Photonuclear Reactions of Actinide and Pre-Actinide Nuclei at Intermediate Energies

Total Page:16

File Type:pdf, Size:1020Kb

Photonuclear Reactions of Actinide and Pre-Actinide Nuclei at Intermediate Energies Photonuclear reactions of actinide and pre-actinide nuclei at intermediate energies Tapan Mukhopadhyay1 and D.N. Basu2 Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064, India ∗ (Dated: August 9, 2021) Photonuclear reaction is described with an approach based on the quasideuteron nuclear pho- toabsorption model followed by the process of competition between light particle evaporation and fission for the excited nucleus. Thus fission process is considered as a decay mode. The evaporation- fission process of the compound nucleus is simulated in a Monte-Carlo framework. Photofission reaction cross sections are analysed in a systematic manner in the energy range ∼ 50-70 MeV for the actinides 232Th, 233U, 235U, 238U and 237Np and the pre-actinide nuclei 208Pb and 209Bi. The study reproduces satisfactorily well the available experimental data of photofission cross sections at energies ∼ 50-70 MeV and the increasing trend of nuclear fissility with the fissility parameter Z2/A for the actinides and pre-actinides at intermediate energies [∼ 20-140 MeV]. Keywords: Photonuclear reactions; Photofission; Nuclear fissility; Monte-Carlo PACS numbers: 25.20.-x, 27.90.+b, 25.85.Jg, 25.20.Dc, 24.10.Lx I. INTRODUCTION Isotopes of plutonium and other actinides tend to be long-lived with half-lives of many thousands of years, whereas radioactive fission products tend to be shorter- In recent years the study of photofission has attracted lived (most with half-lives of 30 years or less). Many of considerable interest. When a gamma (photon) above the actinides are very radiotoxic because they also have the nuclear binding energy of an element is incident on long biological half-lives and are α emitters as well. In that element, fission may occur along with the emission transmutation the intention is to convert the actinides of neutrons and the number of neutrons released by each into fission products. The fission products are very ra- fission event is dependent on the element. With high dioactive, but the majority of the activity will decay enough photon energy it is possible to induce fission in away within a short time. From a waste management most elements. For lighter elements the cross sections are viewpoint, transmutation of actinides eliminates a very quite small. There is also the difficulty in distinguishing long-term radioactive hazard and replaces it with a much fission from various fragmentation processes, particularly shorter-term one. Accelerated radioactive decay has been for light elements. These reasons practically limit all in- proposed by bombarding spent fuel with electromagnetic vestigations to the upper half of the Periodic Table. Re- (photon) rays. The γ-rays have also been suggested to cently the experimental techniques are improved by using be very effective, but γ-rays are very difficult to produce the solid state track and parallel plate avalanche detec- and may need to be precisely tuned to the target actinide tors which make it possible to study fission with very or fission product. low yields. Moreover, the production of highly neutron- The aim of the present work is to obtain photofission rich radioactive nuclei through photofission will open new cross section. From the photonuclear reactions, it is pos- perspectives to explore very exotic nuclei far away from 78 sible to gain insight into the fission mechanism, especially the valley of stability, especially in the vicinity of Ni. about how the barrier varies. Information can also be The use of the energetic electrons is a promising mode obtained about the excitation of a nucleus by absorp- to get intense neutron-rich ion beams [1]. The reason is tion of a high-energy quantum and the subsequent de- arXiv:0709.4155v1 [nucl-th] 26 Sep 2007 excitation process. At intermediate energies [ 20-140 that although the fission cross section at the giant dipo- ∼ lar resonance energy is 0.16 barn for 238U (against MeV] such a reaction can be described as a two step pro- 1.6 barn for 40 MeV neutrons≈ induced fission) but the cess. The incoming photon is assumed to be absorbed by electrons/≈ γ-photons conversion efficiency is much more a neutron-proton [n-p] pair inside nucleus, followed by a significant than that of the deuterons/neutrons. The en- mechanism of evaporation-fission competition. Photofis- ergetic beam ( 50 MeV ) of incident electrons can be sion cross sections of various nuclei are calculated using a slowed down in∼ a tungsten (W) converter or directly in Monte-Carlo method for the evaporation-fission calcula- the target (U), generating Bremsstrahlung γ-rays which tion and compared with the available