Chronic Venous Insufficiency and Varicose Veins of the Lower Extremities

Total Page:16

File Type:pdf, Size:1020Kb

Chronic Venous Insufficiency and Varicose Veins of the Lower Extremities REVIEW Korean J Intern Med 2019;34:269-283 https://doi.org/10.3904/kjim.2018.230 Chronic venous insufficiency and varicose veins of the lower extremities Young Jin Youn1,2 and Juyong Lee2 1Division of Cardiology, Department Chronic venous insufficiency (CVI) of the lower extremities manifests itself in of Internal Medicine, Yonsei various clinical spectrums, ranging from asymptomatic but cosmetic problems University Wonju College of Medicine, Wonju, Korea; 2Division of to severe symptoms, such as venous ulcer. CVI is a relatively common medical Interventional Cardiology, Calhoun problem but is often overlooked by healthcare providers because of an underap- Cardiology Center, UConn Health, preciation of the magnitude and impact of the problem, as well as incomplete University of Connecticut School of Medicine, Farmington, CT, USA recognition of the various presenting manifestations of primary and secondary venous disorders. The prevalence of CVI in South Korea is expected to increase, Received : June 27, 2018 given the possible underdiagnoses of CVI, the increase in obesity and an aging Accepted : September 8, 2018 population. This article reviews the pathophysiology of CVI of the lower extrem- Correspondence to ities and highlights the role of duplex ultrasound in its diagnosis and radiofre- Juyong Lee, M.D. quency ablation, and iliac vein stenting in its management. Division of Interventional Cardiology, Calhoun Cardiology Keywords: Diagnosis; Review; Therapeutics; Venous insufficiency Center, UConn Health, University of Connecticut School of Medicine, 263 Farmington Av, Farmington, CT 06030, USA Tel: +1-860-679-2058 Fax: +1 860 679 3346. E-mail: [email protected] INTRODUCTION dividuals, albeit the estimated prevalence of CVI varies depending on the population studies [5-7]. Chronic venous insufficiency (CVI) of the lower ex- Advancing age, family history, prolonged standing, tremities is associated with a wide clinical spectrum, obesity, smoking, sedentary lifestyle, lower extremity ranging from asymptomatic but cosmetic problems to trauma, prior venous thrombosis, the presence of an severe symptoms [1-4]. This includes telangiectases (or arteriovenous shunt, high estrogen states, and preg- spider veins), reticular veins, varicose veins, edema, pig- nancy are all considered risk factors for CVI [5,8-13]. mentation and/or eczema, lipodermatosclerosis, atro- Although the prevalence of CVI in the Asian population phie blanche, and venous ulceration. is significantly lower compared with non-Hispanic CVI is a relatively common medical problem but is whites according to a multiethnic cross-sectional study often overlooked by healthcare providers because of [14], the prevalence of CVI in South Korea is expected to an underappreciation of the magnitude and impact of increase due to the possible underdiagnosis of CVI, the the problem, as well as incomplete recognition of the increase in obesity, and an aging population. This arti- various presenting manifestations of primary and sec- cle reviews the pathophysiology of CVI of the lower ex- ondary venous disorders [2]. Abnormal venous flows of tremities and highlights the role of duplex ultrasound the lower extremities are observed in up to 50% of in- (DUS) in its diagnosis, and radiofrequency ablation Copyright © 2019 The Korean Association of Internal Medicine pISSN 1226-3303 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ eISSN 2005-6648 by-nc/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited4 http://www.kjim.org The Korean Journal of Internal Medicine Vol. 34, No. 2, March 2019 SEV CFV Variation at the SFJ CFV SCI EPV SFJ GSV AASV FV PASV Hunterian perforator(s) GSV Dodd perforator(s) CE CE PV To GSV To GSV To GSV PV PV PV SPJ SPJ SPJ Boyd's perforator(s) Cockett’s perforators A B C Figure 1. Venous system of the lower limb. (A) Great saphenous vein and its tributaries. (B) Small saphenous vein and its varia- tions. (C) Perforating veins. SEV, superficial epigastric vein; SCI, superficial circumflex iliac vein; CFV, common femoral vein; EPV, external pudendal vein; SFJ, saphenofemoral junction; AASV, anterior accessory of the great saphenous vein; PASV, pos- terior accessory of the great saphenous vein; GSV, great saphenous vein; CE, cranial extension of the small saphenous vein; PV, popliteal vein; SPJ, saphenopopliteal junction; FV, femoral vein. (RFA) and iliac vein stenting in its management. hypertension due to the remaining obstruction of the venous flow and valvular reflux due to valve damage [16]. PATHOPHYSIOLOGY VENOUS ANATOMY AND ITS VARIATIONS The main pathophysiological cause of the clinical man- ifestation of CVI of the lower extremities is ambulatory To understand the pathophysiology of CVI or vari- venous hypertension, which is caused by venous valve cose veins as well as their therapeutic options, such as reflux, venous flow obstruction, or