Adenosine Signature Genes Associate with Tumor Regression in Renal Cell Carcinoma

Total Page:16

File Type:pdf, Size:1020Kb

Adenosine Signature Genes Associate with Tumor Regression in Renal Cell Carcinoma PRAME TNFSF18 CXCL1 CXCL6 BST1 CLEC5A PSMD7 DMBT1 40 CEACAM6 FOXJ1 CXCR1 CXCR2 ALCAM 20 ITCH Adenosine signature genes associate with tumor regression in renal cell carcinoma CXCL3 CXCL5 C2 CSF1 STAT2 0 MAP2K2 (RCC) patients treated with the adenosine A2A receptor (A2AR) antagonist, CPIADA -444. IRAK4 CT45A1 1 1 2 3 4 5 6 7 CCR6 7 8 9 Andrew Hotson, Stephen Willingham, −20 Lawrence Fong, John Powderly II, Jason Luke, Mario Sznol, Saby George, Toni K. Choueiri, C9 Marios Giannakis, Brian Rini, Shivaani Kummar, 10 1 1 1 1 1 1 LBP Erik Evensen, Ian McCaffery, Chunyan Gu, Long Kwei, Ginna Laport, Joe Buggy and Richard Miller TLR5 TNFSF14 CFD 1 −40 2 3 STAT3 4 5 Corvus Pharmaceuticals, Burlingame, CA; University of California, San Francisco, San Francisco, CA; Carolina BioOncology Institute, Huntersville, NC; BCL6 University of Chicago Medical Center, Chicago, IL, Yale 6 7 8 CXCR4 9 University School of Medicine, New Haven, CT; Roswell Park, Buffalo, NY; Dana-Farber Cancer Institute, Boston, MA; Cleveland Clinic, Cleveland, OH;CCL20 Stanford University School of Medicine, Stanford, CA; CEBPB 10 LIF Basis Bioscience, Foster City, CA−60 SAA1 C1R C1S PTGS2 PRAME C4BPA TNFSF18 Background CXCL1 CCL11 Adenosine Signature and Co-expressed Genes Identified in Patient Subset by Unsupervised ClusteringCXCL6 CXCL2 BST1 adeno_sig CLEC5A 40 A separate patient subset is low for adenosine signature and expresses alternate biological pathwaysTREM1 PSMD7 • DMBT1 Adenosine blocks T-cell activation and promotes myeloid SLC11A1 CEACAM6 TNFRSF11A FOXJ1 20 suppression BIRC5 CXCR1 • Gene expression was collected from pre-treatment biopsies CXCR2 CDK1 ALCAM CARD11 ITCH • 0 CPI-444 is an oral small molecule antagonist of the adenosine 2A • TTK CXCL3 Expression was correlated across patients and clustered CXCL5 IL8 C2 receptor (A2AR) that has shown efficacy in animal models and is • Biology self-organized to reveal modules of gene co-expressionPLAUR CSF1 −20 RIPK2 STAT2 a,b Spearman rho ModuleMAP2K2 scaled log2 expressionIndividual patients gene expressionAdeno_sig IFI16 associated with T cell activation. 