CHARACTERIZATION of TWO BEGOMOVIRUSES ISOLATED from Sida Santaremensis Monteiro and Sida Acuta Burm. F by HAMED ADNAN AL-AQEEL A

Total Page:16

File Type:pdf, Size:1020Kb

CHARACTERIZATION of TWO BEGOMOVIRUSES ISOLATED from Sida Santaremensis Monteiro and Sida Acuta Burm. F by HAMED ADNAN AL-AQEEL A CHARACTERIZATION OF TWO BEGOMOVIRUSES ISOLATED FROM Sida santaremensis Monteiro AND Sida acuta Burm. f By HAMED ADNAN AL-AQEEL A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003 Copyright 2003 by Hamed Adnan Al-Aqeel This dedicated to my family my father Dr. Adnan, my mother Fareda and my wife Hanin. TABLE OF CONTENTS page LIST OF TABLES............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii ABSTRACT....................................................................................................................... ix CHAPTER 1 HISTORY AND LITERATURE REVIEW .................................................................1 Geminivirus History .....................................................................................................1 Taxonomy and Nucleotide Functions...........................................................................3 Begomoviruses .............................................................................................................5 The Genus Sida.............................................................................................................6 Viruses Infecting Sida spp............................................................................................7 Begomoviruses Infecting Sida spp. in Florida............................................................10 2 CHARACTERIZATION OF A NEW BEGOMOVIRUS ISOLATED FROM Sida santaremensis Monteiro in Florida.............................................................................12 Materials and Methods ...............................................................................................13 Virus Source ........................................................................................................13 Begomovirus Detection.......................................................................................13 Cloning and Sequencing......................................................................................14 Molecular Characterization of the Virus .............................................................15 Biological characterization..................................................................................15 Biolistic inoculation .....................................................................................16 Whitefly inoculation.....................................................................................16 Detection of SiGMoV in Test Plants...................................................................17 Results.........................................................................................................................18 Phylogenetic Analysis .........................................................................................18 Nucleotide and Amino Acid Sequence Analysis.................................................19 Biological Characterization ........................................................................................19 Discussion...................................................................................................................27 iv 3 AN EPIDEMIC IN TOMATO CAUSED BY VARIANTS OF Sida golden mosaic virus ............................................................................................................................29 Materials and Methods ...............................................................................................29 Sample Source.....................................................................................................29 PCR Analysis and Restriction Analysis ..............................................................29 Cloning ................................................................................................................30 Gap and Blast Analysis .......................................................................................30 Phylogenetic Analysis .........................................................................................30 Results.........................................................................................................................31 Partial Sequence Analysis from Tomato and S. acuta ........................................31 Phylogenetic Analysis .........................................................................................33 Discussion...................................................................................................................44 LIST OF REFERENCES...................................................................................................46 BIOGRAPHICAL SKETCH .............................................................................................51 v LIST OF TABLES Table page 2-1 Comparison of the nucleotide sequence identity of the DNA-A of Sida golden mottle virus...............................................................................................................21 2-2 Comparison of the nucleotide sequence identity of the DNA-B of Sida golden mottle virus...............................................................................................................21 2-3 Comparison of the open reading frame nucleotide and common region sequences identity of the DNA-A of Sida golden mottle virus .................................................22 2-4 Comparison of the open reading frame and common region nucleotide sequences identity of the DNA-B of Sida golden mottle virus .................................................22 2-5 Comparison of the open reading frame amino acid sequences similirity of the DNA-A of Sida golden mottle virus.........................................................................23 2-6 Comparison of the open reading frame amino acid sequences similirity of the DNA-B of Sida golden mottle virus.........................................................................23 2-7 Host range study of SiGMoV...................................................................................24 3-1 The nucleotides identity of partial