MLI: an API for Distributed Machine Learning

Total Page:16

File Type:pdf, Size:1020Kb

MLI: an API for Distributed Machine Learning MLI: An API for Distributed Machine Learning Evan R. Sparksa Ameet Talwalkara Virginia Smitha Jey Kottalama Xinghao Pana Joseph Gonzaleza Michael J. Franklina Michael I. Jordana Tim Kraskab aUniversity of California, Berkeley bBrown University fsparks, ameet, vsmith, jey, xinghao, jegonzal, franklin, [email protected], [email protected] Abstract—MLI is an Application Programming Interface Given the accessibility issues of low-level systems and designed to address the challenges of building Machine Learn- the implementation issues of the high-level systems, ML re- ing algorithms in a distributed setting based on data-centric searchers have yet to widely adopt any of the existing systems. computing. Its primary goal is to simplify the development of Indeed, ML researchers, both in academic and industrial envi- high-performance, scalable, distributed algorithms. Our initial ronments, often rely on system programmers to translate the results show that, relative to existing systems, this interface can prototypes of their novel, and often subtle, algorithmic insights be used to build distributed implementations of a wide variety of common Machine Learning algorithms with minimal complexity into scalable and robust implementations. Unfortunately, there and highly competitive performance and scalability. is often a ‘loss in translation’ during this process; small misinterpretation and/or minor errors are unavoidable and can significantly impact the quality of the algorithm. Furthermore, I. INTRODUCTION due to the randomized nature of many ML algorithms, it is The recent success stories of machine learning (ML) driven not always straightforward to construct appropriate test-cases applications have created an increasing demand for scalable and discover these bugs. ML solutions. Nonetheless, ML researchers often prefer to code their solutions in statistical computing languages such Matlab,'R as MATLAB or R, as these languages allow them to code in x MLI fewer lines using syntax that resembles high-level pseudocode. x MATLAB and R allow researchers to avoid low-level imple- mentation details, leading to quickly developed prototypes that are often sufficient for small scale exploration. However, these MLPACK x prototypes are typically ad-hoc, non-robust, and non-scalable Op7ML implementations. In contrast, industrial implementations of x these solutions often require a relatively heavy amount of de- Mahout GraphLab,'VW velopment effort and are difficult to change once implemented. Ease%of%use x x This disconnect between these ad-hoc scripts and the grow- ing need for scalable ML, in particular systems that leverage Performance the increasingly pervasive cloud computing architecture, has Fig. 1: Landscape of existing development platforms for ML. spurred the development of several distributed systems for ML. Initial attempts at such systems exposed a restricted set of low-level primitives for development, e.g., MapReduce [1] In this paper, we present a novel API for ML, called or graph-based [2, 3] interfaces. The resulting systems are MLI,1 to bridge this gap between prototypes and industry- indeed significantly faster and more scalable than MATLAB grade ML software. We provide abstractions that simplify ML or R scripts. They also tend to be much less accessible to ML development in comparison to pure MapReduce and graph- researchers, as ML algorithms do not always naturally fit into based primitives, while nonetheless allowing developers con- arXiv:1310.5426v2 [cs.LG] 25 Oct 2013 the exposed low-level primitives, and moreover, efficient use trol of the communication and parallelization patterns of their of these primitives requires a fairly advanced knowledge of the algorithms, thus obviating the need for a complex optimizer. underlying distributed system. With MLI, we aim to be in the top right corner of Figure 1, by providing a development environment that is nearly on Subsequent attempts at distributed systems have exposed par with the usability of MATLAB or R, while matching high-level interfaces that compile down to low-level primitives. the scalability of and approaching the walltime of low-level These systems abstract away much of the communication distributed systems. We make the following contributions in and parallelization complexity inherent in distributed ML this work: implementations. Although these systems can in theory obtain excellent performance, they are quite difficult to implement in MLI: We show how MLI-supported high-level ML abstrac- practice, as they either heavily rely on optimizers to effectively tions naturally target common ML problems related to data transform high-level code into efficient distributed implemen- loading, feature extraction, model training and testing. tations [4, 5], or utilize pattern matching techniques to identify Usability: We demonstrate that implementing ML algorithms regions that can be replaced by low-level implementations [6]. written against MLI yields concise, readable code, comparable The need for fast ML algorithms has also led to the develop- ment of highly specialized systems for ML using a restricted 1MLI is a component of MLBASE [9, 10], a system that aims to provide set of algorithms [7, 8], with varying degrees of scalability. user-friendly distributed ML functionality for ML experts and end users. to MATLAB or R. [23] can efficiently execute complex distributed data-flow operations and express full relational algebras. However, these Scalability : We implement MLI on Spark [11], a cluster systems expose low-level APIs and require the ML expert computing system designed for iterative computation in a to recast their algorithms as dataflow operators. In contrast, large scale distributed setting. Our results with logistic re- GraphLab [3] is well suited to certain types of ML tasks, its gression and matrix factorization illustrate that MLI/Spark low-level API and focus on graphs makes it challenging to vastly outperforms Mahout and matches the scaling properties apply to more traditional ML problems. Alternatively, OptiML of specialized, low-level systems (Vowpal Wabbit, GraphLab), [6] and SEJITS [24] provide higher level embedded DSLs with performance within a small constant factor. capable of expressing both graph and matrix operations and compiling those operations down to hardware accelerated II. RELATED WORK routines. Both rely on pattern matching