experimental data at energies 50-70 MeV. may induce fission. In the photofission method for the ∼ (neutron-rich) radioactive ion beam production, nuclei are excited by photons covering the peak of the giant II. THE PHOTOABSORPTION MECHANISM dipolar resonance. The dominant mechanism for nuclear photoabsorp- tion at intermediate energies is described by the ∗E-mail 1: [email protected]; E-mail 2: [email protected] quasideuteron model [2] which is employed to evaluate 2 the total photoabsorption cross section in heavy nuclei. III. THE NUCLEAR EXCITATION AND It is based on the assumption that the incident photon FISSION PROBABILITY is absorbed by a correlated n-p pair inside the nucleus, leaving the remaining nucleons as spectators. Such an After absorption of a photon (γ) with incident energy assumption is enforced when wavelength of the incident Eγ (as measured in the laboratory frame), the nucleus photon is small compared to the nuclear dimensions. The with rest mass m0 recoils with a velocity vr given by T total nuclear photoabsorption cross section σa is then proportional to the available number of n-p pairs inside nucleus and also to the free deuteron photodisintegration Eγ c vr = 2 (5) 0 cross section σd(Eγ ) and is given by : [Eγ + m c ] which is also the velocity of the centre of mass vcm of the T L γ-nucleus system where c is the speed of light in vacuum. σa = NZσd(Eγ )fP (Eγ ) (1) A In the centre of mass frame, momenta of the γ and the where Eγ is the incident photon enegy, N, Z and A nucleus are the same and equal to pcm: are the neutron, proton and mass numbers respectively, L/A factor represents the fraction of correlated n-p pairs. Eγm0c Thus, Levinger’s constant [2] L is a factor which measures pcm = 2 2 (6) the relative probability of two nucleons being near each [m0c (2Eγ + m0c )] other in a complex nucleus compared with that in a free p and the kinetic energy Er of the recoiling nucleus in the deuteron. The function fP (Eγ ) accounts for the reduc- laboratory frame is tion of the n-p phase space due to the Pauli exclusion principle. A systematic study of the total nuclear pho- ′ 2 toabsorption cross section data [3] in the intermediate m0c ′ 2 Er = m0c energy range shows that 1 v2/c2 − − r p 2 2 2 1/2 = Eγ + m0c [m0c (2Eγ + m0c )] (7) −D/Eγ 0.81 fP (Eγ )= e where D =0.72A MeV. (2) − ′ where m0 and m0 are the rest masses of the nucleus be- For photon energies upto the pion threshold, the Eq. (2) fore and after the photon absorption respectively. along with the damping parameter D provided above The recoiling nucleus can be viewed as a compound nu- agrees reasonably well with the approach based upon cleus having the same composition as the target nucleus phase space considerations [4] using Fermi gas state den- but with the excitation energy sities that conserve linear momentum for the Pauli block- ing effects in the quasideuteron regime of hard photon ∗ ′ 2 2 2 2 1/2 absorption. E = m0c m0c = m0c [(1 + 2E /m0c ) 1] − γ − The free deuteron photodisintegration cross section [5] 2 2 1/2 2 = [m0c (2E + m0c )] m0c (8) is given by γ − and in this case E∗ is also equal to the kinetic energy 3/2 61.2 [Eγ B] in the centre of mass frame (which is sum of the kinetic σd(Eγ )= 3− [mb] (3) energies of the γ and the nucleus moving in the centre Eγ of mass frame). The kinetic energy Er of the recoiling where B=2.224 MeV is the binding energy of the nucleus in the laboratory frame can now be rewritten as deuteron. The quasideuteron model of nuclear photoab- the obvious result sorption is used together with the modern root-mean- square radius data to obtain Levinger’s constant ∗ E = E E . (9) r γ − −2/3 −4/3 L =6.8 11.2A +5.7A (4) This excited compound nucleus then undergoes succes- − sive evaporation of neutrons and other light particles or of nuclei throughout the Periodic Table and is in good fission. Thus, the fission is considered as a decay mode. agreement [6] with those obtained from the experimen- The photofission cross section σ is a product of the nu- tally measured σT values. At the quasideuteron energy f a clear photoabsorption cross section σT and the total fis- range, as a consequence of the primary photointerac- a sion probability (fissility) f and is, therefore, given by tion, γ+(n+p) n*+p*, in most of the cases excited com- pound nuclei are→ formed with the same composition as target nucleus where both neutron and proton are re- T σf = σ f. (10) tained inside the nucleus and the probabilities that either a neutron escapes or proton escapes or both neutron and The statistical approach for nucleon and light-particle proton escape from the nucleus are extremely low. evaporation and nuclear fission is an appropriate scheme 3 ∗ ∗ ∗ ∗ for calculation of the relative probabilities of different where En = E Bn and Ef = E Bf are the nu- decay modes of the compound nucleus.
