas the enzyme with its cofactor is referred to as a holoenzyme. Cofactors are subdivided into essential ions and organic molecules known as coenzymes (Fig. 7.1). Essential ions, commonly metal ions, may participate in substrate binding or directly in the catalytic mechanism. Coenzymes typically act as group transfer agents, carrying electrons and chemical groups such as acyl groups, methyl groups, etc., depending on the coenzyme. Many of the coenzymes are derived from vitamins which are essential for metabolism, growth, and development. We will use this chapter to introduce all of the vitamins and coenzymes. In a few cases--NAD+, FAD, coenzyme A--the mechanisms of action will be covered. For the remainder of the water-soluble vitamins, discussion of function will be delayed until we encounter them in metabolism. We also will discuss the biochemistry of the fat-soluble vitamins here. II. Inorganic cation cofactors Many enzymes require metal cations for activity. Metal-activated enzymes require or are stimulated by cations such as K+, Ca2+, or Mg2+. Often the metal ion is not tightly bound and may even be carried into the active site attached to a substrate, as occurs in the case of kinases whose actual substrate is a magnesium-ATP complex.
    [Show full text]
  • Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
    Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments.
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • Coenzymes and Prosthetic Groups Nomenclature
    Coenzymes and prosthetic groups Nomenclature • Cofactor: nonprotein component of enzymes • Cofactor - a co-catalyst required for enzyme activity • Coenzyme - a dissociable cofactor, usually organic • Prosthetic group - non-dissociable cofactor • Vitamin - a required micro-nutrient (organism cannot synthesize adequate quantities for normal health - may vary during life-cycle). – water soluble - not stored, generally no problem with overdose – lipid soluble - stored, often toxic with overdose. • Apoenzyme - enzyme lacking cofactor (inactive) • Holoenzyme - enzyme with cofactors (active) Vitamins are precursors of cofactors Why cofactors? Adenine Nucleotide Coenzymes All use the adenine nucleotide group solely for binding to the enzyme! • pyridine dinucleotides (NADH, NADPH) • flavin mono- and dinucleotides (FMN, FADH) • coenzyme A Nucleotide triphosphates • ATP hydrolysis – resonance stabilizes products – reactants cannot be resonance stabilized because of competition with adjacent bridging anhydrides – charge density greater on reactants than products Coenzyme A • Activation of acyl groups for transfer by nucleophilic attack • activation of the alpha- hydrogen of the acyl group for abstraction as a proton • Both these functions are mediated by the reactive -SH group on CoA, which forms thioesters Coenzyme A Nicotinic Acid/Nicotinamide Coenzymes • These coenzymes are two-electron carriers • They transfer hydride anion (H-) to and from substrates • Two important coenzymes in this class: • Nicotinamide adenine dinucleotide (NAD+) • Nicotinamide
    [Show full text]
  • ATP Structure and Function
    ATP: Universal Currency of Cellular Energy All living things including plants, animals, birds, insects, humans need energy for the proper functioning of cells, tissues and other organ systems. As we are aware that green plants, obtain their energy from the sunlight, and animals get their energy by feeding on these plants. Energy acts as a source of fuel. We, humans, gain energy from the food we eat, but how are the energy produced and stored in our body. A living cell cannot store significant amounts of free energy. Excess free energy would result in an increase of heat in the cell, which would result in excessive thermal motion that could damage and then destroy the cell. Rather, a cell must be able to handle that energy in a way that enables the cell to store energy safely and release it for use only as needed. Living cells accomplish this by using the compound adenosine triphosphate (ATP). ATP is often called the “energy currency” of the cell, and, like currency, this versatile compound can be used to fill any energy need of the cell. How? It functions similarly to a rechargeable battery. When ATP is broken down, usually by the removal of its terminal phosphate group, energy is released. The energy is used to do work by the cell, usually by the released phosphate binding to another molecule, activating it. For example, in the mechanical work of muscle contraction, ATP supplies the energy to move the contractile muscle proteins. Recall the active transport work of the sodium-potassium pump in cell membranes.
    [Show full text]
  • Bioenergetics, ATP & Enzymes
    Bioenergetics, ATP & Enzymes Some Important Compounds Involved in Energy Transfer and Metabolism Bioenergetics can be defined as all the energy transfer mechanisms occurring within living organisms. Energy transfer is necessary because energy cannot be created and it cannot be destroyed (1st law of thermodynamics). Organisms can acquire energy from chemicals (chemotrophs) or they can acquire it from light (phototrophs), but they cannot make it. Thermal energy (heat) from the environment can influence the rate of chemical reactions, but is not generally considered an energy source organisms can “capture” and put to specific uses. Metabolism, all the chemical reactions occurring within living organisms, is linked to bioenergetics because catabolic reactions release energy (are exergonic) and anabolic reactions require energy (are endergonic). Various types of high-energy compounds can “donate” the energy required to drive endergonic reactions, but the most commonly used energy source within cells is adenosine triphosphate (ATP), a type of coenzyme. When this molecule is catabolized (broken down), the energy released can be used to drive a wide variety of synthesis reactions. Endergonic reactions required for the synthesis of nucleic acids (DNA and RNA) are exceptions because all the nucleotides incorporated into these molecules are initially high-energy molecules as described below. The nitrogenous base here is adenine, the sugar is the pentose monosaccharide ribose and there are three phosphate groups attached. The sugar and the base form a molecule called a nucleoside, and the number of phosphate groups bound to the nucleoside is variable; thus alternative forms of this molecule occur as adenosine monophosphate (AMP) and adenosine diphosphate (ADP).