both [2]. The venous endovenous ablations, one should know the anatomy pressure of the foot vein in the standstill position with- and variations of the veins. The consensus on the no- out skeletal muscle contraction is as high as 80 to 90 menclature of anatomic terminology was established by mmHg. In a subject with competent venous valves, this an International Interdisciplinary Committee in 2001 pressure decreases to less than 30 mmHg during ambu- and 2005 [17,18]. The venous system can be divided into lation [15]. However, in a patient with CVI, the decrease three major components: the superficial venous system, in venous pressure with leg movements is attenuated. If the deep venous system, and perforating veins. valves in the perforator veins are incompetent, the high pressures generated in the deep veins by calf-muscle Superficial venous system contraction can be transmitted to the superficial system The superficial venous system drains the blood flow and to the microcirculation in skin. This is called ambu- from the skin and the subcutaneous tissues (Fig. 1). latory venous hypertension. Postthrombotic syndrome Historically, any veins located above the deep mus- after deep vein thrombosis (DVT) also causes venous cular fascia, which are not deep veins, are considered 270 www.kjim.org https://doi.org/10.3904/kjim.2018.230 Youn YJ and Lee J. Chronic venous insufficiency xx SFJSFJ GSV GSV CFACFA CFVCFV x x AWithoutWithout compression compression WithWith compression compression B R RCFV CFV SFJ SFJ Figure 2. Sonographic landmark of superficial femoral veins. (A) The ‘Egyptian eye’: a transverse ultrasound image of the great saphenous vein in the thigh with/without compression showing the fascial components that constitute the saphenous compartment. (B) Transverse view of the common femoral vein (CFV) and artery in the right groin: ‘Mickey mouse’ view. GSV, great saphenous vein; CFA, common femoral artery; SFJ, saphenofemoral junction. superficial veins. The superficial venous system can The saphenofemoral junction (SFJ or saphenous be divided into thick-walled truncal veins, such as the junction or saphenous arch) is a critical area in terms great saphenous vein (GSV) and the small saphenous of understanding flow patterns, treatment approach- vein (SSV), which lie between the saphenous sheath and es, and the recurrence of varicosities. Using DUS, the the muscular fascia, and the thin-walled superficial or “Mickey mouse” sign (Fig. 2B) can be used as a land- epifascial tributaries, which lie between the skin and mark consisting of the common femoral artery, CFV, saphenous fascia [19,20]. This relationship between and GSV. The SFJ includes the area between the termi- veins and sheath or fascia looks like an Egyptian eye on nal and preterminal valves of the CFV and three major the ultrasound (Fig. 2A). It is used as a key marker to tributaries draining in the GSV: the external pudendal, identify the saphenous veins. However, only 50% of pa- inferior epigastric, and external circumflex iliac veins. tients have the saphenous trunk located throughout the Regarding endovenous ablation, leaving the superfi- entire saphenous compartment from the ankle to the cial inferior epigastric vein intact is believed to reduce groin [19,21]. the incidence of endovenous heat-induced thrombus The GSV is the longest vein in the body (Fig. 1A). It (EHIT) extension into the femoral vein. The anatomic originates on the medial side of the foot and ascends an- variation of the SFJ is significant [3]. A major distal trib- terior to the medial malleolus and then along the medial utary of the SFJ is the AASV. Approximately half of pa- side of the calf and thigh and drains into the common tients have the AASV. Because the AASV can be a source femoral vein (CFV) [18,22]. In the tibial part, the GSV is of recurrent varicose veins, it is important in diagnosis joined by two tributaries: the posterior accessory of the and treatment [23]. great saphenous vein (PASV; previously called the vein The SSV originates on the dorsolateral aspect of the of Leonardo) and the anterior accessory of the great sa- foot, ascends posterior to the lateral malleolus and phenous vein (AASV). Clinically, the PASV is important along the posterolateral aspect of the calf, and drains in patients with venous ulceration because the posterior into the popliteal vein (Fig. 1B). The saphenopopliteal tibial perforators (previously called Cockett) connect the junction (SPJ), where the SSV joins the popliteal vein, posterior tibial veins and the PASV, but not the distal GSV. shows variability. Cranial extension (CE) of the SSV is https://doi.org/10.3904/kjim.2018.230 www.kjim.org 271 The Korean Journal of Internal Medicine Vol. 34, No. 2, March 2019 present in 95% of limbs and is the continuation of the Perforating vein SSV. However, in approximately 25% of limbs, the SSV Perforators are bridging channels between the super- does not have a connection to the deep vein but con- ficial and deep venous systems (Fig. 1C). These veins tinues up the posterior thigh as the CE.
