The Carboxyl Transferase Component of Acetyl Coa Carboxylase: Structural Evidence for Intersubunit Translocation of the Biotin Prosthetic Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Mode of B Binding and the Direct Participation of A
Research Article 997 A new mode of B12 binding and the direct participation of a potassium ion in enzyme catalysis: X-ray structure of diol dehydratase Naoki Shibata1, Jun Masuda1, Takamasa Tobimatsu2, Tetsuo Toraya2*, Kyoko Suto1, Yukio Morimoto1 and Noritake Yasuoka1* Background: Diol dehydratase is an enzyme that catalyzes the adenosylcobalamin Addresses: 1Department of Life Science, Himeji (coenzyme B ) dependent conversion of 1,2-diols to the corresponding Institute of Technology, 1475-2 Kanaji, Kamigori, 12 Ako-gun, Hyogo 678-1297, Japan and 2Department aldehydes. The reaction initiated by homolytic cleavage of the cobalt–carbon bond of Bioscience and Biotechnology, Faculty of α β γ of the coenzyme proceeds by a radical mechanism. The enzyme is an 2 2 2 Engineering, Okayama University, Tsushima-Naka, heterooligomer and has an absolute requirement for a potassium ion for catalytic Okayama 700-8530, Japan. activity. The crystal structure analysis of a diol dehydratase–cyanocobalamin *Corresponding authors. complex was carried out in order to help understand the mechanism of action of E-mail: [email protected] this enzyme. [email protected] Results: The three-dimensional structure of diol dehydratase in complex with Key words: B12 enzyme, diol dehydratase, radicals, cyanocobalamin was determined at 2.2 Å resolution. The enzyme exists as a reaction mechanism, TIM barrel αβγ dimer of heterotrimers ( )2. The cobalamin molecule is bound between the Received: 16 March 1999 α and β subunits in the ‘base-on’ mode, that is, 5,6-dimethylbenzimidazole of Revisions requested: 7 April 1999 the nucleotide moiety coordinates to the cobalt atom in the lower axial position. -
Chemistry and Functions of Proteins
TVER STATE MEDICAL UNIVERSITY BIOCHEMISTRY DEPARTMENT CHEMISTRY AND FUNCTIONS OF PROTEINS ILLUSTRATED BIOCHEMISTRY Schemes, formulas, terms and algorithm of preparation The manual for making notes of lectures and preparation for classes Tver, 2018 AMINO ACIDS -amino acids -These are organic acids with at least a minimum of one of its hydrogen atoms in the carbon chains substituted by an amino group.( Show the radical, amino and carboxyl groups) NH2 R | C – H | COOH Proteinogenous and Nonproteinogenous Amino acids - Major proteinogenous (standard) amino acids. (Give the names of each amino acid) R R 1 H – 2 CH3 – 12 HO – CH2 – (CH3)2 CH – 3 CH3 – CH – (CH3)2 CH – CH2 – 4 13 | CH3 – CH2 – CH – OH 5 | CH 3 6 14 HS – CH2 – HOOC – CH2 – 15 CH3 – S – CH2 – CH2 – 7 HOOC – CH2 – CH2 – NH2 | – C – H - | COOH 8 16 NH2 – CO – CH2 – 9 NH2 – CO – CH2 – CH2 – 17 10 NH2 – (CH2)3 – CH2 – 18 NH2 – C – NH – (CH2)3 – CH2 – 11 || NH 19 20 СООН NH -Glycine -Arginine Alanine -Serine -Valine -Threonine Leucine -Cysteine Isoleucine -Methionine Aspartic acid -Phenylalanine Glutamic acid -Tyrosine Asparagine -Tryptophan Glutamine -Histidine Lysine -Proline •Rare proteinogenous (standard) amino acids. ( Derivatives of lysine, proline and tyrosine) NH2 | H2N – CH2 – CH – (CH2)2 – CH | | OH COOH •Nonproteinogenous amino acids. (Name and show them) NH2 NH2 | | H2N – (CH2)3 – CH HS – (CH2)2 – CH | | COOH COOH NH2 | NH2 – C – HN – (CH2)3 – CH || | O COOH Ornithine Homocysteine Citrulline 2 CLASSIFICATION OF PROTEINOGENOUS (STANDARD) AMINO ACIDS Amino acids are classified by: *The structure of the radical (show); - aliphatic amino acids -monoaminodicarboxylic amino acids -amides of amino acids -diaminomonocarboxylic amino acids -hydroxy amino acids -sulfur-containing amino acids -cyclic (aromatic and heterolytic) amino acids *the polarity of the radical (show); -Non-polar (hydrophobic –Ala, Val, Leu, Ile, Trp, Pro.) -Polar (hydrophilic). -
Chapter 7. "Coenzymes and Vitamins" Reading Assignment
