Matemaattis-Luonnontieteellinen Tiedekunta Matematiikan Ja Tilastotieteen Laitos Tekijä  Författare  Author Juho Leppänen

Total Page:16

File Type:pdf, Size:1020Kb

Matemaattis-Luonnontieteellinen Tiedekunta Matematiikan Ja Tilastotieteen Laitos Tekijä  Författare  Author Juho Leppänen View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen tiedekunta Matematiikan ja tilastotieteen laitos Tekijä Författare Author Juho Leppänen Työn nimi Arbetets titel Title Solovay's Theorem Oppiaine Läroämne Subject Matematiikka Työn laji Arbetets art Level Aika Datum Month and year Sivumäärä Sidoantal Number of pages Pro gradu -tutkielma Joulukuu 2014 38 s. Tiivistelmä Referat Abstract Tutkielmassa esitellään Robert Solovayn artikkelin A model of set-theory in which every set of reals is Lebesgue measurable (Annals of Mathematics, Second Series, 92, 1970) reaalijoukkojen Lebesgue-mitallisuutta koskevia tuloksia. Lähtien liikkeelle ZFC:n numeroituvasta ja transitiivises- ta mallista jossa lisäksi oletetaan olevan saavuttamaton kardinaali Solovay konstruoi artikke- lissa ZF+DC:n mallin, missä jokainen reaalilukujen osajoukko on Lebesgue-mitallinen. Edellä DC viittaa riippuvan valinnan aksioomaan, joka implikoi numeroituvan valinnan aksiooman, ja on siten riittävä todistamaan kaikki tavanomaiset positiiviset tulokset Lebesguen mitasta. Tunnetusti ZFC todistaa ei-mitallisen joukon olemassaolon, mutta Solovayn tuloksen perusteella edes ZF + DC ei hylkää lausetta, jonka mukaan kaikki reaalijoukot olisivat Lebesgue-mitallisia. Solovayn mallin re- aalijoukoilla on edellä mainitun lisäksi myös muita tärkeitä säännöllisyysominaisuuksia, joista tässä tutkielmassa tarkastellaan täydellisen joukon ominaisuutta: mallissa jokainen reaalijoukko on joko numeroituva tai sisältää täydellisen joukon. Solovayn mallin konstruktio on sovellus Cohenin pakotusmenetelmästä, ja tutkielmassa keskitytään tarkastelemaan lähinnä kahta tapaa tuottaa pakotukseen liittyviä geneerisiä jatkeita. Ensimmäinen näistä on Lévy-romautus, missä lähtömallin saavuttamaton kardinaali pakotetaan olemaan genee- risen jatkeen seuraajakardinaali. Tutkielmassa todistettavien tulosten avulla nähdään menettelyn yhteys Solovayn mallin konstruktioon. Yhdessä tulopakotuksen perusteorian kanssa, tätä pakotus- menettelyä voidaan lisäksi soveltaa !1:n tai !2:n kombinatorisia ominaisuuksia koskeviin ongelmiin; esimerkkinä tästä osoitetaan, että kun lähtömallin saavuttamaton kardinaali Lévy-romautetaan ge- neerisen jatkeen kardinaaliksi !2, ei geneerisessä jatkeessa ole tällöin lainkaan Kurepa-puita. Toinen tarkasteltava pakotusmenettely on satunnaisen reaalin pakotus, joka mahdollistaa Cohenin pakotusmenetelmän soveltamisen mittateoreettisiin ongelmiin. Tämän pakotusmenettelyn tuotta- man geneerisen jatkeen määrää yksikäsitteinen reaaliluku nimeltään satunnainen reaali, ja näitä reaalilukuja koskevat tulokset ovat avainasemassa Solovayn mallin ominaisuuksia tutkittaessa. Kar- keasti ottaen reaaliluku on satunnainen, jos se välttää kaikki sellaiset nollamittaiset reaalien osajou- kot, joiden konstruktio on riittävän yksinkertainen. Satunnaisuuden käsite määritellään tarkasti hyödyntämällä koodia, jonka avulla pakotuksen lähtömallin ja oikean maailman Borel-joukkojen vä- lille saadaan useimmat topologiset ja mittateoreettiset ominaisuudet säilyttävä yhteys. Satunnaisten reaalien tutkimus tuottaa työkaluja, joita hyödyntämällä lopulta nähdään, että Lévy-romautuksen tuottamassa geneerisessä jatkeessa kaikki !-pituisista ordinaalijonoista määriteltävät reaalijoukot ovat Lebesgue-mitallisia. Tämä havainto on huomattava askel kohti Solovayn mallin konstruktiota. Toisaalta tulos on jo itsessään merkittävä, sillä esimerkiksi jokainen projektiivinen reaalien osajouk- ko on määriteltävissä !