1 ADA 1.2 High LY96 IRAK4CCL20 0.5 1.1−40 Low Spearman’sCD14 Scaled Log2 CT45A1SAA1 Gene by gene correlation CCR6 • Ongoing clinical trial of CPI-444 +/- anti-PD-L1 atezolizumab FCGR2A 0 CXCL3 1 Adenosine Response Growth Factor ExpressionC9 0.9 CorrelationCSF2RB −0.5 LBPCX3CL1 R demonstrates tumor responses to monotherapy and combination in LYN −1 TLR5GF 0.8−60 NR TNFSF14 Module High Module High CCL8 Module ReclusterCFD Module NA c,d PRAMEPRAME PRAME TNFSF4 TNFSF18TNFSF18 STAT3 CCL20 TNFSF18 multiple indications including renal cell carcinoma (RCC). CXCL1 CCL20 recluster_186 BOPCTCHG CXCL1 CXCL1 CXCL6 BCL6 MFGE8 CXCL6 Adenosine-response CXCL6 BST1 SAA1 BST1 SAA1 CXCR4recluster_163 50 BST1 CLEC5A THY1 CLEC5A CLEC5A PSMD7 CXCL3 PSMD7 CXCL3genes are highlightedCCL20recluster_438 PSMD7 • DMBT1 0 Future trials in RCC would benefit from a biomarker that predicts DMBT1 DMBT1 DOCK9 CEACAM6 CEBPB CEACAM6 CX3CL1 CEACAM6 FOXJ1 CX3CL1 NA FOXJ1 −50 FOXJ1 NOTCH1 CXCR1 LIF CXCR1 GF CXCR1 CXCR2 CXCR2 GF SAA1 CXCR2 CD36 ALCAM −100 patient response. ALCAM ALCAM ITCH ITCH C1R Recluster ITCH CXCL3 MCAM CXCL3Recluster BOR CXCL3 CXCL5 C1S CXCL5 CXCL5 C2 recluster_186 TRAF6 C2 recluster_186 PTGS2 C2 CSF1CSF1 PR CSF1 STAT2STAT2 C4BPA recluster_163 STAT2 CD34 MAP2K2 MAP2K2 recluster_163 SD MAP2K2 scaled log2 expression Adeno_sig ADA CCL11 ADA recluster_438 ADA 1.2 High ENG IRAK4IRAK4 recluster_438 IRAK4 CT45A1 CXCL2 PD 1.1 Low CT45A1 NA CT45A1 JAM3 CCR6CCR6 adeno_sig CCR6 1 C9 NA NE Response C9 Adenosine C9 LBP TREM1 LBP 0.9 NRP1 LBP LBP R TLR5TLR5 SLC11A1 TLR5 0.8 NR TNFSF14TNFSF14 DCR.6mo TNFSF14 ITGA1 CFD Module NA CFD TNFRSF11A CFD STAT3STAT3 Signature & >6mo STAT3 CCL20 BOPCTCHG CDH5 BCL6BCL6 BIRC5 BCL6 SAA1 CXCR4CXCR4 CXCR4 50 CCL20 CDK1 <6mo CXCL3 TAL1 CCL20 CCL20 0 CEBPB CEBPB CX3CL1 CEBPB CARD11 −50 LIF LIF FALSE LIF GF AKT3 SAA1 Associated SAA1 SAA1 TTK −100 C1RC1R C1R Recluster MAPK3 C1S C1S BOR C1S IL8 HClust_complete C1S recluster_186 PTGS2PTGS2 PTGS2 PR C4BPA PLAUR C4BPA recluster_163 ITGB3 C4BPA 1 C4BPA SD CCL11CCL11 GenesRIPK2 CCL11 recluster_438 CXCL2 CXCL2 PD MAPK8 CXCL2 CXCL2 NA adeno_sigAdeno Sig IFI16 2 adeno_sigAdeno Sig NE PRKCE TREM1TREM1 TREM1 SLC11A1SLC11A1 LY96 3 SLC11A1 DCR.6mo TNFRSF11ATNFRSF11A TNFRSF11A >6mo MAF BIRC5 CD14 BIRC5 BIRC5 4 <6mo CDK1CDK1 FCGR2A CDK1 VEGFA CARD11CARD11 CARD11 