Recommended publications
  • Clinical Study Is Nonmicronized Diosmin 600Mg As Effective As
    Hindawi International Journal of Vascular Medicine Volume 2020, Article ID 4237204, 9 pages https://doi.org/10.1155/2020/4237204 Clinical Study Is Nonmicronized Diosmin 600mg as Effective as Micronized Diosmin 900mg plus Hesperidin 100mg on Chronic Venous Disease Symptoms? Results of a Noninferiority Study Marcio Steinbruch,1 Carlos Nunes,2 Romualdo Gama,3 Renato Kaufman,4 Gustavo Gama,5 Mendel Suchmacher Neto,6 Rafael Nigri,7 Natasha Cytrynbaum,8 Lisa Brauer Oliveira,9 Isabelle Bertaina,10 François Verrière,10 and Mauro Geller 3,6,9 1Hospital Albert Einstein (São Paulo-Brasil), R. Mauricio F Klabin 357/17, Vila Mariana, SP, Brazil 04120-020 2Instituto de Pós-Graduação Médica Carlos Chagas-Fundação Educacional Serra dos Órgãos-UNIFESO (Rio de Janeiro/Teresópolis- Brasil), Av. Alberto Torres 111, Teresópolis, RJ, Brazil 25964-004 3Fundação Educacional Serra dos Órgãos-UNIFESO (Teresópolis-Brasil), Av. Alberto Torres 111, Teresópolis, RJ, Brazil 25964-004 4Faculdade de Ciências Médicas, Universidade Estadual do Rio de Janeiro (UERJ) (Rio de Janeiro-Brazil), Av. N. Sra. De Copacapana, 664/206, Rio de Janeiro, RJ, Brazil 22050-903 5Fundação Educacional Serra dos Órgãos-UNIFESO (Teresópolis-Brasil), Rua Prefeito Sebastião Teixeira 400/504-1, Rio de Janeiro, RJ, Brazil 25953-200 6Instituto de Pós-Graduação Médica Carlos Chagas (Rio de Janeiro-Brazil), R. General Canabarro 68/902, Rio de Janeiro, RJ, Brazil 20271-200 7Department of Medicine, Rutgers New Jersey Medical School-USA, 185 S Orange Ave., Newark, NJ 07103, USA 8Hospital Universitário Pedro Ernesto, Universidade Estadual do Rio de Janeiro (UERJ) (Rio de Janeiro-Brazil), R. Hilário de Gouveia, 87/801, Rio de Janeiro, RJ, Brazil 22040-020 9Universidade Federal do Rio de Janeiro (UFRJ) (Rio de Janeiro-Brazil), Av.
    [Show full text]
  • Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers
    ORIGINAL ARTICLE Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers Imelda A. Luna Department of Anatomy, College of Medicine, University of the Philippines Manila ABSTRACT Objectives. This is a descriptive study to determine the origin of abnormal obturator arteries, the drainage of abnormal obturator veins, and if any anastomoses exist between these abnormal vessels in Filipino cadavers. Methods. A total of 54 cadaver halves, 50 dissected by UP medical students and 4 by UP Dentistry students were included in this survey. Results. Results showed the abnormal obturator arteries arising from the inferior epigastric arteries in 7 halves (12.96%) and the abnormal communicating veins draining into the inferior epigastric or external iliac veins in 16 (29.62%). There were also arterial anastomoses in 5 (9.25%) with the inferior epigastric artery, and venous anastomoses in 16 (29.62%) with the inferior epigastric or external iliac veins. Bilateral abnormalities were noted in a total 6 cadavers, 3 with both arterial and venous, and the remaining 3 with only venous anastomoses. Conclusion. It is important to be aware of the presence of these abnormalities that if found during surgery, must first be ligated to avoid intraoperative bleeding complications. Key Words: obturator vessels, abnormal, corona mortis INtroDUCTION The main artery to the pelvic region is the internal iliac artery (IIA) with two exceptions: the ovarian/testicular artery arises directly from the aorta and the superior rectal artery from the inferior mesenteric artery (IMA). The internal iliac or hypogastric artery is one of the most variable arterial systems of the human body, its parietal branches, particularly the obturator artery (OBA) accounts for most of its variability.