-jonosta ordinaaleja, joten seurauksena voidaan päätellä, että ZFC ei todista ei-mitallisen projektiivisen joukon olemassaoloa. Tutkielman lopuksi kommentoidaan myös lyhyesti Solovayn tuloksessa tehtävän (edellä mainitun) kardinaalioletuksen tarpeellisuutta. Avainsanat Nyckelord Keywords Joukko-oppi, pakotus, Lebesgue-mitallisuus Säilytyspaikka Förvaringsställe Where deposited Kumpulan tiedekirjasto Muita tietoja Övriga uppgifter Additional information Ohjaaja: Tapani Hyttinen Solovay’s Theorem Juho Leppänen October 2014 Contents 1 Notation and Preliminaries . 4 1.1 Models and Absoluteness . 4 1.2 Sets of Reals . 5 1.3 Measurability and the Perfect Set Property . 6 1.4 Relative Constructibility . 9 1.5 Forcing . 10 2 Products and the Lévy Collapse . 15 2.1 Products . 16 2.2 The Lévy Collapse . 17 2.3 Independence of Kurepa’s Hypothesis . 23 3 Random Reals . 26 4 Solovay’s Theorem . 31 4.1 Sets Definable from Sequences of Ordinals . 31 4.2 Proof of Solovay’s Theorem . 33 Introduction The classical construction of a Vitali set, originally discovered by Giuseppe Vitali in 1905, shows that there exists a set of reals that is not Lebesgue measurable. The construction, however, makes heavy use of the Axiom of Choice (AC), thus giving rise to the natural question whether the existence of non-measurable sets can be established solely on the basis of ZF1. The purpose of this thesis is to study the following answer to this question that was given by Robert Solovay in his 1970 article [Sol70]. THEOREM (Solovay). Suppose that there exists a model of ZFC with an inaccessible car- dinal. Then, there exists a model of ZF + DC in which every set of reals is Lebesgue measurable and has the perfect set property. The result is an application of Cohen’s method of forcing, and similarly to Cohen’s celebrated result on the independence of the continuum hypothesis, Solovay’s Theorem resolved a classical problem whose earliest formulations were known already at the beginning of the 20th century. Particularly remarkable was the level of the forcing ar- guments being used in the proof of the result, considering that Solovay had established his result already in 1964, only a year after Cohen’s formulation of forcing. The proof of the Theorem is mainly a study of two distinct notions of forcing that are nowadays known as the Lévy collapse and the random real forcing. The firstly men- tioned forces all ordinals below an inaccessible cardinal to become countable ordinals in the generic extension, so that the inaccessible then becomes the first uncountable ordinal !1 in the extension. The notion was devised by Azriel Lévy, who utilized it to obtain the relative consistency of ”every well-ordering of the reals that is definable from a countable sequence of ordinals is countable”, but only after Solovay’s appli- cation did the notion become a standard tool in forcing arguments. Since then, the method has proven to be useful in situations where some combinatorial principles of !1 or !2 are being considered, while assuming the existence of an inaccessible cardi- nal. An example is the model constructed by Jack Silver ([Sil71]) in which there are no Kurepa trees. The latter notion, random real forcing, was invented by Solovay for the purpose of applying Cohen’s method to solve measure theoretic problems. Most of the initial applications of forcing used partial orderings of functions in the spirit of Cohen’s original ideas, but Solovay stepped out of this framework by introducing his notion in which he considered the partial ordering of Borel sets with positive measure, ordered by set inclusion. A generic filter of such partial ordering will, in a sense, converge to a single real number called the random real, and these reals completely determine the generic extensions of this forcing. Studying properties of the random reals is a major part in the proof of Solovay’s result. A fact worth noting is that the formulation of Solovay’s Theorem which we gave above can be further strengthened and generalized: In [Sol70], Solovay considers one more regularity property of sets of reals, the property of Baire. Indeed, it can be shown 1ZF is Zermelo-Fraenkel set theory, ZFC is ZF with AC, and ZF + DC is ZF with the Principle of Dependent Choices. 