FALSE TTKTTK CSF2RB HClust_ward TTK IL8 IL8 IL8 HClust_complete CD164 LYN PLAUR PLAURPLAUR PLAUR 1 RIPK2 RIPK2RIPK2 Spearman rho Module CCL8 1 HMGB1 IFI16 IFI16 2 IFI16 1 LY96 CCL20 LY96 3 LY96 0.5 SAA1 TNFSF4 2 SMAD2 CD14CD14 CD14 0 CXCL3 4 FCGR2AFCGR2A MFGE8 FCGR2A −0.5 CX3CL1 3 CSF2RB TXNIP CSF2RBCSF2RB CSF2RB HClust_ward GF THY1 LYN LYNLYN −1 1 CCL8CCL8 Module Recluster 4 CCL8 TNFSF12 DOCK9 TNFSF4 TNFSF4TNFSF4 CCL20 recluster_186 2 MFGE8 MFGE8MFGE8 SAA1 recluster_163NOTCH1 3 BMI1 THY1THY1 RPMM THY1 CXCL3 recluster_438 DOCK9 4 DOCK9DOCK9 CD36 DOCK9 CX3CL1 NA NOTCH1 CREB1 NOTCH1NOTCH1 NOTCH1 GF MCAM CD36 RPMM CD36CD36 rRL CD36 MCAM MCAMMCAM Recluster MCAM rRL CYFIP2 TRAF6 TRAF6 TRAF6TRAF6 recluster_186 rRR TRAF6 rRR CD34 CD34CD34 recluster_163 CD34 ECSIT ENG rLL ENGENG recluster_438 rLL ENG JAM3 JAM3JAM3 NA rLR NRP1 CDH1 NRP1NRP1 JAM3 rLR ITGA1 KMeans_HW ITGA1ITGA1 CDH5 RORA CDH5CDH5 NRP1 1 TAL1 TAL1TAL1 KMeans_HW AKT3 2 AKT3AKT3 ITGA1 MIF MAPK3 3 MAPK3MAPK3 a) Willingham et al, Cancer Immunology Research, 2018 CDH5 ITGB3 ITGB3ITGB3 1 MAPK8 TLR3 MAPK8MAPK8 TAL1 PRKCE PRKCEPRKCE b) Leone et al, Cancer Immunology Immunotherapy, 2018 2 MAF CCL15 MAFMAF AKT3 VEGFA VEGFAVEGFA AdenosineMAPK3 3 CD164 CD164CD164 c) Hotson et al, SITC, 2017 (oral presentation by Luke, J) EPCAM HMGB1 HMGB1HMGB1 ITGB3 SMAD2 SMAD2SMAD2 DEFB1 TXNIP TXNIPTXNIP MAPK8 d) Fong et al, SITC, 2018 (oral presentation, Sat @ 4:40pm) TNFSF12 TNFSF12TNFSF12 BMI1 CREB5 BMI1BMI1 Signature Low:PRKCE CREB1 CREB1CREB1 MAF CYFIP2 ATG10 CYFIP2CYFIP2 ECSIT ECSITECSIT VEGFA CDH1 CDH1CDH1 CD24 RORA RORARORA CD164 CD26 and MIF MIFMIF CD46 TLR3 TLR3TLR3 HMGB1 CCL15 CCL15CCL15 SMAD2 EPCAM CXCL14 EPCAMEPCAM DEFB1 DEFB1DEFB1 Phase 1/1b Clinical Study with CPI-444 TXNIP CREB5 CREB5 Growth Factor CREB5 CX3CL1 ATG10 ATG10ATG10 TNFSF12 CD24 CD24CD24 IFIT1 BMI1 CD46 CD46 CD46 CXCL14 CXCL14 MAPK1 CXCL14 CREB1 CX3CL1 CX3CL1CX3CL1 Signaling IFIT1 IFIT1IFIT1 CYFIP2 SPA17 MAPK1 MAPK1MAPK1 ECSIT SPA17 Eligibility SPA17SPA17 APP APP APPAPP CDH1 CD59 CD59CD59 ITGA6 CD59 ITGA6ITGA6 RORA MAP2K4 CPI-444 Monotherapy MAP2K4MAP2K4 MIF IGF1R • Heavily pretreated ITGA6 IGF1RIGF1R STAT5B STAT5BSTAT5B TLR3 RORC RORCRORC TOLLIP 100 mg BID MAP2K4 TOLLIPTOLLIP CCL15 MASP1 MASP1MASP1 PPARG (median 3 prior therapies) IGF1R PPARGPPARG EPCAM BCL2 BCL2 BCL2BCL2 DEFB1 