Recommended publications
  • CHEM 1412. Chapter 21. Nuclear Chemistry (Homework) Ky
    CHEM 1412. Chapter 21. Nuclear Chemistry (Homework) Ky Multiple Choice Identify the choice that best completes the statement or answers the question. ____ 1. Consider the following statements about the nucleus. Which of these statements is false? a. The nucleus is a sizable fraction of the total volume of the atom. b. Neutrons and protons together constitute the nucleus. c. Nearly all the mass of an atom resides in the nucleus. d. The nuclei of all elements have approximately the same density. e. Electrons occupy essentially empty space around the nucleus. ____ 2. A term that is used to describe (only) different nuclear forms of the same element is: a. isotopes b. nucleons c. shells d. nuclei e. nuclides ____ 3. Which statement concerning stable nuclides and/or the "magic numbers" (such as 2, 8, 20, 28, 50, 82 or 128) is false? a. Nuclides with their number of neutrons equal to a "magic number" are especially stable. b. The existence of "magic numbers" suggests an energy level (shell) model for the nucleus. c. Nuclides with the sum of the numbers of their protons and neutrons equal to a "magic number" are especially stable. d. Above atomic number 20, the most stable nuclides have more protons than neutrons. e. Nuclides with their number of protons equal to a "magic number" are especially stable. ____ 4. The difference between the sum of the masses of the electrons, protons and neutrons of an atom (calculated mass) and the actual measured mass of the atom is called the ____. a. isotopic mass b.
    [Show full text]
  • The R-Process Nucleosynthesis and Related Challenges
    EPJ Web of Conferences 165, 01025 (2017) DOI: 10.1051/epjconf/201716501025 NPA8 2017 The r-process nucleosynthesis and related challenges Stephane Goriely1,, Andreas Bauswein2, Hans-Thomas Janka3, Oliver Just4, and Else Pllumbi3 1Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, 1050 Brussels, Belgium 2Heidelberger Institut fr¨ Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany 3Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany 4Astrophysical Big Bang Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan Abstract. The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Recently, special attention has been paid to neutron star (NS) mergers following the confirmation by hydrodynamic simulations that a non-negligible amount of matter can be ejected and by nucleosynthesis calculations combined with the predicted astrophysical event rate that such a site can account for the majority of r-material in our Galaxy. We show here that the combined contribution of both the dynamical (prompt) ejecta expelled during binary NS or NS-black hole (BH) mergers and the neutrino and viscously driven outflows generated during the post-merger remnant evolution of relic BH-torus systems can lead to the production of r-process elements from mass number A > 90 up to actinides. The corresponding abundance distribution is found to reproduce the∼ solar distribution extremely well. It can also account for the elemental distributions observed in low-metallicity stars. However, major uncertainties still affect our under- standing of the composition of the ejected matter.
    [Show full text]
  • Photofission Cross Sections of 238U and 235U from 5.0 Mev to 8.0 Mev Robert Andrew Anderl Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV Robert Andrew Anderl Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons, and the Oil, Gas, and Energy Commons Recommended Citation Anderl, Robert Andrew, "Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV " (1972). Retrospective Theses and Dissertations. 4715. https://lib.dr.iastate.edu/rtd/4715 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction, 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity, 2.