2 that the model we construct for obtaining Solovay’s result satisfies also the statement ”every set of reals has the property of Baire”. The proof of this highly resembles the proof of the Lebesgue measurability portion of the Theorem, but some modifications are needed (see [Sol70] or [Jec02]). Furthermore, if R is replaced by a complete sep- arable metric space, and if moreover the Lebesgue measure is replaced by any σ-finite Borel-measure on X, the Theorem still holds (a proof of this is sketched at the end of [Sol70]). This paper consists of four sections. The first section briefly reviews essential back- ground needed for understanding the theory developed in later sections. This review includes basic results on models of set theory and Lebesgue measure, relative con- structibility and most notably forcing. The treatment of the topics reflects our ultimate desire for obtaining Solovay’s Theorem, and some of the results presented here are already crucial points in the very proof of the Theorem. Proofs are sometimes given for the sake of completeness or due to motivational reasons, but often times they are omitted as it is assumed that the reader is already familiar with most of the concepts touched upon in this section. The second section begins with a brief discussion on product forcing, and after this we swiftly proceed to consider forcing with the Lévy collapse partial ordering. We es- tablish some elementary properties of this forcing, and the section then culminates in the proof a special property which is later seen to be the key technical
Recommended publications
  • In Memoriam: James Earl Baumgartner (1943-2011)
    In memoriam: James Earl Baumgartner (1943–2011) J.A. Larson Department of Mathematics University of Florida, Gainesville Gainesville, FL 32611–8105, USA October 9, 2018 Abstract James Earl Baumgartner (March 23, 1943 – December 28, 2011) came of age mathematically during the emergence of forcing as a fun- damental technique of set theory, and his seminal research changed the way set theory is done. He made fundamental contributions to the development of forcing, to our understanding of uncountable or- ders, to the partition calculus, and to large cardinals and their ideals. He promulgated the use of logic such as absoluteness and elementary submodels to solve problems in set theory, he applied his knowledge of set theory to a variety of areas in collaboration with other math- ematicians, and he encouraged a community of mathematicians with engaging survey talks, enthusiastic discussions of open problems, and friendly mathematical conversations. arXiv:1705.02219v1 [math.HO] 2 May 2017 1 Overview of Baumgartner’s Life James E. Baumgartner was born on March 23, 1943 in Wichita, Kansas. His high school days included tennis, football, and leading roles in school plays. In 1960 he entered the California Institute of Technology, but stayed only two years, moving to the University of California, Berkeley in 1962, in part because it was co-educational. There he met and married his wife Yolanda. He continued his interest in drama and mathematics as an undergraduate, earned his A.B. in mathematics in 1964, and continued study as a graduate 1 student. Baumgartner [9, page 2] dated his interest in set theory to the four week long 1967 UCLA Summer Institute on Axiomatic Set Theory.1 The mathematics for his dissertation was completed in spring 1969, and Baumgartner became a John Wesley Young Instructor at Dartmouth College in fall 1969.