DPP4 STAT5B DPP4DPP4 CREB5 C2 C9 IL8 LIF MIF LYN TTK LBP C1S C1R APP ADA CFD MAF ENG LY96 TAL1 IFI16 ITCH BMI1 IFIT1 TLR5 TLR3 BST1 BCL6 AKT3 BCL2 JAM3 CSF1 CD14 CCL8 THY1 CD36 CD34 CD24 CD46 CD59 SAA1 DPP4 CDK1 NRP1 CCR6 CDH5 CDH1 RORA STAT2 STAT3 IRAK4 RIPK2 ITGA1 ITGB3 ITGA6 RORC BIRC5 TXNIP ECSIT RORC IGF1R SPA17 ATG10 FOXJ1 MCAM • CCL20 CCL11 CD164 CCL15 C4BPA TRAF6 CXCL1 CXCL6 CXCL3 CXCL5 CXCL2 DEFB1 PTGS2 PLAUR VEGFA CREB1 CREB5 1349 1297 1340 PPARG DMBT1 CXCR1 CXCR2 CXCR4 TREM1 CEBPB MAPK3 MAPK8 MAPK1 MASP1 Prior anti-PD-(L)1 allowed TOLLIP PSMD7 ALCAM MFGE8 DOCK9 PRKCE SMAD2 CYFIP2 STAT5B PRAME HMGB1 EPCAM ATG10 CT45A1 TNFSF4 CXCL14 CX3CL1 CLEC5A MAP2K2 CARD11 CSF2RB MAP2K4 FCGR2A NOTCH1 SLC11A1 Renal Cell TNFSF18 TNFSF14 TNFSF12 adeno_sig CEACAM6 300133 300111 100407 200432 200111 300135 100435 102231 100933 103035 300136 103210 100431 102417 102010 103101 200232 103231 103213 200231 102413 101001 102410 102512 103232 101111 102531 TNFRSF11A TOLLIP CD24 Cancer PRAME TNFSF18 CXCL1 CXCL6 BST1 CLEC5A PSMD7 DMBT1 CEACAM6 FOXJ1 CXCR1 CXCR2 ALCAM ITCH CXCL3 CXCL5 C2 CSF1 STAT2 MAP2K2 ADA IRAK4 CT45A1 CCR6 C9 LBP TLR5 TNFSF14 CFD STAT3 BCL6 CXCR4 CCL20 CEBPB LIF SAA1 C1R C1S PTGS2 C4BPA CCL11 CXCL2 Adeno Sig TREM1 SLC11A1 TNFRSF11A BIRC5 CDK1 CARD11 TTK IL8 PLAUR RIPK2 IFI16 LY96 CD14 FCGR2A CSF2RB LYN CCL8 TNFSF4 MFGE8 THY1 DOCK9 NOTCH1 CD36 MCAM TRAF6 CD34 ENG JAM3 NRP1 ITGA1 CDH5 TAL1 AKT3 MAPK3 ITGB3 MAPK8 PRKCE MAF VEGFA CD164 HMGB1 SMAD2 TXNIP TNFSF12 BMI1 CREB1 CYFIP2 ECSIT CDH1 RORA MIF TLR3 CCL15 EPCAM DEFB1 CREB5 ATG10 CD24 CD46 CXCL14 MASP1CX3CL1 IFIT1 MAPK1 SPA17 APP CD59 ITGA6 MAP2K4 IGF1R STAT5B RORC TOLLIP MASP1 PPARG BCL2 DPP4 CD46 Adeno_sig • Progressive disease on CXCL14 Response PPARG CX3CL1 BOPCTCHG BCL2 IFIT1 BOR prior therapy DCR.6mo CPI-444 100 mg BID + DPP4 MAPK1 SPA17 HClust_complete • No selection for PD-L1 APP HClust_ward C2 C9 atezolizumab 840 mg, Q2W IL8 LIF RPMM MIF LYN TTK LBP C1S CD59 C1R APP ADA CFD Adenosine Signature Biomarker and Outcome MAF ENG LY96 TAL1 IFI16 ITCH BMI1 IFIT1 TLR5 TLR3 BST1 BCL6 AKT3 BCL2 JAM3 CSF1 CD14 CCL8 THY1 CD36 CD34 CD24 CD46 CD59 SAA1 KMeans_HW DPP4 CDK1 NRP1 CD26 Negatively Correlates with Adenosine CCR6 CDH5 CDH1 RORA STAT2 STAT3 IRAK4 RIPK2 ITGA1 ITGB3 ITGA6 RORC BIRC5 TXNIP ECSIT IGF1R SPA17 ITGA6 ATG10 FOXJ1 MCAM