    [Show full text]
  • Arxiv:1901.01410V3 [Astro-Ph.HE] 1 Feb 2021 Mental Information Is Available, and One Has to Rely Strongly on Theoretical Predictions for Nuclear Properties
    Origin of the heaviest elements: The rapid neutron-capture process John J. Cowan∗ HLD Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA Christopher Snedeny Department of Astronomy, University of Texas, 2515 Speedway, Austin, TX 78712-1205, USA James E. Lawlerz Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA Ani Aprahamianx and Michael Wiescher{ Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA Karlheinz Langanke∗∗ GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany Gabriel Mart´ınez-Pinedoyy GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany; Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany; and Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Friedrich-Karl Thielemannzz Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland and GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany (Dated: February 2, 2021) The production of about half of the heavy elements found in nature is assigned to a spe- cific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understand- ing faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experi- arXiv:1901.01410v3 [astro-ph.HE] 1 Feb 2021 mental information is available, and one has to rely strongly on theoretical predictions for nuclear properties.
    [Show full text]
  • Interaction of Neutrons with Matter
    Interaction of Neutrons With Matter § Neutrons interactions depends on energies: from > 100 MeV to < 1 eV § Neutrons are uncharged particles: Þ No interaction with atomic electrons of material Þ interaction with the nuclei of these atoms § The nuclear force, leading to these interactions, is very short ranged Þ neutrons have to pass close to a nucleus to be able to interact ≈ 10-13 cm (nucleus radius) § Because of small size of the nucleus in relation to the atom, neutrons have low probability of interaction Þ long travelling distances in matter See Krane, Segre’, … While bound neutrons in stable nuclei are stable, FREE neutrons are unstable; they undergo beta decay with a lifetime of just under 15 minutes n ® p + e- +n tn = 885.7 ± 0.8 s ≈ 14.76 min Long life times Þ before decaying possibility to interact Þ n physics … x Free neutrons are produced in nuclear fission and fusion x Dedicated neutron sources like research reactors and spallation sources produce free neutrons for the use in irradiation neutron scattering exp. 33 N.B. Vita media del protone: tp > 1.6*10 anni età dell’universo: (13.72 ± 0,12) × 109 anni. beta decay can only occur with bound protons The neutron lifetime puzzle From 2016 Istitut Laue-Langevin (ILL, Grenoble) Annual Report A. Serebrov et al., Phys. Lett. B 605 (2005) 72 A.T. Yue et al., Phys. Rev. Lett. 111 (2013) 222501 Z. Berezhiani and L. Bento, Phys. Rev. Lett. 96 (2006) 081801 G.L. Greene and P. Geltenbort, Sci. Am. 314 (2016) 36 A discrepancy of more than 8 seconds !!!! https://www.scientificamerican.com/article/neutro
    [Show full text]
  • Nuclear Astrophysics: the Unfinished Quest for the Origin of the Elements
    Nuclear astrophysics: the unfinished quest for the origin of the elements Jordi Jos´e Departament de F´ısica i Enginyeria Nuclear, EUETIB, Universitat Polit`ecnica de Catalunya, E-08036 Barcelona, Spain; Institut d’Estudis Espacials de Catalunya, E-08034 Barcelona, Spain E-mail: [email protected] Christian Iliadis Department of Physics & Astronomy, University of North Carolina, Chapel Hill, North Carolina, 27599, USA; Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA E-mail: [email protected] Abstract. Half a century has passed since the foundation of nuclear astrophysics. Since then, this discipline has reached its maturity. Today, nuclear astrophysics constitutes a multidisciplinary crucible of knowledge that combines the achievements in theoretical astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools and developments have revolutionized our understanding of the origin of the elements: supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; cosmochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, through the combined efforts using stable and radioactive ion beam facilities. This review provides comprehensive insight into the nuclear history of the Universe arXiv:1107.2234v1 [astro-ph.SR] 12 Jul 2011 and related topics: starting from the Big Bang, when the ashes from the primordial explosion were transformed to hydrogen, helium, and few trace elements, to the rich variety of nucleosynthesis mechanisms and sites in the Universe.
