bioRxiv preprint doi: https://doi.org/10.1101/600486; this version posted April 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made Unakafova et al. available under aCC-BY 4.0 International licenseOpen-source. spike and LFP toolboxes 1 Comparing open-source toolboxes for 2 processing and analysis of spike and local field 3 potentials data 4 5 Valentina A. Unakafova1,* and Alexander Gail1,2,3,4 6 1Cognitive Neurosciences Laboratory, German Primate Center, Goettingen, Germany 7 2Leibniz ScienceCampus, Primate Cognition, Goettingen, Germany 8 3Georg-Elias-Mueller-Institute of Psychology, University of Goettingen, Goettingen, Germany 9 4Bernstein Center for Computational Neuroscience, Goettingen, Germany 10 *Correspondence:
[email protected] 11 ABSTRACT. 12 Analysis of spike and local field potential (LFP) data is an essential part of neuroscientific research. Today 13 there exist many open-source toolboxes for spike and LFP data analysis implementing various functionality. 14 Here we aim to provide a practical guidance for neuroscientists in the choice of an open-source toolbox best 15 satisfying their needs. We overview major open-source toolboxes for spike and LFP data analysis as well as 16 toolboxes with tools for connectivity analysis, dimensionality reduction and generalized linear modeling. We 17 focus on comparing toolboxes functionality, statistical and visualization tools, documentation and support 18 quality. To give a better insight, we compare and illustrate functionality of the toolboxes on open-access 19 dataset or simulated data and make corresponding MATLAB scripts publicly available.