CCL20 CCL11 CD164 CCL15 C4BPA TRAF6 CXCL1 CXCL6 CXCL3 CXCL5 CXCL2 DEFB1 PTGS2 PLAUR VEGFA CREB1 CREB5 PPARG DMBT1 CXCR1 CXCR2 CXCR4 TREM1 CEBPB MAPK3 MAPK8 MAPK1 MASP1 TOLLIP PSMD7 ALCAM MFGE8 DOCK9 PRKCE SMAD2 CYFIP2 STAT5B PRAME HMGB1 EPCAM CT45A1 TNFSF4 CXCL14 CX3CL1 CLEC5A expression MAP2K2 CARD11 CSF2RB MAP2K4 FCGR2A NOTCH1 MAP2K4 SLC11A1 TNFSF18 TNFSF14 TNFSF12 adeno_sig CEACAM6 IGF1R TNFRSF11A ADENOSINESTAT5B SIGNATURE LOW ADENOSINE SIGNATURE HIGH SignatureSheet 2 100 RORC 100 90 TOLLIP CPI-444
Recommended publications
  • (CD147) Is Induced by C/Ebpβ and Is Differentially Expressed in ALK+
    Laboratory Investigation (2017) 97, 1095–1102 © 2017 USCAP, Inc All rights reserved 0023-6837/17 EMMPRIN (CD147) is induced by C/EBPβ and is differentially expressed in ALK+ and ALK − anaplastic large-cell lymphoma Janine Schmidt1, Irina Bonzheim1, Julia Steinhilber1, Ivonne A Montes-Mojarro1, Carlos Ortiz-Hidalgo2, Wolfram Klapper3, Falko Fend1 and Leticia Quintanilla-Martínez1 Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is characterized by expression of oncogenic ALK fusion proteins due to the translocation t(2;5)(p23;q35) or variants. Although genotypically a T-cell lymphoma, ALK+ ALCL cells frequently show loss of T-cell-specific surface antigens and expression of monocytic markers. C/EBPβ, a transcription factor constitutively overexpressed in ALK+ ALCL cells, has been shown to play an important role in the activation and differentiation of macrophages and is furthermore capable of transdifferentiating B-cell and T-cell progenitors to macrophages in vitro. To analyze the role of C/EBPβ for the unusual phenotype of ALK+ ALCL cells, C/EBPβ was knocked down by RNA interference in two ALK+ ALCL cell lines, and surface antigen expression profiles of these cell lines were generated using a Human Cell Surface Marker Screening Panel (BD Biosciences). Interesting candidate antigens were further analyzed by immunohistochemistry in primary ALCL ALK+ and ALK − cases. Antigen expression profiling revealed marked changes in the expression of the activation markers CD25, CD30, CD98, CD147, and CD227 after C/EBPβ knockdown. Immunohistochemical analysis confirmed a strong, membranous CD147 (EMMPRIN) expression in ALK+ ALCL cases. In contrast, ALK − ALCL cases showed a weaker CD147 expression.