sequences of SiGMV DNA-A...........................38 3-2 The nucleotides identity of partial sequences of SiGMV DNA-B...........................38 3-3 The Common region nucleotides identity of SiGMV DNA-A sequences isolated from tomato and S. acuta .........................................................................................39 3-4 The Common region nucleotides identity of SiGMV sequences isolated from tomato and S. acuta ..................................................................................................39 3-6 The nucleotide identity of partial sequences DNA-B sequences isolated from tomato and S. acuta ..................................................................................................41 vi LIST OF FIGURES Figure page 2-1 Sida santaremensis infected with Sida golden mottle virus showing typical ........20 2-2 Phylogenic tree of complete nucleotide of a component of selected begomoviruses with SiGMoV................................................................................25 2-3 Phylogenic tree of complete nucleotide of B component of selected begomoviruses with SiGMoV................................................................................26 3-1 Partial sequence of DNA-A (S3-C7A) amplified from Sida acuta collected from Citra Field, Florida........................................................................................33 3-2 Partial sequence of DNA-A (T3-C8A) amplified from tomato plant collected from Citra Field, Florida........................................................................................34 3-3 Partial sequence of DNA-A (T5-C2A) amplified from tomato plant collected from Citra Field, Florida........................................................................................34 3-4 Partial sequence of DNA-A (T10-C8A) amplified from tomato plant collected from Citra Field, Florida........................................................................................35 3-5 Partial sequence of DNA-A (T10-C10A) amplified from tomato plant collected from Citra Field, Florida........................................................................................35 3-6 Partial sequence of DNA-A (T12-C6A) amplified from tomato plant collected from Citra Field, Florida........................................................................................36 3-7 Partial sequence of DNA-B (S3-C4B) amplified from Sida acuta collected from Citra Field, Florida.................................................................................................36 3-8 Partial sequence of DNA-B (T12-C3B) amplified from tomato plant collected from Citra Field, Florida........................................................................................37 3-9 Partial sequence of DNA-B (T12-C5B) amplified from tomato plant collected from Citra Field, Florida........................................................................................37 3-10 Partial sequence of DNA-B (T12-C7B) amplified from tomato plant collected from Citra Field, Florida........................................................................................37 vii 3-11 Partial sequence of DNA-B (T12-C9B) amplified from tomato plant collected from Citra Field,
Recommended publications
  • Requirements for the Packaging of Geminivirus Circular Single-Stranded DNA: Effect of DNA Length and Coat Protein Sequence
    viruses Article Requirements for the Packaging of Geminivirus Circular Single-Stranded DNA: Effect of DNA Length and Coat Protein Sequence Keith Saunders 1,* , Jake Richardson 2, David M. Lawson 1 and George P. Lomonossoff 1 1 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; [email protected] (D.M.L.); george.lomonossoff@jic.ac.uk (G.P.L.) 2 Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1603-450733 Received: 10 September 2020; Accepted: 28 October 2020; Published: 30 October 2020 Abstract: Geminivirus particles, consisting of a pair of twinned isometric structures, have one of the most distinctive capsids in the virological world. Until recently, there was little information as to how these structures are generated. To address this, we developed a system to produce capsid structures following the delivery of geminivirus coat protein and replicating circular single-stranded DNA (cssDNA) by the infiltration of gene constructs into plant leaves. The transencapsidation of cssDNA of the Begomovirus genus by coat protein of different geminivirus genera was shown to occur with full-length but not half-length molecules. Double capsid structures, distinct from geminate capsid structures, were also generated in this expression system. By increasing the length of the encapsidated cssDNA, triple geminate capsid structures, consisting of straight, bent and condensed forms were generated. The straight geminate triple structures generated were similar in morphology to those recorded for a potato-infecting virus from Peru.
    [Show full text]
  • Boselaphus Tragocamelus</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Boselaphus tragocamelus (Artiodactyla: Bovidae) David M. Leslie Jr. U.S. Geological Survey, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Leslie, David M. Jr., "Boselaphus tragocamelus (Artiodactyla: Bovidae)" (2008). USGS Staff -- Published Research. 723. https://digitalcommons.unl.edu/usgsstaffpub/723 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAMMALIAN SPECIES 813:1–16 Boselaphus tragocamelus (Artiodactyla: Bovidae) DAVID M. LESLIE,JR. United States Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit and Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078-3051, USA; [email protected] Abstract: Boselaphus tragocamelus (Pallas, 1766) is a bovid commonly called the nilgai or blue bull and is Asia’s largest antelope. A sexually dimorphic ungulate of large stature and unique coloration, it is the only species in the genus Boselaphus. It is endemic to peninsular India and small parts of Pakistan and Nepal, has been extirpated from Bangladesh, and has been introduced in the United States (Texas), Mexico, South Africa, and Italy. It prefers open grassland and savannas and locally is a significant agricultural pest in India. It is not of special conservation concern and is well represented in zoos and private collections throughout the world. DOI: 10.1644/813.1.