    [Show full text]
  • THE CHARACTER of To, in FIRST COUNTABLE SPACES
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 62, Number 1, January 1977 THE CHARACTER OF to, IN FIRST COUNTABLE SPACES WILLIAM G. FLEISSNER Abstract. We define a cardinal function x(p>QX where P and Q are properties of topological spaces. We show that it is consistent and independ- ent that x("i, first countable) = uj. In this paper we define and investigate the cardinal function x(^, Ô), where P and Q are properties of topological spaces. We are particularly interested in whether x(«i, first countable) is greater than to,. We found this investigation interesting, because it was hard to guess what x("i, first countable) should be (see the paragraph after Example 6); important, because it answers a question arising from the normal Moore space conjecture; and instructive, because it provides an opportunity to use the combinatorial principle () in a topolog- ical context. If y is a closed subset of a space A, define the character of Y in X, x( Y,X ), to be the least cardinal of a set %. of open sets U in X, such that for any open set V, Y C V E X, there is U E % with Y E U E V. The motive for this definition is that if A' is the quotient space of X obtained by shrinking Y to a pointy, then %is a neighborhood base for y in X' and \(Y, X) is the character of y in A'. If P and Q are properties of topological spaces, then xC^, Q) is sup{x(y,A): Y has P, X has'ß}.
    [Show full text]
  • Dissertation
    DISSERTATION Titel der Dissertation The tree property Verfasser Ajdin Halilovi¢ angestrebter akademischer Grad Doktor der Naturwissenschaften (Dr.rer.nat) Wien, im November 2010 Studienkennzahl lt. Studienblatt: A 091 405 Dissertationsgebiet lt. Studienblatt: Mathematik Betreuer: O.Univ.Prof. Sy-David Friedman Roditeljima Acknowledgements I rst wish to thank prof. Sy D. Friedman for being a wonderful supervisor. It was a great pleasure for me to work with him, learn from him and write this thesis under his brilliant and kind supervision. I thank him for all his ideas which resulted in this dissertation. I am grateful to the Austrian Science Fund FWF for its generous support via project P19898-N18. People who indirectly inspired my work are (in alphabetical order): Prof. Mirna Dºamonja, Dr. Mahir Hadºi¢, Dr. Matthias Hammerl, Dr. Jasmin ahbegovi¢, Dr. Ognjen Vukadin, and many other good friends. My special thanks go to my dear colleagues Dr. Peter Holy, Dr. Lyubomyr Zdomskyy and Prof. Heike Mildenberger because of the useful discussions from which I have learned a lot. I am most indebted to my family for giving me all the unconditional love and support during my studies, and to my sincere friends which make the life easy and joyful. At the end, I wish to thank the One who created mind and gave us the possibility to explore ourselves and the universe. This gift is invaluable, therefore I thank Him the most. Contents 1 Introduction 1 2 Preliminaries 3 2.1 Some basic set theory for nonlogicians . 3 2.1.1 Sets and numbers . 3 2.1.2 Structures and embeddings .