    [Show full text]
  • CD46 Expression Is Indicative of Shorter Revival-Free Survival for Ovarian Cancer Patients
    ANTICANCER RESEARCH 26: 4943-4948 (2006) CD46 Expression is Indicative of Shorter Revival-free Survival for Ovarian Cancer Patients PAWEL SUROWIAK1,2,3, VERENA MATERNA1, ADAM MACIEJCZYK3, IRINA KAPLENKO4, MAREK SPACZYNSKI4, MANFRED DIETEL1, HERMANN LAGE1 and MACIEJ ZABEL2,5 1Institute of Pathology, Charité Campus Mitte, D-10117 Berlin, Germany; 2Chair and Department of Histology and Embryology, University School of Medicine, ul. Chalubinskiego 6a, 50-356 Wroclaw; 3Lower Silesian Centre of Oncology, pl. Hirszfelda 12, 53-413 Wroclaw; 4Chair and Department of Obstetrics and Gynaecology and 5Chair and Department of Histology and Embryology, University School of Medicine, ul. Swiecickiego 6, 60-781 Poznan, Poland Abstract. Background: The membrane cofactor protein CD46 cure very rarely. Despite the introduction of novel represents a complement inhibitor, which protects autologous chemotherapy regimens, the frequency of 5 - year survival cells from complement - mediated cytotoxicity. CD46 may of patients at all clinical stages has not exceeded 40%, in the exhibit the potential to protect tumor cells from the immune last 20 years (2). Therefore, intense efforts are being made responses of the host. The present study aimed to evaluate the in numerous centres to detect new prognostic factors, which prognostic significance of CD46 expression in ovarian cancers. might prove valuable towards studies on new therapeutic Materials and Methods: The analyses were performed on 73 approaches. ovarian cancer samples. Immunohistochemical reactions were The absence of the host’s immune response to the performed on paraffin sections of tumors using monoclonal presence of tumor cells represents one of the circumstances, antibodies directed against CD46. The immunohistochemical which promotes development of the tumor.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • List of Genes Used in Cell Type Enrichment Analysis
    List of genes used in cell type enrichment analysis Metagene Cell type Immunity ADAM28 Activated B cell Adaptive CD180 Activated B cell Adaptive CD79B Activated B cell Adaptive BLK Activated B cell Adaptive CD19 Activated B cell Adaptive MS4A1 Activated B cell Adaptive TNFRSF17 Activated B cell Adaptive IGHM Activated B cell Adaptive GNG7 Activated B cell Adaptive MICAL3 Activated B cell Adaptive SPIB Activated B cell Adaptive HLA-DOB Activated B cell Adaptive IGKC Activated B cell Adaptive PNOC Activated B cell Adaptive FCRL2 Activated B cell Adaptive BACH2 Activated B cell Adaptive CR2 Activated B cell Adaptive TCL1A Activated B cell Adaptive AKNA Activated B cell Adaptive ARHGAP25 Activated B cell Adaptive CCL21 Activated B cell Adaptive CD27 Activated B cell Adaptive CD38 Activated B cell Adaptive CLEC17A Activated B cell Adaptive CLEC9A Activated B cell Adaptive CLECL1 Activated B cell Adaptive AIM2 Activated CD4 T cell Adaptive BIRC3 Activated CD4 T cell Adaptive BRIP1 Activated CD4 T cell Adaptive CCL20 Activated CD4 T cell Adaptive CCL4 Activated CD4 T cell Adaptive CCL5 Activated CD4 T cell Adaptive CCNB1 Activated CD4 T cell Adaptive CCR7 Activated CD4 T cell Adaptive DUSP2 Activated CD4 T cell Adaptive ESCO2 Activated CD4 T cell Adaptive ETS1 Activated CD4 T cell Adaptive EXO1 Activated CD4 T cell Adaptive EXOC6 Activated CD4 T cell Adaptive IARS Activated CD4 T cell Adaptive ITK Activated CD4 T cell Adaptive KIF11 Activated CD4 T cell Adaptive KNTC1 Activated CD4 T cell Adaptive NUF2 Activated CD4 T cell Adaptive PRC1 Activated
    [Show full text]
  • Finding Drug Targeting Mechanisms with Genetic Evidence for Parkinson’S Disease