    [Show full text]
  • Detection and Complete Genome Characterization of a Begomovirus Infecting Okra (Abelmoschus Esculentus) in Brazil
    Tropical Plant Pathology, vol. 36, 1, 014-020 (2011) Copyright by the Brazilian Phytopathological Society. Printed in Brazil www.sbfito.com.br RESEARCH ARTICLE / ARTIGO Detection and complete genome characterization of a begomovirus infecting okra (Abelmoschus esculentus) in Brazil Silvia de Araujo Aranha1, Leonardo Cunha de Albuquerque1, Leonardo Silva Boiteux2 & Alice Kazuko Inoue-Nagata2 1Departamento de Fitopatologia, Universidade de Brasília, 70910-900, Brasília, DF, Brazil; 2Embrapa Hortaliças, 70359- 970, Brasília, DF, Brazil Author for correspondence: Alice K. Inoue-Nagata, e-mail. [email protected] ABSTRACT A survey of okra begomoviruses was carried out in Central Brazil. Foliar samples were collected in okra production fields and tested by using begomovirus universal primers. Begomovirus infection was confirmed in only one (#5157) out of 196 samples. Total DNA was subjected to PCR amplification and introduced into okra seedlings by a biolistic method; the bombarded DNA sample was infectious to okra plants. The DNA-A and DNA-B of isolate #5157 were cloned and their nucleotide sequences exhibited typical characteristics of New World bipartite begomoviruses. The DNA-A sequence shared 95.6% nucleotide identity with an isolate of Sida micrantha mosaic virus from Brazil and thus identified as its okra strain. The clones derived from #5157 were infectious to okra, Sida santaremnensis and to a group of Solanaceae plants when inoculated by biolistics after circularization of the isolated insert, followed by rolling circle amplification. Key words: Sida micrantha mosaic virus, geminivirus, SimMV. RESUMO Detecção e caracterização do genoma completo de um begomovírus que infecta o quiabeiro (Abelmoschus esculentus) no Brasil Um levantamento de begomovírus de quiabeiro foi realizado no Brasil Central.
    [Show full text]
  • Bemisia Tabaci, Gennadius: Hemiptera Aleyrodidae) Xiomara H
    Journal of General Virology (2005), 86, 1525–1532 DOI 10.1099/vir.0.80665-0 Differential transcriptional activity of plant- pathogenic begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyrodidae) Xiomara H. Sinisterra,1 C. L. McKenzie,1 Wayne B. Hunter,1 Charles A. Powell2 and Robert G. Shatters, Jr1 Correspondence 1United States Department of Agriculture, Agricultural Research Service, US Horticultural Robert G. Shatters, Jr Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA [email protected] 2Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL 34945, USA Plant-pathogenic begomoviruses have a complex association with their whitefly vector and aspects concerning virus genetic activity (genome replication and gene transcription) within the insect remain highly controversial. Virus transcript abundance was assessed by quantifying selected gene transcripts of Tomato mottle virus (ToMoV, a New World bipartite begomovirus) and Tomato yellow leaf curl virus (TYLCV, an Old World monopartite begomovirus) in whiteflies (Bemisia tabaci biotype B) after feeding on virus-infected tomato plants and after subsequent transfer to cotton, a plant that is immune to the selected begomoviruses. Real-time RT-PCR was performed using specific primers for three ToMoV genes (AV1, BC1 and BV1) and three TYLCV genes (V1, V2 and C3). The ToMoV gene transcripts rapidly became undetectable in whiteflies following transfer from tomato to cotton, probably because degradation was not accompanied by new synthesis. On the other hand, TYLCV transcripts increased after transfer of whiteflies to cotton, indicating active TYLCV transcription. Interestingly, the difference observed Received 5 October 2004 in ToMoV and TYLCV transcripts in the vector parallel observations on the different biological Accepted 4 February 2005 effects of these viruses on whiteflies, i.e.