    [Show full text]
  • The Benefits of Flavonoids in Diabetic Retinopathy
    nutrients Review The Benefits of Flavonoids in Diabetic Retinopathy 1, 1, 2,3,4,5 1,2,3,4, Ana L. Matos y, Diogo F. Bruno y, António F. Ambrósio and Paulo F. Santos * 1 Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; [email protected] (A.L.M.); [email protected] (D.F.B.) 2 Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; [email protected] 3 Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal 4 Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal 5 Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal * Correspondence: [email protected]; Tel.: +351-239-240-762 These authors contributed equally to the work. y Received: 10 September 2020; Accepted: 13 October 2020; Published: 16 October 2020 Abstract: Diabetic retinopathy (DR), one of the most common complications of diabetes, is the leading cause of legal blindness among adults of working age in developed countries. After 20 years of diabetes, almost all patients suffering from type I diabetes mellitus and about 60% of type II diabetics have DR. Several studies have tried to identify drugs and therapies to treat DR though little attention has been given to flavonoids, one type of polyphenols, which can be found in high levels mainly in fruits and vegetables, but also in other foods such as grains, cocoa, green tea or even in red wine.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Chondroprotective Agents
    Europaisches Patentamt J European Patent Office © Publication number: 0 633 022 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94109872.5 © Int. CI.6: A61K 31/365, A61 K 31/70 @ Date of filing: 27.06.94 © Priority: 09.07.93 JP 194182/93 Saitama 350-02 (JP) Inventor: Niimura, Koichi @ Date of publication of application: Rune Warabi 1-718, 11.01.95 Bulletin 95/02 1-17-30, Chuo Warabi-shi, 0 Designated Contracting States: Saitama 335 (JP) CH DE FR GB IT LI SE Inventor: Umekawa, Kiyonori 5-4-309, Mihama © Applicant: KUREHA CHEMICAL INDUSTRY CO., Urayasu-shi, LTD. Chiba 279 (JP) 9-11, Horidome-cho, 1-chome Nihonbashi Chuo-ku © Representative: Minderop, Ralph H. Dr. rer.nat. Tokyo 103 (JP) et al Cohausz & Florack @ Inventor: Watanabe, Koju Patentanwalte 2-5-7, Tsurumai Bergiusstrasse 2 b Sakado-shi, D-30655 Hannover (DE) © Chondroprotective agents. © A chondroprotective agent comprising a flavonoid compound of the general formula (I): (I) CM < CM CM wherein R1 to R9 are, independently, a hydrogen atom, hydroxyl group, or methoxyl group and X is a single bond or a double bond, or a stereoisomer thereof, or a naturally occurring glycoside thereof is disclosed. The 00 00 above compound strongly inhibits proteoglycan depletion from the chondrocyte matrix and exhibits a function to (Q protect cartilage, and thus, is extremely effective for the treatment of arthropathy. Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 633 022 A2 BACKGROUND OF THE INVENTION 1 . Field of the Invention 5 The present invention relates to an agent for protecting cartilage, i.e., a chondroprotective agent, more particularly, a chondroprotective agent containing a flavonoid compound or a stereoisomer thereof, or a naturally occurring glycoside thereof.