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.208975; this version posted July 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Finding drug targeting mechanisms with genetic evidence for Parkinson’s disease Catherine S. Storm1,*, Demis A. Kia1, Mona Almramhi1, Sara Bandres-Ciga2, Chris Finan3, Aroon D. Hingorani3,4,5, International Parkinson’s Disease Genomics Consortium (IPDGC), Nicholas W. Wood1,6,* 1 Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom 2 Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, United States of America 3 Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom 4 University College London British Heart Foundation Research Accelerator Centre, New Delhi, India 5 Health Data Research UK, 222 Euston Road, London, United Kingdom 6 Lead Contact * Correspondence: [email protected] (CSS), [email protected] (NWW) Summary Parkinson’s disease (PD) is a neurodegenerative movement disorder that currently has no disease-modifying treatment, partly owing to inefficiencies in drug target identification and validation using human evidence. Here, we use Mendelian randomization to investigate more than 3000 genes that encode druggable proteins, seeking to predict their efficacy as drug targets for PD. We use expression and protein quantitative trait loci for druggable genes to mimic exposure to medications, and we examine the causal effect on PD risk (in two large case-control cohorts), PD age at onset and progression.
    [Show full text]
  • A Molecular Switch from STAT2-IRF9 to ISGF3 Underlies Interferon-Induced Gene Transcription
    ARTICLE https://doi.org/10.1038/s41467-019-10970-y OPEN A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription Ekaterini Platanitis 1, Duygu Demiroz1,5, Anja Schneller1,5, Katrin Fischer1, Christophe Capelle1, Markus Hartl 1, Thomas Gossenreiter 1, Mathias Müller2, Maria Novatchkova3,4 & Thomas Decker 1 Cells maintain the balance between homeostasis and inflammation by adapting and inte- grating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our 1234567890():,; understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA. 1 Max Perutz Labs (MPL), University of Vienna, Vienna 1030, Austria. 2 Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria. 3 Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria. 4 Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria.
    [Show full text]
  • B-Cell Receptor Pathway Inhibitors Affect CD20 Levels and Impair Antitumor Activity of Anti-CD20 Monoclonal Antibodies
    Letters to the Editor 1163 13 Kuruvilla J, Gutierrez M, Shah BD, Gabrail NY, de Nully Brown P, 14 Yu L, Mohamed AJ, Simonson OE, Vargas L, Blomberg KE, Bjorkstrand B et al. Stone RM et al. Preliminary evidence of anti tumor activity of selinexor Proteasome-dependent autoregulation of Bruton tyrosine kinase (Btk) promoter (KPT-330) in a phase I trial of a first-in-class oral selective inhibitor via NF-kappaB. Blood 2008; 111: 4617–4626. of nuclear export (SINE) in patients (pts) with relapsed/refractory non 15BurgerJA,BurgerM,KippsTJ.Chronic lymphocytic leukemia B cells Hodgkin’s lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Blood 2013; express functional CXCR4 chemokine receptors that mediate spontaneous 122: 90. migration beneath bone marrow stromal cells. Blood 1999; 94: 3658–3667. Supplementary Information accompanies this paper on the Leukemia website (http://www.nature.com/leu) B-cell receptor pathway inhibitors affect CD20 levels and impair antitumor activity of anti-CD20 monoclonal antibodies Leukemia (2014) 28, 1163–1167; doi:10.1038/leu.2014.12 also tested a primary MCL sample and upon treatment with BCR inhibitors observed a significant downregulation of surface CD20 levels and a trend towards impaired R-CDC and O-CDC (Supplementary Figure 1b). Moreover, we determined the Signaling via the aberrantly activated B-cell receptor (BCR) has a influence of BCR inhibitors on CD20 surface levels in a critical role in the pathogenesis of B-cell tumors by promoting series of 15 tumor cell lines, including Burkitt’s lymphoma (Ramos, survival and clonal expansion of malignant B cells.1,2 Multiple Daudi and BJAB), ALL (NALM-6), diffuse large B-cell lymphoma preclinical studies indicate that blocking various components of (BCR-dependent Ly-1, Ly-7, Ly-10, DHL-6, HBL-1, U2932 and the BCR signaling pathway holds a great therapeutic potential in BCR-independent Ly-4, Ly-19, Pfeiffer) and CLL (EHEB and MEC-1).
