Mayak" Plant: Case History and the First Version of a Computer Simulator
LBL-36212 RAC-1 The Cascade of Reservoirs of the "Mayak" Plant: Case History and the First Version of a Computer Simulator M.V. Mironenko, M.Yu. Spasennykh, V.B. Polyakov, S. Ivanitskii, A.V. Garanin, A.G. Volosov, and I.L. Khodakovsky, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia A.B. Smirnov, G.Yu. Mokrov, Y.G. Glagolenko, and Eu.G. Drozhko Production Association "Mayak," Ministry of Atomic Energy, Chelyabinsk-65, Russia July 1994 Lawrence Berkeley Laboratory University of California Berkeley, California 94720 t~» This work was supponed by the U.S. Department of Energy, Office of Environmental Management, Office of Technology Development, and the Office of Energy Research, Office of Basic Energy Sciences, under Contract No. DE-AC03-76SF00O98. DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED T ABSTRACT The improvement of the ecological conditions at waste storing reservoirs is an important task of the restoration activity at Production Association (PA) "Mayak" (South Urals). The radionuclides, mostly ^Sr, 137Cs, and chemical pollutants deposited in the reservoir water and in the bottom sediment are very dangerous sources for the contamination of Techa River below the reservoirs and the contamination of groundwater in the suirounding formations. The spreading of radioactive contaminants has both hydrogeological and the chemical features. The thermodynamic approach used to account for physical-chemical interactions between water and the bed rocks based on Gibbs free energy minimization of multicomponent system (H-O-Ca-Mg-K-Na-S-Cl-C-Sr) permitted to calculate the corresponding ionic and complex species existing in the solutions, and to characterize the processes of precipitation and dissolution.
[Show full text]