Downloadable at with the Default Settings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Response of Ectomycorrhizal Fungi to Inorganic and Organic Forms of Nitrogen and Phosphorus
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2012 RESPONSE OF ECTOMYCORRHIZAL FUNGI TO INORGANIC AND ORGANIC FORMS OF NITROGEN AND PHOSPHORUS Christa M. Luokkala Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Forest Sciences Commons Copyright 2012 Christa M. Luokkala Recommended Citation Luokkala, Christa M., "RESPONSE OF ECTOMYCORRHIZAL FUNGI TO INORGANIC AND ORGANIC FORMS OF NITROGEN AND PHOSPHORUS", Master's report, Michigan Technological University, 2012. https://doi.org/10.37099/mtu.dc.etds/611 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Forest Sciences Commons RESPONSE OF ECTOMYCORRHIZAL FUNGI TO INORGANIC AND ORGANIC FORMS OF NITROGEN AND PHOSPHORUS By Christa M. Luokkala A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Applied Ecology MICHIGAN TECHNOLOGICAL UNIVERSITY 2012 © 2012 Christa M. Luokkala This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Applied Ecology. School of Forest Resources and Environmental Science Report Advisor: Dr. Erik A. Lilleskov Committee Member: Dr. Susan A. Bagley Committee Member: Dr. Dana L. Richter Committee Member: Dr. Christopher W. Swanston School Dean: Dr. Terry L. Sharik Table of Contents Abstract ............................................................................................................................. -
Mycorrhizae's Role in Plant Nutrition and Protection from Pathogens
Current Investigations in Agriculture and Current Research DOI: 10.32474/CIACR.2019.08.000277 ISSN: 2637-4676 Research Article Mycorrhizae’s Role in Plant Nutrition and Protection from Pathogens Mohammad Imad khrieba* Plant Pathology and Biological Control, National Commission of Biotechnology (NCBT), Syria *Corresponding author: Mohammad Imad khrieba, Plant Pathology and Biological Control, National Commission of Biotechnology (NCBT), Syria Received: October 22, 2019 Published: December 02, 2019 Abstract Mycorrhizae establish symbiotic relationships with plants and play an essential role in plant growth, disease protection, and overall soil quality. There are two main categories of Mycorrhizae relationships: Endomycorrhizal fungi (Arbuscular Mycorrhizal Fungi) (AMF) form relationships with over 90% of plants (including turf grasses). Ectomycorrhizae fungi form relationships with only about 2% of plants, but some of them are quite common. In this scientific review, we will only talk about Endomycorrhizal. Mycorrhizae described in current scientific literature, the Endomycorrhizal the most abundant and widespread. The molecular basis of nutrient exchange between Arbuscular Mycorrhizal (AM) fungi and host plants is presented. The role of AM fungi in disease protection, Root colonisation by Arbuscular Mycorrhizal Fungi (AMF) can improve plant resistance/tolerance to biotic stresses. Although this bio protection has been amply described in different plant systems, the underlying mechanisms remain largely unknown. Besides mechanisms such as improved plant nutrition and competition, experimental evidence supports the involvement of plant defense mechanisms in the observed protection. During mycorrhiza establishment, modulation of plant defenses responses occurs upon recognition of the AMF in order to achieve a functional symbiosis. As a consequence of this modulation, a mild, but effective activation of the plant immune responses may occur, not only locally but also systemically. -
Fertility-Dependent Effects of Ectomycorrhizal Fungal Communities on White Spruce Seedling Nutrition