    [Show full text]
  • Vein Disease: Your Personal Prevention Programme While Your
    Vein disease: Your personal prevention programme While your arteries transport blood containing oxygen and nutrients to the body cells, the veins are responsible for taking ‘used’ blood via the heart back to the lungs, where it can be enriched with fresh oxygen. In order for blood to be returned to the heart against the force of gravity, the vein valves must close tightly and the tissue which surrounds the veins must be strong. Otherwise the veins expand and become varicose. There’s a danger of thromboses, emboli and so-called ‘open leg’ ulcers. Self-diagnosis Spider-bursts (left) and reticular veins (right) are changes in the blood vessels which can be early signs of vein disease. Varicose veins (left and right) should be treated, if necessary surgically, as soon as possible. Deep vein thrombosis (left) is highly dangerous: You must seek treatment immediately! If you have vasculitis (inflammation of the vein wall - right) you should also visit a doctor or specialist clinic without delay. The classic symptoms of vein disease are swollen legs, pins and needles and feelings of tension in the calves, foot and calf cramps, legs which feel heavy or tired in the evening. Standing the whole day or frequent flying put a special burden on the vein system of the legs. © heigel.com www.heigel.com These things are good for your veins: Take frequent long walks as this exercises the leg and foot musculature. Sports involving sustained activity, such as hiking, swimming, jogging, skiing, dancing, cycling and gymnastics, are especially recommended. Whenever you are involved in an activity which involves sitting or standing, take every opportunity which presents itself to walk around.
    [Show full text]
  • Association Between Hemorrhoids and Lower Extremity Chronic Venous Insufficiency
    Open Access Original Article DOI: 10.7759/cureus.4502 Association Between Hemorrhoids and Lower Extremity Chronic Venous Insufficiency Ugur Ekici 1 , Abdulcabbar Kartal 2 , Murat F. Ferhatoglu 2 1. General Surgery, Istanbul Gelişim University, Istanbul, TUR 2. General Surgery, Okan University Medical Faculty, Istanbul, TUR Corresponding author: Abdulcabbar Kartal, [email protected] Disclosures can be found in Additional Information at the end of the article Abstract Aim The aim of the present study was to evaluate the incidence of varicose veins among patients with hemorrhoidal disease and to compare its incidence reported in various community-based studies. Method The study group comprised of 100 patients who underwent surgery for symptomatic internal or external hemorrhoids; the control group consisted of 100 volunteers who received no prior therapy for hemorrhoidal disease and lacked any symptoms or findings suggestive of this condition. Subjects in both the groups were inquired with respect to their demographic data and risk factors. Both groups were asked to stand for two minutes before performing leg examinations while still in the standing position. The findings were recorded for both the groups. Varicose veins were classified according to the clinical appearance section of the Clinical, Etiologic, Anatomic, and Pathophysiologic (CEAP) classification that was developed by the 1994 American Venous Forum. Results There was no significant difference between the two groups with respect to age and body mass index (BMI). Significant relationships were identified between the groups with respect to the incidence of varicose veins and chronic constipation. The incidence of C1 and C2 varicose veins observed in the study group was higher than that observed in the control group.
    [Show full text]
  • Musculoskeletal Clinical Vignettes a Case Based Text
    Leading the world to better health MUSCULOSKELETAL CLINICAL VIGNETTES A CASE BASED TEXT Department of Orthopaedic Surgery, RCSI Department of General Practice, RCSI Department of Rheumatology, Beaumont Hospital O’Byrne J, Downey R, Feeley R, Kelly M, Tiedt L, O’Byrne J, Murphy M, Stuart E, Kearns G. (2019) Musculoskeletal clinical vignettes: a case based text. Dublin, Ireland: RCSI. ISBN: 978-0-9926911-8-9 Image attribution: istock.com/mashuk CC Licence by NC-SA MUSCULOSKELETAL CLINICAL VIGNETTES Incorporating history, examination, investigations and management of commonly presenting musculoskeletal conditions 1131 Department of Orthopaedic Surgery, RCSI Prof. John O'Byrne Department of Orthopaedic Surgery, RCSI Dr. Richie Downey Prof. John O'Byrne Mr. Iain Feeley Dr. Richie Downey Dr. Martin Kelly Mr. Iain Feeley Dr. Lauren Tiedt Dr. Martin Kelly Department of General Practice, RCSI Dr. Lauren Tiedt Dr. Mark Murphy Department of General Practice, RCSI Dr Ellen Stuart Dr. Mark Murphy Department of Rheumatology, Beaumont Hospital Dr Ellen Stuart Dr Grainne Kearns Department of Rheumatology, Beaumont Hospital Dr Grainne Kearns 2 2 Department of Orthopaedic Surgery, RCSI Prof. John O'Byrne Department of Orthopaedic Surgery, RCSI Dr. Richie Downey TABLE OF CONTENTS Prof. John O'Byrne Mr. Iain Feeley Introduction ............................................................. 5 Dr. Richie Downey Dr. Martin Kelly General guidelines for musculoskeletal physical Mr. Iain Feeley examination of all joints .................................................. 6 Dr. Lauren Tiedt Dr. Martin Kelly Upper limb ............................................................. 10 Department of General Practice, RCSI Example of an upper limb joint examination ................. 11 Dr. Lauren Tiedt Shoulder osteoarthritis ................................................. 13 Dr. Mark Murphy Adhesive capsulitis (frozen shoulder) ............................ 16 Department of General Practice, RCSI Dr Ellen Stuart Shoulder rotator cuff pathology ...................................