    [Show full text]
  • Conserving Rajaji and Corbett National Parks – the Elephant As a Flagship Species
    ORYX VOL 28 NO 2 APRIL 1994 Conserving Rajaji and Corbett National Parks - the elephant as a flagship species A. J. T. Johnsingh and Justus Joshua One of India's five major populations of elephants lives in north-west India, where 90 per cent of the total 750 elephants occur in Rajaji and Corbett National Parks and adjacent reserve forests. This 3000-sq-km habitat is also home to many other endangered species. While the 520-sq-km core area of Corbett National Park is free from human impact, the rest of the range is subject to increasing pressures, both from the pastoral Gujjar community within the forests and villagers outside. The elephant habitat has been fragmented by hydrological development work and human-elephant conflict is increasing. The authors recommend measures that need to be implemented to ensure that the elephants and other wildlife of the area are conserved. Introduction which would be managed under a special scheme (Johnsingh and Panwar, 1992), would Over the last two decades many habitat con- be a step towards action on this. servation programmes have adopted particu- The Asian elephant Elephas maximus con- lar species to serve as 'flagship species'. By fo- forms to the role of a flagship species ex- cusing on one species and its conservation tremely well. To maintain viable populations, needs, large areas of habitat can be managed, many large areas will be needed in its range, not only for the species in question but for a each containing more than 500 breeding whole range of less charismatic taxa. In India, adults (Santiapillai and Jackson, 1990), as well the tiger Panthera tigris was used as a flagship as plentiful clean water, abundant forage and species when 'Project Tiger' was started in protection from poaching.
    [Show full text]
  • Sida Rhombifolia
    Sida rhombifolia Arrowleaf sida, Cuba jute Sida rhombifolia L. Family: Malvaceae Description: Small, perennial, erect shrub, to 5 ft, few hairs, stems tough. Leaves alternate, of variable shapes, rhomboid (diamond-shaped) to oblong, 2.4 inches long, margins serrate except entire toward the base. Flowers solitary at leaf axils, in clusters at end of branches, yel- low to yellowish orange, often red at the base of the petals, 0.33 inches diameter, flower stalk slender, to 1.5 inches long. Fruit a cheesewheel (schizocarp) of 8–12 segments with brown dormant seeds. A pantropical weed, widespread throughout Hawai‘i in disturbed areas. Pos- sibly indigenous. Used as fiber source and as a medici- nal in some parts of the world. [A couple of other weedy species of Sida are common in Hawai‘i. As each spe- cies tends to be variable in appearance (polymorphic), while at the same time similar in gross appearance, they are difficult to tell apart. S. acuta N.L. Burm., syn. S. Distribution: A pantropical weed, first collected on carpinifolia, southern sida, has narrower leaves with the Kauaÿi in 1895. Native to tropical America, naturalized bases unequal (asymmetrical), margins serrated to near before 1871(70). the leaf base; flowers white to yellow, 2–8 in the leaf axils, flower stalks to 0.15 inches long; fruit a cheese- Environmental impact: Infests mesic to wet pas- wheel with 5 segments. S. spinosa L., prickly sida, has tures and many crops worldwide in temperate and tropi- very narrow leaves, margins serrate or scalloped cal zones(25). (crenate); a nub below each leaf, though not a spine, accounts for the species name; flowers, pale yellow to Management: Somewhat tolerant of 2,4-D, dicamba yellowish orange, solitary at leaf axils except in clusters and triclopyr.
    [Show full text]
  • Beet Curly Top Virus Strains Associated with Sugar Beet in Idaho, Oregon, and a Western U.S
    Plant Disease • 2017 • 101:1373-1382 • http://dx.doi.org/10.1094/PDIS-03-17-0381-RE Beet curly top virus Strains Associated with Sugar Beet in Idaho, Oregon, and a Western U.S. Collection Carl A. Strausbaugh and Imad A. Eujayl, United States Department of Agriculture–Agricultural Research Service (USDA-ARS) Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341; and William M. Wintermantel, USDA-ARS, Salinas, CA 93905 Abstract Curly top of sugar beet is a serious, yield-limiting disease in semiarid pro- Logan) strains and primers that amplified a group of Worland (Wor)- duction areas caused by Beet curly top virus (BCTV) and transmitted like strains. The BCTV strain distribution averaged 2% Svr, 30% CA/ by the beet leafhopper. One of the primary means of control for BCTV Logan, and 87% Wor-like (16% had mixed infections), which differed in sugar beet is host resistance but effectiveness of resistance can vary from the previously published 2006-to-2007 collection (87% Svr, 7% among BCTV strains. Strain prevalence among BCTV populations CA/Logan, and 60% Wor-like; 59% mixed infections) based on a contin- was last investigated in Idaho and Oregon during a 2006-to-2007 collec- gency test (P < 0.0001). Whole-genome sequencing (GenBank acces- tion but changes in disease severity suggested a need for reevaluation. sions KT276895 to KT276920 and KX867015 to KX867057) with Therefore, 406 leaf samples symptomatic for curly top were collected overlapping primers found that the Wor-like strains included Wor, Colo- from sugar beet plants in commercial sugar beet fields in Idaho and rado and a previously undescribed strain designated Kimberly1.
