bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.932855; this version posted February 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Assessing the impact of physicochemical parameters in the 2 predictive capabilities of thermodynamics-based stoichiometric 3 approaches under mesophilic and thermophilic conditions 4 5 Claudio Tomi-Andrino1,2,3, Rupert Norman2, Thomas Millat2, Philippe Soucaille2,4,5,6, 6 Klaus Winzer2, David A. Barrett1, John King3, Dong-Hyun Kim1 7 8 1Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, 9 School of Pharmacy, University of Nottingham, Nottingham, United Kingdom. 10 2Nottingham BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life 11 Sciences, BioDiscovery Institute, University of Nottingham, Nottingham, United Kingdom. 12 3Nottingham BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of 13 Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom. 14 4INSA, UPS, INP, Toulouse Biotechnology Institute, (TBI), Université de Toulouse, Toulouse, 15 France. 16 5INRA, UMR792, Toulouse, France. 17 6CNRS, UMR5504, Toulouse, France. 18 19 20 *Corresponding author 21 Email:
[email protected] 22 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.932855; this version posted February 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.