    [Show full text]
  • Introduction 3 by Akihiro Kanamori 1 Beginnings
    Contents 0. Introduction 3 by Akihiro Kanamori 1 Beginnings . 4 1.1 Cantor . 4 1.2 Zermelo . 6 1.3 First Developments . 7 1.4 Replacement and Foundation . 11 2 New Groundwork . 15 2.1 G¨odel . 15 2.2 Infinite Combinatorics . 18 2.3 Definability . 21 2.4 Model-Theoretic Techniques . 23 3 The Advent of Forcing . 28 3.1 Cohen . 28 3.2 Method of Forcing . 30 3.3 0#, L[U], and L[U] . 35 3.4 Constructibility . 38 4 Strong Hypotheses . 42 4.1 Large Large Cardinals . 42 4.2 Determinacy . 45 4.3 Silver's Theorem and Covering . 49 4.4 Forcing Consistency Results . 53 5 New Expansion . 57 5.1 Into the 1980s . 57 5.2 Consistency of Determinacy . 62 5.3 Later Developments . 65 6 Summaries of the Handbook Chapters . 69 1 2 CONTENTS 0. Introduction Akihiro Kanamori Set theory has entered its prime as an advanced and autonomous research field of mathematics with broad foundational significance, and this Handbook with its expanse and variety amply attests to the fecundity and sophistication of the subject. Indeed, in set theory's further reaches one sees tremendous progress both in its continuing development of its historical heritage, the investigation of the transfinite numbers and of definable sets of reals, as well as its analysis of strong propositions and consistency strength in terms of large cardinal hypotheses and inner models. This introduction provides a historical and organizational frame for both modern set theory and this Handbook, the chapter summaries at the end be- ing a final elaboration.
    [Show full text]
  • Historical Notes and Guide to the Bibliography
    HISTORICAL NOTES AND GUIDE TO THE BIBLIOGRAPHY CHAPTER 1 Set theory was invented by Georg Cantor. The first attempt to consider infinite sets is at­ tributed to Bolzano (who also introduced the term Menge). It was however Cantor who realized the significance of one-to-one functions between sets and introduced the notion of cardinality of a set. Cantor originated the theory of cardinal and ordinal numbers as well as the investigations of the topology of the real line. Much of the development in the first four sections follows Cantor's work. The main reference to Cantor's work is his collected works, Cantor [1932]. Another source of references to the early research in set theory is HausdorlT's book [1914]' Cantor started his investigations in [1874], where he proved that the set of all real numbers is uncountable, while the set of all algebraic reals is countable. In [1878] he gave the first formulation of the celebrated continuum hypothe·sis. Section 1 The axioms for set theory (except Replacement and Regularity) are due to Zermelo [1908]. Prior to Zermelo, Frege attempted to axiomatize set theory, using the false comprehension schema; Zermelo formulated his axioms following the discovery of several paradoxes by Burali-Forti, Cantor, Russell, and Zermelo. The Replacement schema is due to Fraenkel [1922a] and Skolem (see [1970, pp. 137-152]). Exercises 1.12 and 1.13: Tarsk i [1925a]. Section 2 The theory of well-ordered sets was developed by Cantor, who also introduced transfinite induction. The idea of identifying an ordinal number with the set of smaller ordinals is due to Zermelo and von Neumann.
    [Show full text]
  • Inner Models for Large Cardinals
    INNER MODELS FOR LARGE CARDINALS William J. Mitchell One new idea leads to another, that to a third, and so on through a course of time until someone, with whom no one of these is original, 3 combines all together, and produces what is justly called a new inven- tion.1 1 INTRODUCTION 6 This chapter will discuss the development of inner models for large cardinals during the last part of the last century, beginning at the end of Kanamori's chapter [Kanamori, 2010b], which is to say at about 1965. There are two major themes 9 in this development: The first of these is the expansion of G¨odel'sclass L of constructible sets to obtain L-like models of ZFC which are capable of containing any larger cardinals existing in the universe, and the second is the development of 12 core model theory, which provides the possibility of proving that the universe is well approximated by such a model. The main part of the chapter is accordingly divided into two themes. The first 15 is in Section 2, which describes the process of incorporating large cardinal prop- erties into the constructibility paradigm, and the discovery of strong uniqueness properties of the resulting models, allowing the class of large cardinals to be seen 18 as a well-ordered extension of the ordinals. The second theme is begun in Section 3, which describes the evolution of com- binatorial principles in L, leading through the development of fine structure to 21 the discovery of the Covering Lemma. The generalization of this development into a core model theory for larger cardinals is described in section 4.