Chapter 7. "Coenzymes and Vitamins" Reading Assignment: pp. 192-202, 207-208, 212-214 Problem Assignment: 3, 4, & 7 I. Introduction Many complex metabolic reactions cannot be carried out using only the chemical mechanisms available to the side-chains of the 20 standard amino acids. To perform these reactions, enzymes must rely on other chemical species known broadly as cofactors that bind to the active site and assist in the reaction mechanism. An enzyme lacking its cofactor is referred to as an apoenzyme whereas the enzyme with its cofactor is referred to as a holoenzyme. Cofactors are subdivided into essential ions and organic molecules known as coenzymes (Fig. 7.1). Essential ions, commonly metal ions, may participate in substrate binding or directly in the catalytic mechanism. Coenzymes typically act as group transfer agents, carrying electrons and chemical groups such as acyl groups, methyl groups, etc., depending on the coenzyme. Many of the coenzymes are derived from vitamins which are essential for metabolism, growth, and development. We will use this chapter to introduce all of the vitamins and coenzymes. In a few cases--NAD+, FAD, coenzyme A--the mechanisms of action will be covered. For the remainder of the water-soluble vitamins, discussion of function will be delayed until we encounter them in metabolism. We also will discuss the biochemistry of the fat-soluble vitamins here. II. Inorganic cation cofactors Many enzymes require metal cations for activity. Metal-activated enzymes require or are stimulated by cations such as K+, Ca2+, or Mg2+. Often the metal ion is not tightly bound and may even be carried into the active site attached to a substrate, as occurs in the case of kinases whose actual substrate is a magnesium-ATP complex. -
Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments. -
Supplemental Methods
Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection. -
Coenzymes and Prosthetic Groups Nomenclature
Coenzymes and prosthetic groups Nomenclature • Cofactor: nonprotein component of enzymes • Cofactor - a co-catalyst required for enzyme activity • Coenzyme - a dissociable cofactor, usually organic • Prosthetic group - non-dissociable cofactor • Vitamin - a required micro-nutrient (organism cannot synthesize adequate quantities for normal health - may vary during life-cycle). – water soluble - not stored, generally no problem with overdose – lipid soluble - stored, often toxic with overdose. • Apoenzyme - enzyme lacking cofactor (inactive) • Holoenzyme - enzyme with cofactors (active) Vitamins are precursors of cofactors Why cofactors? Adenine Nucleotide Coenzymes All use the adenine nucleotide group solely for binding to the enzyme! • pyridine dinucleotides (NADH, NADPH) • flavin mono- and dinucleotides (FMN, FADH) • coenzyme A Nucleotide triphosphates • ATP hydrolysis – resonance stabilizes products – reactants cannot be resonance stabilized because of competition with adjacent bridging anhydrides – charge density greater on reactants than products Coenzyme A • Activation of acyl groups for transfer by nucleophilic attack • activation of the alpha- hydrogen of the acyl group for abstraction as a proton • Both these functions are mediated by the reactive -SH group on CoA, which forms thioesters Coenzyme A Nicotinic Acid/Nicotinamide Coenzymes • These coenzymes are two-electron carriers • They transfer hydride anion (H-) to and from substrates • Two important coenzymes in this class: • Nicotinamide adenine dinucleotide (NAD+) • Nicotinamide -
ATP Structure and Function
ATP: Universal Currency of Cellular Energy All living things including plants, animals, birds, insects, humans need energy for the proper functioning of cells, tissues and other organ systems. As we are aware that green plants, obtain their energy from the sunlight, and animals get their energy by feeding on these plants. Energy acts as a source of fuel. We, humans, gain energy from the food we eat, but how are the energy produced and stored in our body. A living cell cannot store significant amounts of free energy. Excess free energy would result in an increase of heat in the cell, which would result in excessive thermal motion that could damage and then destroy the cell. Rather, a cell must be able to handle that energy in a way that enables the cell to store energy safely and release it for use only as needed. Living cells accomplish