    [Show full text]
  • Unit –V CITRIC ACID CYCLE
    M.Sc. Botany Semester-II (2018-20) MBOTCC-7: Physiology & Biochemistry Unit –V CITRIC ACID CYCLE Nitu Bharti Assistant Professor Department of Botany CITRIC ACID CYCLE Cellular respiration occurs in three major stages. In the first,organic fuel molecules— glucose, fatty acids, and some amino acids—are oxidized to yield two-carbon fragments in the form of the acetyl group of acetyl-coenzyme A (acetyl-CoA). In the second stage, the acetyl groups are oxidized to CO2 in the citric acid cycle, and much of the energy of these oxidations is conserved in the reduced electron carriers NADH and FADH2. In the third stage of respiration, these reduced coenzymes are themselves oxidized, giving up + protons (H ) and electrons. The electrons are transferred to O2 via a series of electron- carrying molecules known as the respiratory chain, resulting in the formation of water (H2O). Fig: Catabolism of proteins, fats, and carbohydrates in the three stages of cellular respiration. Stage 1: oxidation of fatty acids, glucose, andsome amino acids yields acetyl-CoA. Stage 2: oxidation of acetyl groups in the citric acid cycle includes four steps in which electrons are abstracted. Stage 3:electrons carried by NADH and FADH2 are funneled into a chain of mitochondrial (or, in bacteria, plasma membrane-bound) electron carriers—the respiratory chain—ultimately reducing O2 to H2O. This electron flow drives the production of ATP. Production of Acetyl-CoA (Activated Acetate) Pyruvate, the product of glycolysis, is transported into the mitochondrial matrix by the mitochondrial pyruvate carrier. Pyruvate is converted to acetyl-CoA, the starting material for the citric acid cycle, by the pyruvate dehydrogenase complex.
    [Show full text]
  • Stabilization of Fatty Acid Synthesis Enzyme Acetyl-Coa Carboxylase 1 Suppresses Acute Myeloid Leukemia Development
    Stabilization of fatty acid synthesis enzyme acetyl-CoA carboxylase 1 suppresses acute myeloid leukemia development Hidenori Ito, … , Jun-ya Kato, Noriko Yoneda-Kato J Clin Invest. 2021;131(12):e141529. https://doi.org/10.1172/JCI141529. Research Article Oncology Graphical abstract Find the latest version: https://jci.me/141529/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Stabilization of fatty acid synthesis enzyme acetyl-CoA carboxylase 1 suppresses acute myeloid leukemia development Hidenori Ito, Ikuko Nakamae, Jun-ya Kato, and Noriko Yoneda-Kato Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan. Cancer cells reprogram lipid metabolism during their malignant progression, but limited information is currently available on the involvement of alterations in fatty acid synthesis in cancer development. We herein demonstrate that acetyl- CoA carboxylase 1 (ACC1), a rate-limiting enzyme for fatty acid synthesis, plays a critical role in regulating the growth and differentiation of leukemia-initiating cells. The Trib1-COP1 complex is an E3 ubiquitin ligase that targets C/EBPA, a transcription factor regulating myeloid differentiation, for degradation, and its overexpression specifically induces acute myeloid leukemia (AML). We identified ACC1 as a target of the Trib1-COP1 complex and found that an ACC1 mutant resistant to degradation because of the lack of a Trib1-binding site attenuated complex-driven leukemogenesis. Stable ACC1 protein expression suppressed the growth-promoting activity and increased ROS levels with the consumption of NADPH in a primary bone marrow culture, and delayed the onset of AML with increases in mature myeloid cells in mouse models.
    [Show full text]
  • Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A
    Review Cite This: Chem. Rev. 2019, 119, 10829−10855 pubs.acs.org/CR Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A. Estrin, and Rafael Radi*,†,‡ † ‡ § Departamento de Bioquímica, Centro de Investigaciones Biomedicaś (CEINBIO), Facultad de Medicina, and Laboratorio de Fisicoquímica Biologica,́ Facultad de Ciencias, Universidad de la Republica,́ 11800 Montevideo, Uruguay ∥ Departamento de Química Inorganica,́ Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2160 Buenos Aires, Argentina ABSTRACT: Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs.
    [Show full text]
  • Characterisation, Classification and Conformational Variability Of
    Characterisation, Classification and Conformational Variability of Organic Enzyme Cofactors Julia D. Fischer European Bioinformatics Institute Clare Hall College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 11 April 2011 This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the word limit of 60,000 words. Acknowledgements I would like to thank all the members of the Thornton research group for their constant interest in my work, their continuous willingness to answer my academic questions, and for their company during my time at the EBI. This includes Saumya Kumar, Sergio Martinez Cuesta, Matthias Ziehm, Dr. Daniela Wieser, Dr. Xun Li, Dr. Irene Pa- patheodorou, Dr. Pedro Ballester, Dr. Abdullah Kahraman, Dr. Rafael Najmanovich, Dr. Tjaart de Beer, Dr. Syed Asad Rahman, Dr. Nicholas Furnham, Dr. Roman Laskowski and Dr. Gemma Holli- day. Special thanks to Asad for allowing me to use early development versions of his SMSD software and for help and advice with the KEGG API installation, to Roman for knowing where to find all kinds of data, to Dani for help with R scripts, to Nick for letting me use his E.C. tree program, to Tjaart for python advice and especially to Gemma for her constant advice and feedback on my work in all aspects, in particular the chemistry side. Most importantly, I would like to thank Prof. Janet Thornton for giving me the chance to work on this project, for all the time she spent in meetings with me and reading my work, for sharing her seemingly limitless knowledge and enthusiasm about the fascinating world of enzymes, and for being such an experienced and motivational advisor.
    [Show full text]