Mycorrhiza (2015) 25:649–662 DOI 10.1007/s00572-015-0640-9 ORIGINAL PAPER Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition Alistair J. H. Smith II1 & Lynette R. Potvin2 & Erik A. Lilleskov2 Received: 14 January 2015 /Accepted: 6 April 2015 /Published online: 24 April 2015 # Springer-Verlag Berlin Heidelberg (outside the USA) 2015 Abstract Ectomycorrhizal fungi (EcMF) typically colonize manganese, and Atheliaceae sp. had a negative relationship with nursery seedlings, but nutritional and growth effects of these P content. Findings shed light on the community and species communities are only partly understood. To examine these ef- effects on seedling condition, revealing clear functional differ- fects, Picea glauca seedlings collected from a tree nursery natu- ences among dominants. The approach used should be scalable rally colonized by three dominant EcMF were divided between to explore function in more complex communities composed of fertilized and unfertilized treatments. After one growing season unculturable EcMF. seedlings were harvested, ectomycorrhizas identified using DNA sequencing, and seedlings analyzed for leaf nutrient concentra- Keywords Stoichiometry . Ectomycorrhizal fungal tion and content, and biomass parameters. EcMF community community effects . Nitrogen . Phosphorus . Micronutrients . structure–nutrient interactions were tested using nonmetric mul- Amphinema . Atheliaceae . Thelephora terrestris . tidimensional scaling (NMDS) combined with vector analysis of Greenhouse foliar nutrients and biomass. We identified three dominant spe- cies: Amphinema sp., Atheliaceae sp., and Thelephora terrestris. NMDS+envfit revealed significant community effects on seed- Introduction ling nutrition that differed with fertilization treatment. PERM ANOVA and regression analyses uncovered significant species Seedlings regenerating naturally or artificially are influenced by effects on host nutrient concentration, content, and stoichiometry. -
Mycorrhizae, Mycorrhizospheres, and Reforestation: Current Knowledge and Research Needs
929 Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs D. A. PERRY Department of Forest Science, College of Forestry, Oregon State University, Corvallis, OR, U.S.A. 97331 R. MOLINA United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, U.S.A. 97331 AND M. P. AMARANTHUS Department of Forest Science, College of Forestry, Oregon State University, Corvallis, OR, U.S.A. 97331 Received October 21, 1986 Accepted May 13, 1987 PERRY, D. A., MOLINA, R., and AMARANTHUS, M. P. 1987. Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can. J. For. Res. 17 : 929-940. Although not a panacea, management of mycorrhizae and associated organisms is an important reforestation aid. Its three major components are protection of the indigenous soil community and evaluation of inoculation needs, integration of inoculation programs into existing reforestation technology, and research. Clear-cutting frequently results in reduced mycorrhizae formation, particularly when reforestation is delayed and no other host plants are present to maintain fungal populations. Implications of such reductions for reforestation vary with environmental factors and tree species. Adequate mycorrhiza formation is especially critical for ectomycorrhizal trees growing on poor soils or in environments where seedlings must establish quickly to survive. It may also be important where early successional, noncrop plants do not support the same mycobiont as the crop. In such circumstances, a self-reinforcing trend may develop, with poor mycorrhiza formation reducing seedling survival and poor tree stocking leading to further loss of mycorrhizal inocula. Inoculating nursery seedlings with mycobionts holds promise for improving outplanting performance only if site-adapted fungi are used. -
The Plant – Arbuscular Mycorrhizal Fungi – Bacteria – Pathogen System
The Plant – Arbuscular Mycorrhizal Fungi – Bacteria – Pathogen System Multifunctional Role of AMF Spore-Associated Bacteria Dharam Parkash Bharadwaj Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Pathology Uppsala Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2007 1 Acta Universitatis Agriculturae Sueciae 2007: 90 ISSN 1652-6880 ISBN 978-91-576-7389-3 © 2007 Dharam Parkash Bharadwaj, Uppsala Tryck: SLU Service/Repro, Uppsala 2007 2 Abstract Bharadwaj, D.P. 2007. The Plant – Arbuscular Mycorrhizal Fungi – Bacteria – Pathogen System: Multifunctional Role of AMF Spore-Associated Bacteria. Doctor’s dissertation. ISBN 978-91-576-7389-3, ISSN 1652-6880. The aim of this study was to determine the role of the bacteria associated with arbuscular mycorrhizal (AM) fungi in the interactions between AM fungi, plant hosts and pathogens. Mycorrhizal traits were studied in a potato host using field rhizosphere soils of 12 different plant species as inoculum. High colonisation