    [Show full text]
  • Large Cardinals with Forcing
    LARGE CARDINALS WITH FORCING Akihiro Kanamori This chapter describes, following the historical development, the investigation of large cardinal hypotheses using the method of forcing. Large cardinal hypotheses, also regarded as strong axioms of infinity, have stimulated a vast mainstream of modern set theory, and William Mitchell's chapter in this volume deals with their investigation through inner models, Menachem Kojman's chapter with their involvement in the study of singular cardinals, and Paul Larson's chapter with the accentuated direction of determinacy hypotheses. With the subject seen as a larger, integrated whole, we in this chapter incorporate aspects of these others while pursuing the directions involving forcing. The author's other chapter in this volume, \Set Theory from Cantor to Cohen" (henceforth referred to as CC for convenience), had presented the historical de- velopment of set theory through to the creation of the method of forcing. Also, the author's book, The Higher Infinite [2003], provided the theory of large cardi- nals, including determinacy, up to a first plateau of combinatorial sophistication. In this chapter we first pick up the historical threads to large cardinals in that other chapter and pursue the developments involving forcing, thereby providing a complementary overlay to the book. There is no attempt at being comprehen- sive; rather we describe the earlier pivotal results and take up the more persistent themes, those that have mainly driven the subject. 1 TO THE MODERN THEORY 1.1 Beginnings In this first section, we recall the early large cardinal landmarks, as pointed out in the author's other chapter CC, and then continue through to the first substantive elaborations of the theory in the 1960s.
    [Show full text]
  • Set Theory from Cantor to Cohen
    SET THEORY FROM CANTOR TO COHEN Akihiro Kanamori Set theory is an autonomous and sophisticated field of mathematics, enormously success- ful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encour- aged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, set theory has proceeded in the opposite direction, from a web of intensions to a theory of extension par excellence, and like other fields of mathematics its vitality and progress have depended on a steadily growing core of mathematical proofs and methods, problems and results. There is also the stronger contention that from the beginning set theory actually developed through a progression of mathematical moves, whatever and sometimes in spite of what has been claimed on its behalf. What follows is an account of the development of set theory from its beginnings through the creation of forcing based on these contentions, with an avowedly Whiggish emphasis on the heritage that has been retained and developed by the current theory. The whole transfinite landscape can be viewed as having been articulated by Cantor in sig- nificant part to solve the Continuum Problem. Zermelo’s axioms can be construed as clarifying the set existence commitments of a single proof, of his Well-Ordering Theo- rem. Set theory is a particular case of a field of mathematics in which seminal proofs and pivotal problems actually shaped the basic concepts and forged axiomatizations, these transmuting the very notion of set.
    [Show full text]
  • THE CHARACTER of To, in FIRST COUNTABLE SPACES
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 62, Number 1, January 1977 THE CHARACTER OF to, IN FIRST COUNTABLE SPACES WILLIAM G. FLEISSNER Abstract. We define a cardinal function x(p>QX where P and Q are properties of topological spaces. We show that it is consistent and independ- ent that x("i, first countable) = uj. In this paper we define and investigate the cardinal function x(^, Ô), where P and Q are properties of topological spaces. We are particularly interested in whether x(«i, first countable) is greater than to,. We found this investigation interesting, because it was hard to guess what x("i, first countable) should be (see the paragraph after Example 6); important, because it answers a question arising from the normal Moore space conjecture; and instructive, because it provides an opportunity to use the combinatorial principle () in a topolog- ical context. If y is a closed subset of a space A, define the character of Y in X, x( Y,X ), to be the least cardinal of a set %. of open sets U in X, such that for any open set V, Y C V E X, there is U E % with Y E U E V. The motive for this definition is that if A' is the quotient space of X obtained by shrinking Y to a pointy, then %is a neighborhood base for y in X' and \(Y, X) is the character of y in A'. If P and Q are properties of topological spaces, then xC^, Q) is sup{x(y,A): Y has P, X has'ß}.
    [Show full text]