    [Show full text]
  • 16441-16455 Page 16441 S
    S. Umamaheswari*et al. /International Journal of Pharmacy & Technology ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com EFFECT OF FLAVONOIDS DIOSMIN, MORIN AND CHRYSIN ON CHANG LIVER CELL LINE K.S. Sridevi Sangeetha1, S. Umamaheswari1*, C. Uma Maheswara Reddy1, S. Narayana kalkura2 1 Department of Pharmacology, Faculty of Pharmacy, Sri Ramachandra University, Porur, Chennai 2Crystal Growth Centre, Anna University, Guindy, Chennai. Email: [email protected] Received on 06-08-2016 Accepted on 27-08-2016 Abstract Objective: To evaluate the effect of selected flavonoids diosmin, morin and chrysin on chang cell (normal human liver cells) line by using cell viability assay. Methods: The cell viability assay on chang cell was determined using MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5- diphenyltetrazolium bromide) assay. Diosmin, morin and chrysin were subjected in the concentration of 1.625 µM, 3.125 µM, 6.25 µM, 12.5 µM, 25 µM, 50 µM, 100 µM and 500 µM respectively. Results: The cytoprotective activity by MTT method showed that the IC 50 value of diosmin, morin and chrysin was 101.91 µM, 14.62 µM and 70.00 µM respectively. Conclusion: Out of the three flavonoids, diosmin and chrysin were proven to have very good cytoprotective activity against Chang cell line. The order of activity was found to be Disomin > Chrysin > Morin. Key words: Flavonoid, Chang cell line, Diosmin, Morin, Chrysin Introduction Plant produces different types of secondary metabolites and one such group is flavonoid. They are polyphenolic in nature and present in different part of the plant like leaves, flowers, fruits, vegetable etc.
    [Show full text]
  • Nervous and Vascular System
    NO. A100 KEY CHART FOR MODEL NERVOUS AND VASCULAR SYSTEM 神経系・循環系・門脈系 模型 MADE IN JAPAN KEY CHART FOR MODEL NO. A100 NERVOUS AND VASCULAR SYSTEM 神経系・循環系・門脈系模型 White labels BRAIN ENCEPHALON 脳 A.Frontal lobe of cerebrum A. Lobus frontalis A. 前頭葉 1. Marginal gyrus 1. Gyrus frontalis superior 1. 上前頭回 2. Middle frontal gyrus 2. Gyrus frontalis medius 2. 中前頭回 3. Inferior frontal gyrus 3. Gyrus frontalis inferior 3. 下前頭回 4. Precentral gyru 4. Gyrus precentralis 4. 中心前回 B. Parietal lobe of cerebrum B. Lobus parietalis B. 全頂葉 5. Postcentral gyrus 5. Gyrus postcentralis 5. 中心後回 6. Superior parietal lobule 6. Lobulus parietalis superior 6. 上頭頂小葉 7. Inferior parietal lobule 7. Lobulus parietalis inferior 7. 下頭頂小葉 C.Occipital lobe of cerebrum C. Lobus occipitalis C. 後頭葉 D. Temporal lobe D. Lobus temporalis D. 側頭葉 8. Superior temporal gyrus 8. Gyrus temporalis superior 8. 上側頭回 9. Middle temporal gyrus 9. Gyrus temporalis medius 9. 中側頭回 10. Inferior temporal gyrus 10. Gyrus temporalis inferior 10. 下側頭回 11. Lateral sulcus 11. Sulcus lateralis 11. 外側溝(外側大脳裂) E. Cerebellum E. Cerebellum E. 小脳 12. Biventer lobule 12. Lobulus biventer 12. 二腹小葉 13. Superior semilunar lobule 13. Lobulus semilunaris superior 13. 上半月小葉 14. Inferior lobulus semilunaris 14. Lobulus semilunaris inferior 14. 下半月小葉 15. Tonsil of cerebellum 15. Tonsilla cerebelli 15. 小脳扁桃 16. Floccule 16. Flocculus 16. 片葉 F.Pons F. Pons F. 橋 G.Medullary G. Medulla oblongata G. 延髄 SPINAL CORD MEDULLA SPINALIS 脊髄 H. Cervical enlargement H.Intumescentia cervicalis H. 頸膨大 I.Lumbosacral enlargement I. Intumescentia lumbalis I. 腰膨大 J.Cauda equina J.