this by using the compound adenosine triphosphate (ATP). ATP is often called the “energy currency” of the cell, and, like currency, this versatile compound can be used to fill any energy need of the cell. How? It functions similarly to a rechargeable battery. When ATP is broken down, usually by the removal of its terminal phosphate group, energy is released. The energy is used to do work by the cell, usually by the released phosphate binding to another molecule, activating it. For example, in the mechanical work of muscle contraction, ATP supplies the energy to move the contractile muscle proteins. Recall the active transport work of the sodium-potassium pump in cell membranes. -
Bioenergetics, ATP & Enzymes
Bioenergetics, ATP & Enzymes Some Important Compounds Involved in Energy Transfer and Metabolism Bioenergetics can be defined as all the energy transfer mechanisms occurring within living organisms. Energy transfer is necessary because energy cannot be created and it cannot be destroyed (1st law of thermodynamics). Organisms can acquire energy from chemicals (chemotrophs) or they can acquire it from light (phototrophs), but they cannot make it. Thermal energy (heat) from the environment can influence the rate of chemical reactions, but is not generally considered an energy source organisms can “capture” and put to specific uses. Metabolism, all the chemical reactions occurring within living organisms, is linked to bioenergetics because catabolic reactions release energy (are exergonic) and anabolic reactions require energy (are endergonic). Various types of high-energy compounds can “donate” the energy required to drive endergonic reactions, but the most commonly used energy source within cells is adenosine triphosphate (ATP), a type of coenzyme. When this molecule is catabolized (broken down), the energy released can be used to drive a wide variety of synthesis reactions. Endergonic reactions required for the synthesis of nucleic acids (DNA and RNA) are exceptions because all the nucleotides incorporated into these molecules are initially high-energy molecules as described below. The nitrogenous base here is adenine, the sugar is the pentose monosaccharide ribose and there are three phosphate groups attached. The sugar and the base form a molecule called a nucleoside, and the number of phosphate groups bound to the nucleoside is variable; thus alternative forms of this molecule occur as adenosine monophosphate (AMP) and adenosine diphosphate (ADP). -
Unit –V CITRIC ACID CYCLE
M.Sc. Botany Semester-II (2018-20) MBOTCC-7: Physiology & Biochemistry Unit –V CITRIC ACID CYCLE Nitu Bharti Assistant Professor Department of Botany CITRIC ACID CYCLE Cellular respiration occurs in three major stages. In the first,organic fuel molecules— glucose, fatty acids, and some amino acids—are oxidized to yield two-carbon fragments in the form of the acetyl group of acetyl-coenzyme A (acetyl-CoA). In the second stage, the acetyl groups are oxidized to CO2 in the citric acid cycle, and much of the energy of these oxidations is conserved in the reduced electron carriers NADH and FADH2. In the third stage of respiration, these reduced coenzymes are themselves oxidized, giving up + protons (H ) and electrons. The electrons are transferred to O2 via a series of electron- carrying molecules known as the respiratory chain, resulting in the formation of water (H2O). Fig: Catabolism of proteins, fats, and carbohydrates in the three stages of cellular respiration. Stage 1: oxidation of fatty acids, glucose, andsome amino acids yields acetyl-CoA. Stage 2: oxidation of acetyl groups in the citric acid cycle includes four steps in which electrons are abstracted. Stage 3:electrons carried by NADH and FADH2 are funneled into a chain of mitochondrial (or, in bacteria, plasma membrane-bound) electron carriers—the respiratory chain—ultimately reducing O2 to H2O. This electron flow drives the production of ATP. Production of Acetyl-CoA (Activated Acetate) Pyruvate, the product of glycolysis, is transported into the mitochondrial matrix by the mitochondrial pyruvate carrier. Pyruvate is converted to acetyl-CoA, the starting material for the citric acid cycle, by the pyruvate dehydrogenase complex. -