    [Show full text]
  • Spontaneous Fission
    13) Nuclear fission (1) Remind! Nuclear binding energy Nuclear binding energy per nucleon V - Sum of the masses of nucleons is bigger than the e M / nucleus of an atom n o e l - Difference: nuclear binding energy c u n r e p - Energy can be gained by fusion of light elements y g r e or fission of heavy elements n e g n i d n i B Mass number 157 13) Nuclear fission (2) Spontaneous fission - heavy nuclei are instable for spontaneous fission - according to calculations this should be valid for all nuclei with A > 46 (Pd !!!!) - practically, a high energy barrier prevents the lighter elements from fission - spontaneous fission is observed for elements heavier than actinium - partial half-lifes for 238U: 4,47 x 109 a (α-decay) 9 x 1015 a (spontaneous fission) - Sponatenous fission of uranium is practically the only natural source for technetium - contribution increases with very heavy elements (99% with 254Cf) 158 1 13) Nuclear fission (3) Potential energy of a nucleus as function of the deformation (A, B = energy barriers which represent fission barriers Saddle point - transition state of a nucleus is determined by its deformation - almost no deformation in the ground state - fission barrier is higher by 6 MeV Ground state Point of - tunneling of the barrier at spontaneous fission fission y g r e n e l a i t n e t o P 159 13) Nuclear fission (4) Artificially initiated fission - initiated by the bombardment with slow (thermal neutrons) - as chain reaction discovered in 1938 by Hahn, Meitner and Strassmann - intermediate is a strongly deformed
    [Show full text]
  • Production and Properties Towards the Island of Stability
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Leino, Matti Title: Production and properties towards the island of stability Year: 2016 Version: Please cite the original version: Leino, M. (2016). Production and properties towards the island of stability. In D. Rudolph (Ed.), Nobel Symposium NS 160 - Chemistry and Physics of Heavy and Superheavy Elements (Article 01002). EDP Sciences. EPJ Web of Conferences, 131. https://doi.org/10.1051/epjconf/201613101002 All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. EPJ Web of Conferences 131, 01002 (2016) DOI: 10.1051/epjconf/201613101002 Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements Production and properties towards the island of stability Matti Leino Department of Physics, University of Jyväskylä, PO Box 35, 40014 University of Jyväskylä, Finland Abstract. The structure of the nuclei of the heaviest elements is discussed with emphasis on single-particle properties as determined by decay and in- beam spectroscopy. The basic features of production of these nuclei using fusion evaporation reactions will also be discussed. 1. Introduction In this short review, some examples of nuclear structure physics and experimental methods relevant for the study of the heaviest elements will be presented.
    [Show full text]
  • Fission and Fusion Can Yield Energy
    Nuclear Energy Nuclear energy can also be separated into 2 separate forms: nuclear fission and nuclear fusion. Nuclear fusion is the splitting of large atomic nuclei into smaller elements releasing energy, and nuclear fusion is the joining of two small atomic nuclei into a larger element and in the process releasing energy. The mass of a nucleus is always less than the sum of the individual masses of the protons and neutrons which constitute it. The difference is a measure of the nuclear binding energy which holds the nucleus together (Figure 1). As figures 1 and 2 below show, the energy yield from nuclear fusion is much greater than nuclear fission. Figure 1 2 Nuclear binding energy = ∆mc For the alpha particle ∆m= 0.0304 u which gives a binding energy of 28.3 MeV. (Figure from: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html ) Fission and fusion can yield energy Figure 2 (Figure from: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html) Nuclear fission When a neutron is fired at a uranium-235 nucleus, the nucleus captures the neutron. It then splits into two lighter elements and throws off two or three new neutrons (the number of ejected neutrons depends on how the U-235 atom happens to split). The two new atoms then emit gamma radiation as they settle into their new states. (John R. Huizenga, "Nuclear fission", in AccessScience@McGraw-Hill, http://proxy.library.upenn.edu:3725) There are three things about this induced fission process that make it especially interesting: 1) The probability of a U-235 atom capturing a neutron as it passes by is fairly high.