was found with soil of Festuca ovina and Leucanthemum vulgare, which contained two dominant AMF species (Glomus mosseae and G. intraradices). Bacteria associated with spores of AM fungi (AMB) were isolated from these two AM fungal species with either of the two plant species as hosts. Identification based on fatty acid methyl ester profile analysis revealed high diversity and specific occurrence of certain taxa with either of the two AMF. Some AMB were strongly antagonistic against R. solani in in vitro studies and most of them were spore type- dependent and originated from G. intraradices spores. Occurrence of AMB taxa was also plant host-dependent but antagonism was not. -
Redalyc.A REVIEW on BENEFICIAL EFFECTS of RHIZOSPHERE BACTERIA on SOIL NUTRIENT AVAILABILITY and PLANT NUTRIENT UPTAKE
Revista Facultad Nacional de Agronomía - Medellín ISSN: 0304-2847 [email protected] Universidad Nacional de Colombia Colombia Osorio Vega, Nelson Walter A REVIEW ON BENEFICIAL EFFECTS OF RHIZOSPHERE BACTERIA ON SOIL NUTRIENT AVAILABILITY AND PLANT NUTRIENT UPTAKE Revista Facultad Nacional de Agronomía - Medellín, vol. 60, núm. 1, 2007, pp. 3621-3643 Universidad Nacional de Colombia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=179914076001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative A REVIEW ON BENEFICIAL EFFECTS OF RHIZOSPHERE BACTERIA ON SOIL NUTRIENT AVAILABILITY AND PLANT NUTRIENT UPTAKE Nelson Walter Osorio Vega 1 ______________________________________________________________________ ABSTRACT This paper is a review of the benefits of rhizosphere bacteria on plant nutrition. The interaction between plant and phosphate-solubilizing- bacteria is explained in more detail and used as model to illustrate the role that rhizosphere bacteria play on soil nutrient availability. Environmental conditions of rhizosphere and mycorrhizosphere are also discussed. Plants can release carbohydrates, aminoacids, lipids, and vitamins trough their roots to stimulate microorganisms in the soil. The soil volume affected by these root exudates, aproximately 2 mm from the root surface, is termed rhizosphere. Rhizosphere bacteria participate in the geochemical cycling of nutrients and determine their availability for plants and soil microbial community. For instance, in the rhizosphere there are organisms able to fix N 2 forming specialized structures (e.g., Rhizobium and related genera) or simply establishing associative relationships (e.g. -
A Summary Report of Useful Information on Mycorrhiza Fungi Gathered for UK Growers
A Summary report of useful Information on Mycorrhiza fungi gathered for UK Growers Eighth International Conference of Mycorrhiza (ICOM8) August 3-7, 2015 Flagstaff, Arizona, USA Benjamin Langendorf East Malling Research, East Malling, Kent 1 Background and introduction The 8th International Conference on Mycorrhiza (ICOM8) took place from 3-7 August 2015 in Flagstaff, Arizona, in the southwest of the United States. It was organized by Northern Arizona University (NAU) under the auspices of the International Mycorrhiza Society. The theme of this conference was "Mycorrhizal integration across continents and scales". The main goal of ICOM8 was to find common interests that transcend national borders and scientific disciplines, and to stimulate a productive exchange of information and ideas among mycorrhizal researchers from around the world, including physiologists, geneticists, taxonomists, ecologists, inoculum producers, and land managers. Mycorrhiza is the most common underground symbiosis and is present in 92% of plant families studied (80% of species), with arbuscular mycorrhizas being the predominant form. This relationship consists in the colonisation of plant roots by the micro-organism and the creation of a site of nutrient exchange. Plants receive mineral nutrients such as inorganic phosphates and mineral or organic nitrogen. In return the plants provide carbohydrates to the mycorrhizal fungi. Beneficial microorganisms associations with plant roots contribute to sustainable horticulture and agriculture, including protected crops. Most agricultural crops could perform better and are more productive when well-colonised by mycorrhizal fungi. Many researches have highlighted the fact that mycorrhiza can help plants to overcome replanting stresses more successfully, to cope with conditions such as draught or high levels of salt, and to increase pest and/or disease resistance. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