    [Show full text]
  • CD38, CD157, and RAGE As Molecular Determinants for Social Behavior
    cells Review CD38, CD157, and RAGE as Molecular Determinants for Social Behavior Haruhiro Higashida 1,2,* , Minako Hashii 1,3, Yukie Tanaka 4, Shigeru Matsukawa 5, Yoshihiro Higuchi 6, Ryosuke Gabata 1, Makoto Tsubomoto 1, Noriko Seishima 1, Mitsuyo Teramachi 1, Taiki Kamijima 1, Tsuyoshi Hattori 7, Osamu Hori 7 , Chiharu Tsuji 1, Stanislav M. Cherepanov 1 , Anna A. Shabalova 1, Maria Gerasimenko 1, Kana Minami 1, Shigeru Yokoyama 1, Sei-ichi Munesue 8, Ai Harashima 8, Yasuhiko Yamamoto 8, Alla B. Salmina 1,2 and Olga Lopatina 2 1 Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; [email protected] (M.H.); [email protected] (R.G.); [email protected] (M.T.); [email protected] (N.S.); [email protected] (M.T.); [email protected] (T.K.); [email protected] (C.T.); [email protected] (S.M.C.); [email protected] (A.A.S.); [email protected] (M.G.); minami-k@staff.kanazawa-u.ac.jp (K.M.); [email protected] (S.Y.) 2 Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; [email protected] (A.B.S.); [email protected] (O.L.) 3 Division of Molecular Genetics and Clinical Research, National Hospital Organization Nanao Hospital, Nanao 926-0841, Japan 4 Molecular Biology and Chemistry, Faculty of Medical Science, University of Fukui, Fukui
    [Show full text]
  • 32-6317: BST1 Human Description Product Info
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-6317: BST1 Human Bone Marrow Stromal Cell Antigen 1, ADP-Ribosyl Cyclase 2, Bone Marrow Stromal Antigen 1, Cyclic ADP- Alternative Ribose Hydrolase 2, NAD(+) Nucleosidase, CADPr Hydrolase 2, ADP-Ribosyl Cyclase/Cyclic ADP-Ribose Name : Hydrolase 2, CD157 Antigen, EC 3.2.2.6, CD157, BST-1, ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2, ADP-ribosyl cyclase 2, Bone marrow stromal antigen 1, Cyclic ADP-ribose hydrolase 2, cADPr hydrolase 2. Description Source: Sf9, Baculovirus cells. Sterile filtered colorless solution. BST1 (Bone Marrow Stromal Cell Antigen 1), is a GPI (glycosylphosphatidylinositol) anchored membrane protein which is part of the CD38 family. BST1 was initially recognized as a bone marrow stromal cell molecule. BST1 is an ectoenzyme sharing more than a few features with ADP-ribosyl cyclase CD38. BST1 together with CD38, exhibit both DP-ribosyl cyclase and cyclinc ADP ribose hydrolase activities. BST1 participates in rheumatoid arthritis due to its enhanced expression in RA-derived bone marrow stromal cell lines. Moreover, BST1 is expressed by cells of the myeloid lineage and could perform as a receptor with a signal transduction capability. BST1 produced in Sf9 Baculovirus cells is a single, glycosylated polypeptide chain containing 267 amino acids (33-293a.a.) and having a molecular mass of 30.5kDa. (Molecular size on SDS-PAGE will appear at approximately 40-57kDa).BST1 is expressed with a 6 amino acid His tag at C-Terminus and purified by proprietary chromatographic techniques.
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]