Symmetry and non-uniformly elliptic operators Jean Dolbeault ∗ Ceremade, UMR no. 7534 CNRS, Universit´e Paris IX-Dauphine, Place de Lattre de Tassigny, 75775 Paris C´edex 16, France E-mail:
[email protected] Internet: http://www.ceremade.dauphine.fr/∼dolbeaul Patricio Felmer ∗; y Departamento de Ingenier´ıa Matem´atica and Centro de Modelamiento Matem´atico, UMR no. 2071 CNRS-UChile Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile E-mail:
[email protected] R´egis Monneau ∗ CERMICS, Ecole Nationale des Ponts et Chauss´ees, 6 et 8 avenue Blaise Pascal, Cit´e Descartes, Champs-sur-Marne, 77455 Marne-La-Vall´ee, France E-mail:
[email protected] Internet: http://cermics.enpc.fr/∼monneau/home.html Abstract. The goal of this paper is to study the symmetry properties of nonnegative solutions of elliptic equations involving a non uniformly elliptic operator. We consider on a ball the solutions of ∆pu + f(u) = 0 with zero Dirichlet boundary conditions, for p > 2, where ∆p is the p-Laplace operator and f a continuous nonlinearity. The main tools are a comparison result for weak solutions and a local moving plane method which has been previously used in the p = 2 case. We prove local and global symmetry results when u is of class C 1,γ for γ large enough, under some additional technical assumptions. Keywords. Elliptic equations, non uniformly elliptic operators, p-Laplace operator, scalar field equations, monotonicity, symmetry, local symmetry, positivity, non Lipschitz nonlin- earities, comparison techniques, weak solutions, maximum principle, Hopf's lemma, local moving plane method, C 1,α regularity AMS classification (2000).