Stabilization of Fatty Acid Synthesis Enzyme Acetyl-Coa Carboxylase 1 Suppresses Acute Myeloid Leukemia Development
Stabilization of fatty acid synthesis enzyme acetyl-CoA carboxylase 1 suppresses acute myeloid leukemia development Hidenori Ito, … , Jun-ya Kato, Noriko Yoneda-Kato J Clin Invest. 2021;131(12):e141529. https://doi.org/10.1172/JCI141529. Research Article Oncology Graphical abstract Find the latest version: https://jci.me/141529/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Stabilization of fatty acid synthesis enzyme acetyl-CoA carboxylase 1 suppresses acute myeloid leukemia development Hidenori Ito, Ikuko Nakamae, Jun-ya Kato, and Noriko Yoneda-Kato Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan. Cancer cells reprogram lipid metabolism during their malignant progression, but limited information is currently available on the involvement of alterations in fatty acid synthesis in cancer development. We herein demonstrate that acetyl- CoA carboxylase 1 (ACC1), a rate-limiting enzyme for fatty acid synthesis, plays a critical role in regulating the growth and differentiation of leukemia-initiating cells. The Trib1-COP1 complex is an E3 ubiquitin ligase that targets C/EBPA, a transcription factor regulating myeloid differentiation, for degradation, and its overexpression specifically induces acute myeloid leukemia (AML). We identified ACC1 as a target of the Trib1-COP1 complex and found that an ACC1 mutant resistant to degradation because of the lack of a Trib1-binding site attenuated complex-driven leukemogenesis. Stable ACC1 protein expression suppressed the growth-promoting activity and increased ROS levels with the consumption of NADPH in a primary bone marrow culture, and delayed the onset of AML with increases in mature myeloid cells in mouse models. -
Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A
Review Cite This: Chem. Rev. 2019, 119, 10829−10855 pubs.acs.org/CR Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A. Estrin, and Rafael Radi*,†,‡ † ‡ § Departamento de Bioquímica, Centro de Investigaciones Biomedicaś (CEINBIO), Facultad de Medicina, and Laboratorio de Fisicoquímica Biologica,́ Facultad de Ciencias, Universidad de la Republica,́ 11800 Montevideo, Uruguay ∥ Departamento de Química Inorganica,́ Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2160 Buenos Aires, Argentina ABSTRACT: Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. -
Characterisation, Classification and Conformational Variability Of
Characterisation, Classification and Conformational Variability of Organic Enzyme Cofactors Julia D. Fischer European Bioinformatics Institute Clare Hall College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 11 April 2011 This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the word limit of 60,000 words. Acknowledgements I would like to thank all the members of the Thornton research group for their constant interest in my work, their continuous willingness to answer my academic questions, and for their company during my time at the EBI. This includes Saumya Kumar, Sergio Martinez Cuesta, Matthias Ziehm, Dr. Daniela Wieser, Dr. Xun Li, Dr. Irene Pa- patheodorou, Dr. Pedro Ballester, Dr. Abdullah Kahraman, Dr. Rafael Najmanovich, Dr. Tjaart de Beer, Dr. Syed Asad Rahman, Dr. Nicholas Furnham, Dr. Roman Laskowski and Dr. Gemma Holli- day. Special thanks to Asad for allowing me to use early development versions of his SMSD software and for help and advice with the KEGG API installation, to Roman for knowing where to find all kinds of data, to Dani for help with R scripts, to Nick for letting me use his E.C. tree program, to Tjaart for python advice and especially to Gemma for her constant advice and feedback on my work in all aspects, in particular the chemistry side. Most importantly, I would like to thank Prof. Janet Thornton for giving me the chance to work on this project, for all the time she spent in meetings with me and reading my work, for sharing her seemingly limitless knowledge and enthusiasm about the fascinating world of enzymes, and for being such an experienced and motivational advisor.