    [Show full text]
  • Nuclear Binding & Stability
    Nuclear Binding & Stability Stanley Yen TRIUMF UNITS: ENERGY Energy measured in electron-Volts (eV) 1 volt battery boosts energy of electrons by 1 eV 1 volt -19 battery 1 e-Volt = 1.6x10 Joule 1 MeV = 106 eV 1 GeV = 109 eV Recall that atomic and molecular energies ~ eV nuclear energies ~ MeV UNITS: MASS From E = mc2 m = E / c2 so we measure masses in MeV/c2 1 MeV/c2 = 1.7827 x 10 -30 kg Frequently, we get lazy and just set c=1, so that we measure masses in MeV e.g. mass of electron = 0.511 MeV mass of proton = 938.272 MeV mass of neutron=939.565 MeV Also widely used unit of mass is the atomic mass unit (amu or u) defined so that Mass(12C atom) = 12 u -27 1 u = 931.494 MeV = 1.6605 x 10 kg nucleon = proton or neutron “nuclide” means one particular nuclear species, e.g. 7Li and 56Fe are two different nuclides There are 4 fundamental types of forces in the universe. 1. Gravity – very weak, negligible for nuclei except for neutron stars 2. Electromagnetic forces – Coulomb repulsion tends to force protons apart ) 3. Strong nuclear force – binds nuclei together; short-ranged 4. Weak nuclear force – causes nuclear beta decay, almost negligible compared to the strong and EM forces. How tightly a nucleus is bound together is mostly an interplay between the attractive strong force and the repulsive electromagnetic force. Let's make a scatterplot of all the stable nuclei, with proton number Z versus neutron number N.
    [Show full text]
  • Silicon-Burning Process
    Silicon-burning process In astrophysics, silicon burning is a very brief[1] sequence of nuclear fusion reactions that occur in massive stars with a minimum of about 8-11 solar masses. Silicon burning is the final stage of fusion for massive stars that have run out of the fuels that power them for their long lives in the main sequence on the Hertzsprung-Russell diagram. It follows the previous stages of hydrogen, helium, carbon, neon and oxygen burning processes. Silicon burning begins when gravitational contraction raises the star's core temperature to 2.7–3.5 billion Kelvin (GK). The exact temperature depends on mass. When a star has completed the silicon-burning phase, no further fusion is possible. The star catastrophically collapses and may explode in what is known as a Type II supernova. Contents Nuclear fusion sequence and silicon photodisintegration Binding energy See also Notes References External links Nuclear fusion sequence and silicon photodisintegration After a star completes the oxygen burning process, its core is composed primarily of silicon and sulfur.[2][3] If it has sufficiently high mass, it further contracts until its core reaches temperatures in the range of 2.7–3.5 GK (230–300 keV). At these temperatures, silicon and other elements can photodisintegrate, emitting a proton or an alpha particle.[2] Silicon burning proceeds by photodisintegration rearrangement,[4] which creates new elements by adding one of these freed alpha particles[2] (the equivalent of a helium nucleus) per capture step in the following sequence (photoejection of alphas not shown): 28 + 4 → 32 14Si 2He 16S 32 + 4 → 36 16S 2He 18Ar 36 + 4 → 40 18Ar 2He 20Ca 40 + 4 → 44 20Ca 2He 22Ti 44 + 4 → 48 22Ti 2He 24Cr 48 + 4 → 52 24Cr 2He 26Fe 52 + 4 → 56 26Fe 2He 28Ni 56 + 4 → 60 [nb 1] 28Ni 2He 30Zn The silicon-burning sequence lasts about one day before being struck by the shock wave that was launched by the core collapse.
    [Show full text]
  • Low-Energy Nuclear Physics Part 2: Low-Energy Nuclear Physics
    BNL-113453-2017-JA White paper on nuclear astrophysics and low-energy nuclear physics Part 2: Low-energy nuclear physics Mark A. Riley, Charlotte Elster, Joe Carlson, Michael P. Carpenter, Richard Casten, Paul Fallon, Alexandra Gade, Carl Gross, Gaute Hagen, Anna C. Hayes, Douglas W. Higinbotham, Calvin R. Howell, Charles J. Horowitz, Kate L. Jones, Filip G. Kondev, Suzanne Lapi, Augusto Macchiavelli, Elizabeth A. McCutchen, Joe Natowitz, Witold Nazarewicz, Thomas Papenbrock, Sanjay Reddy, Martin J. Savage, Guy Savard, Bradley M. Sherrill, Lee G. Sobotka, Mark A. Stoyer, M. Betty Tsang, Kai Vetter, Ingo Wiedenhoever, Alan H. Wuosmaa, Sherry Yennello Submitted to Progress in Particle and Nuclear Physics January 13, 2017 National Nuclear Data Center Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]