    [Show full text]
  • Ethnomedicinal, Phytochemical and Ethnopharmacological Aspects of Four Medicinal Plants of Malvaceae Used in Indian Traditional Medicines: a Review
    medicines Review Ethnomedicinal, Phytochemical and Ethnopharmacological Aspects of Four Medicinal Plants of Malvaceae Used in Indian Traditional Medicines: A Review Jasmeet Kaur Abat 1, Sanjay Kumar 2 and Aparajita Mohanty 1,* 1 Department of Botany, Gargi College, Sirifort Road, New Delhi 110049, India; [email protected] 2 Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India; [email protected] * Correspondence: [email protected]; Tel: +91-11-2649-4544 Academic Editors: Gerhard Litscher and João Rocha Received: 19 September 2017; Accepted: 16 October 2017; Published: 18 October 2017 Abstract: The ethnomedicinal values of plants form the basis of the herbal drug industry. India has contributed its knowledge of traditional system medicines (Ayurveda and Siddha) to develop herbal medicines with negligible side effects. The World Health Organization has also recognized the benefits of drugs developed from natural products. Abutilon indicum, Hibiscus sabdariffa, Sida acuta and Sida rhombifolia are ethnomedicinal plants of Malvaceae, commonly used in Indian traditional system of medicines. Traditionally these plants were used in the form of extracts/powder/paste by tribal populations of India for treating common ailments like cough and cold, fever, stomach, kidney and liver disorders, pains, inflammations, wounds, etc. The present review is an overview of phytochemistry and ethnopharmacological studies that support many of the traditional ethnomedicinal uses of these plants. Many phytoconstituents have been isolated from the four ethnomedicinal plants and some of them have shown pharmacological activities that have been demonstrated by in vivo and/or in vitro experiments. Ethnomedicinal uses, supported by scientific evidences is essential for ensuring safe and effective utilization of herbal medicines.
    [Show full text]
  • SUGARBEET S P R I N G I S S UE
    THE SUGARBEET S P R I N G ISS UE SPRING 2011 SUGARBEET N EWS LETTER he Sugarbeet is published by The Amalgamated Sugar Company. The magazine is prepared by the Agriculture TDepartment to provide growers with up-to-date information on growing and harvesting sugarbeets. The magazine is also published to help upgrade the standards of the U.S. beet industry by providing a reliable source of information for agronomists, scientists, sugar company personnel, students, and others interested in this vital food crop. Articles appearing in The Sugarbeet, with the exception of those items credited to other sources, may be quoted or reprinted without permission; however, mention of this publication is requested when material herein is re- printed. Although every effort is made to ensure that the material is accurate, no responsibility can be assumed for er- rors over which the editor has no control. Mention or illustration of methods, devices, equipment, or commercial products does not constitute an endorsement by the company. Address all communication to the Editor, The Sugarbeet, P.O. Box 8787, Nampa, ID 83653-8787. Agriculture Offices Nyssa District Nyssa, Oregon Mini-Cassia District Paul, Idaho Agriculture Research Offices Twin Falls, Idaho Twin Falls District Twin Falls, Idaho Technical Advisor John Schorr Elwyhee District Corporate Director of Agriculture Mountain Home, Idaho Editor Nampa District Dennis Searle Nampa, Idaho Ag Services Manager SPRING ISSUE 2011 CONTENTS Mini-Cassia District - 2010 ........................................... 2 Nampa District - 2010 .............................................. 4 Twin Falls District - 2010 ............................................ 5 Elwyhee District - 2010 ............................................. 6 Washington District - 2010 .......................................... 6 Nyssa District - 2010 ............................................... 7 Controlling Severe Curly Top In Sugarbeet ..............................