    [Show full text]
  • Varicose Veins
    Varicose Veins: Diagnosis and Treatment Jaqueline Raetz, MD; Megan Wilson, MD; and Kimberly Collins, MD University of Washington Family Medicine Residency, Seattle, Washington Varicose veins are twisted, dilated veins most commonly located on the lower extremities. The exact pathophysiology is debated, but it involves a genetic predisposition, incompetent valves, weakened vascular walls, and increased intravenous pressure. Risk factors include family history of venous disease; female sex; older age; chronically increased intra-abdominal pressure due to obesity, preg- nancy, chronic constipation, or a tumor; and prolonged standing. Symptoms of varicose veins include a heavy, achy feeling and an itching or burning sensation; these symptoms worsen with prolonged standing. Potential complications include infection, leg ulcers, stasis changes, and thrombosis. Con- servative treatment options include external compression; lifestyle modifications, such as avoidance of prolonged standing and straining, exercise, wearing nonrestrictive clothing, modification of car- diovascular risk factors, and interventions to reduce peripheral edema; elevation of the affected leg; weight loss; and medical therapy. There is not enough evidence to determine if compression stock- ings are effective in the treatment of varicose veins in the absence of active or healed venous ulcers. Interventional treatments include external laser thermal ablation, endovenous thermal ablation, endo- venous sclerotherapy, and surgery. Although surgery was once the standard of care, it largely has been replaced by endovenous thermal ablation, which can be performed under local anesthesia and may have better outcomes and fewer complications than other treatments. Existing evidence and clinical guidelines suggest that a trial of compression therapy is not warranted before referral for endove- nous thermal ablation, although it may be necessary for insurance coverage.
    [Show full text]
  • Varicose Veins and Superficial Thrombophlebitis
    ENTITLEMENT ELIGIBILITY GUIDELINES VARICOSE VEINS AND SUPERFICIAL THROMBOPHLEBITIS 1. VARICOSE VEINS MPC 00727 ICD-9 454 DEFINITION Varicose Veins of the lower extremities are a dilatation, lengthening and tortuosity of a subcutaneous superficial vein or veins of the lower extremity such as the saphenous veins and perforating veins. A diagnosis of varicose veins is sometimes made in error when the veins are prominent but neither varicose or abnormal. This guideline excludes Deep Vein Thrombosis, and telangiectasis. DIAGNOSTIC STANDARD Diagnosis by a qualified medical practitioner is required. ANATOMY AND PHYSIOLOGY The venous system of the lower extremities consists of: 1. The deep system of veins. 2. The superficial veins’ system. 3. The communicating (or perforating) veins which connect the first two systems. There are primary and secondary causes of varicose veins. Primary causes are congenital and/or may develop from inherited conditions. Secondary causes generally result from factors other than congenital factors. VETERANS AFFAIRS CANADA FEBRUARY 2005 Entitlement Eligibility Guidelines - VARICOSE VEINS/SUPERFICIAL THROMBOPHLEBITIS Page 2 CLINICAL FEATURES Clinical onset usually takes place when varicosities in the affected leg or legs appear. Varicosities typically present as a bluish discolouration and may have a raised appearance. The affected limb may also demonstrate the following: • Aching • Discolouration • Inflammation • Swelling • Heaviness • Cramps Varicose Veins may be large and apparent or quite small and barely discernible. Aggravation for the purposes of Varicose Veins may be represented by the veins permanently becoming larger or more extensive, or a need for operative intervention, or the development of Superficial Thrombophlebitis. PENSION CONSIDERATIONS A. CAUSES AND/OR AGGRAVATION THE TIMELINES CITED BELOW ARE NOT BINDING.
    [Show full text]