The Effects of Tetracycline Residues on the Microbial Community Structure of Tobacco Soil in Pot Experiment
www.nature.com/scientificreports OPEN The Efects of Tetracycline Residues on the Microbial Community Structure of Tobacco Soil in Pot Experiment Jiayu Zheng1, Jixu Zhang1,3, Lin Gao1, Fanyu Kong1, Guoming Shen1, Rui Wang2, Jiaming Gao2 & Jiguang Zhang1 ✉ To evaluate the micro-ecological efects of tetracycline residues on tobacco soil, high-throughput sequencing technology was used to study the efects of the addition of diferent concentrations (0, 5, 50, and 500 mg·kg−1) of tetracycline on the abundance, diversity, and structure of bacterial and fungal communities in the rhizosphere and non-rhizosphere soil of fue-cured tobacco in China. Results showed that the presence of tetracycline had an important but varying efect on soil bacterial and fungal community richness, diversity, and structure. Changes in the diversity indices (Chao index and Shannon index) of soil bacterial and fungal communities showed a similar pattern after the addition of tetracycline; however, a few diferences were found in the efects of tetracycline in the rhizosphere and non-rhizosphere soil, suggesting an evident rhizosphere-specifc efect. The bacterial community at the phylum level in the rhizosphere closely clustered into one group, which might be the result of tobacco root secretions and rhizodeposition. Tetracycline showed a concentration-dependent efect on the soil bacterial community structure. The soil bacterial community structures observed after treatments with higher concentrations of tetracycline (50 and 500 mg·kg−1) were found to be closely related. Moreover, the efects of the treatments with higher concentrations of tetracycline, on the soil bacterial community at the phylum level, were diferent from those with lower concentrations of tetracycline (5 mg·kg−1), and CK treatments. -
Interactions of Arbuscular Mycorrhizal Fungi with Hyphosphere Microbial Communities in a Saline Soil
Article Interactions of Arbuscular Mycorrhizal Fungi with Hyphosphere Microbial Communities in a Saline Soil: Impacts on Phosphorus Availability and Alkaline Phosphatase Gene Abundance Abdurrahman Masrahi 1,2,* , Anil Somenahally 3 and Terry Gentry 1 1 Department of Soil & Crop Sciences, Texas A&M University, College Station, TX 77843, USA; [email protected] 2 Department of Biology, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia 3 Texas A&M AgriLife Research, Overton, TX 75684, USA; [email protected] * Correspondence: [email protected] Received: 23 August 2020; Accepted: 8 October 2020; Published: 22 October 2020 Abstract: The limited availability of soil phosphorus to plants under salinity stress is a major constraint for crop production in saline soils, which could be alleviated by improving mycorrhizal and soil microbial interactions. This study investigated the effects of Funneliformis mosseae (Fm) inoculation on phosphorus (P) availability to Sorghum bicolor, and alkaline phosphatase (ALP) activity and gene abundance (phoD) in a P-deficient naturally saline soil. A greenhouse study was conducted in order to compare the experimental treatments of Fm inoculated vs. control plants grown in saline soil with and without (sterilized soil) native microbial community. A separate hyphosphere (root-free) compartment was constructed within the mycorrhizosphere and amended with phosphate. After four weeks of transplanting, shoot, roots, mycorrhizosphere, and hyphosphere samples were collected and analyzed for soil and plant P concentrations, root colonization, and abundance of ALP and phoD. The results showed significantly higher colonization in Fm-inoculated treatments compared to uninoculated. Plant available P concentrations, phoD gene abundance and ALP activity were significantly reduced (p < 0.05) in sterilized-hyphosphere as compared to unsterilized in both Fm-inoculated and uninoculated treatments. -
Notes, Outline and Divergence Times of Basidiomycota
Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.