    [Show full text]
  • Surveys Using Whiteflies (Aleyrodidae) Reveal Novel
    Article Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae) Reveal Novel Begomovirus Species in the New and Old Worlds Karyna Rosario 1,*, Yee Mey Seah 2, Christian Marr 1, Arvind Varsani 3,4,5, Simona Kraberger 3, Daisy Stainton 3, Enrique Moriones 6, Jane E. Polston 4, Siobain Duffy 7 and Mya Breitbart 1 Received: 3 August 2015 ; Accepted: 19 October 2015 ; Published: 26 October 2015 Academic Editor: Thomas Hohn 1 College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA; [email protected] (C.M.); [email protected] (M.B.) 2 Microbiology and Molecular Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; [email protected] 3 School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand; [email protected] (A.V.); [email protected] (S.K.); [email protected] (D.S.) 4 Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; jep@ufl.edu 5 Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa 6 Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental “La Mayora”, Algarrobo-Costa, Málaga 29750, Spain; [email protected] 7 Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-727-553-3930; Fax: +1-727-553-1189 Abstract: Whitefly-transmitted viruses belonging to the genus Begomovirus (family Geminiviridae) represent a substantial threat to agricultural food production.
    [Show full text]
  • Hemp Pests Presentation Lukas
    Hemp Production Considerations -Insects and Diseases- Scott Lukas Assistant Professor Hermiston Agricultural Research & Extension Center What is hemp vs. marijuana? Cannabis sativa Hemp Marijuana ≤ 0.3% Total THC* > 0.3% Total THC* * The first American flag made by Betsy Ross was made from industrial hemp 1777 Where are we with hemp 2019 Oregon production • 63,000 registered acres in 2019, nearly six times more than in 2018 • 1,940 registered growers in the state • Most all of the crop is being grown for hemp essential oils with dependence on feminized seeds for production Expansive production and limited research, we are all learning at the same time. 1. Overview of insect pests that prey on or potentially may affect hemp 2. Diseases observed in 2019 hemp crops I will provide some management options but cannot list products or specific control options Products are under development and approval Research to support insect and disease control is underway Insects associated with hemp Group I: Below soil Group II: Leaf Group III: Stem/stalk Group IV: Flowers and seeds Wireworm Pacific coast wireworm Limonius canus Click beetle larvae Determine levels Bait stations Soil collection – sieve Soil inspection during tillage Will weaken or kill plants from damage or secondary infection Wireworm Pacific coast wireworm Life Cycle Move upward in soil in spring - Overwinter at 12”-24” depth Wireworm Group II – Leaf feeders Sucking and piercing Chewing (Leaf defoliators) Sucking & Piercing Leafhoppers Spider Mites Aphids Thrips Russet Mites CSU-W Cranshaw
    [Show full text]
  • Pyrcz T.W., Viloria A.L
    Genus Vol. 23(1): 133-152 Wrocław, 30 IV 2012 Revalidation of Pedaliodes lithochalcis BUTLER & DRUCE, description of a new species from Peru and Bolivia and of a new subspecies of P. napaea BATES from Honduras (Lepidoptera: Nymphalidae: Satyrinae) TOMASZ W. PYRCZ1 & ANGEL L. VILORIA2 1Zoological Museum, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland, e-mail: [email protected] 2Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 20.632, Caracas 1020-A, Venezuela, e-mail: [email protected] ABSTRACT. Pedaliodes lithochalcis, occurring in Costa Rica and Panama, has been considered for more than a century a junior synonym of P. dejecta from Guatemala. It is reinstated here as a valid species. It is shown that the two species belong to different groups of species with sympatric representatives throughout Central America and the Andes characterized by common characters of adult morphology, particularly the male genitalia. Pedaliodes lithochalcis is closely related to P. napaea whose new subspecies, P. napaea naksi n. ssp., is described from the Celaque massif in Honduras. It is the first cloud forest Satyrinae butterfly described from this country. Pedaliodes dejecta is related to another Mesoamerican species, P. ereiba, and to P. pomponia from Ecuador and to a new species, P. peregrina n. sp., from Peru and Bolivia. Key words: entomology, taxonomy, Andes, Celaque, Costa Rica, Guatemala, male genitalia, Pedaliodes, Pronophilina, taxonomy INTRODUCTION The subtribe Pronophilina (Nymphalidae, Satyrinae) is a species-rich group of neotropical montane butterflies with its centre of diversity in the Andes (PYRCZ 2004; VILORIA et al. 2010). Despite recent advances, its systematics and faunistics remain far from being fully explored.
    [Show full text]