to find regions of code The widespread application of ML techniques has inspired which can be mapped to efficient low-level implementations. the development of new ML platforms with focuses ranging Unfortunately, finding common patterns can be challenging in from productivity to scalability. In this section we review a few rapidly evolving disciplines like machine learning. of the representative projects. It is worth nothing that in many cases MLI is inspired and guided by these earlier efforts. III. MLI Systems like MATLAB and R pioneered high-productivity With MLI, we introduce mild constraints on the computa- numerical computing. By combining high-level languages tai- tional model in order to promote the design and implementa- lored to application domains with intuitive interfaces and tion of user-friendly, scalable algorithms. Our interface consists interactive interpreted execution, these systems have redefined of two fundamental objects – MLTable and LocalMatrix – each the way scientists and statisticians interact with data. From the with its own API. These objects are used by developers to database community, projects like MADLib [12] and Hazy [13] build Optimizers, which in turn are used by Algorithms to have tried to expose ML algorithms in the context of well produce Models. It should be noted that these APIs are system- established systems. Alternatively, projects like Weka [14], independent - that is, they can be implemented in local and scikit-learn [15] and Google Predict [16] have sought to expose distributed settings (Shared Memory, MPI, Spark, or Hadoop). a library of ML tools in an intuitive interface. However, none Our first implementation supporting this interface is built on of these systems focus on the challenges of scaling ML to the the Spark platform. emerging distributed data setting. These APIs help developers solve several common prob- High productivity tools have struggled to keep up with lems. First, MLTable assists in data loading and feature ex- the growing computational, bandwidth, and storage demands traction. While other systems [8, 1, 3, 2] require data to be of modern large-scale ML. Although both MATLAB and R imported in custom formats, MLTable allows users to load now provide limited support for multi-core and distributed their data in an unstructured or semi-structured format, apply scaling, they adopt the traditional process centric approach a series of transformations, and subsequently train a model. and are not well suited for large-scale distributed data-centric LocalMatrix provides linear algebra operations on subsets of workloads [17, 18]. In the R community, efforts have been the fully featurized dataset. By breaking the full dataset into made to run R on data-centric runtimes like Hadoop [19], but row-wise partitions of the original dataset and operating locally to our knowledge none have obtained widespread adoption. on those partitions, we give the developer access to higher level Early efforts to develop more scalable tools and APIs programming primitives while still allowing them to control for ML focused on specific applications. Systems like li- the communication that takes place
Recommended publications
  • Mlpack: Or, How I Learned to Stop Worrying and Love C++ Ryan R
    mlpack: or, How I Learned To Stop Worrying and Love C++ Ryan R. Curtin March 21, 2018 speed programming languages machine learning C++ mlpack fast Introduction Why are we here? programming languages machine learning C++ mlpack fast Introduction Why are we here? speed machine learning C++ mlpack fast Introduction Why are we here? speed programming languages C++ mlpack fast Introduction Why are we here? speed programming languages machine learning mlpack fast Introduction Why are we here? speed programming languages machine learning C++ fast Introduction Why are we here? speed programming languages machine learning C++ mlpack Introduction Why are we here? speed programming languages machine learning C++ mlpack fast Java JS INTERCAL Scala Python C++ C Go Ruby C# Tcl ASM PHP Lua VB low-level high-level fast easy specific portable Note: this is not a scientific or particularly accurate representation. Graph #1 Java JS INTERCAL Scala Python C++ C Go Ruby C# Tcl ASM PHP Lua VB fast easy specific portable Note: this is not a scientific or particularly accurate representation. Graph #1 low-level high-level Java JS INTERCAL Scala Python C++ C Go Ruby C# Tcl PHP Lua VB fast easy specific portable Note: this is not a scientific or particularly accurate representation. Graph #1 ASM low-level high-level Java JS INTERCAL Scala Python C++ C Go Ruby C# Tcl PHP Lua VB fast easy specific portable Note: this is not a scientific or particularly accurate representation. Graph #1 ASM low-level high-level Java JS INTERCAL Scala Python C++ C Go Ruby C# Tcl PHP Lua fast easy specific portable Note: this is not a scientific or particularly accurate representation.
    [Show full text]
  • Data Mining – Intro
    Data warehouse& Data Mining UNIT-3 Syllabus • UNIT 3 • Classification: Introduction, decision tree, tree induction algorithm – split algorithm based on information theory, split algorithm based on Gini index; naïve Bayes method; estimating predictive accuracy of classification method; classification software, software for association rule mining; case study; KDD Insurance Risk Assessment What is Data Mining? • Data Mining is: (1) The efficient discovery of previously unknown, valid, potentially useful, understandable patterns in large datasets (2) Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD (2) The analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful to the data owner Knowledge Discovery Examples of Large Datasets • Government: IRS, NGA, … • Large corporations • WALMART: 20M transactions per day • MOBIL: 100 TB geological databases • AT&T 300 M calls per day • Credit card companies • Scientific • NASA, EOS project: 50 GB per hour • Environmental datasets KDD The Knowledge Discovery in Databases (KDD) process is commonly defined with the stages: (1) Selection (2) Pre-processing (3) Transformation (4) Data Mining (5) Interpretation/Evaluation Data Mining Methods 1. Decision Tree Classifiers: Used for modeling, classification 2. Association Rules: Used to find associations between sets of attributes 3. Sequential patterns: Used to find temporal associations in time series 4. Hierarchical
    [Show full text]
  • Rcppmlpack: R Integration with MLPACK Using Rcpp
    RcppMLPACK: R integration with MLPACK using Rcpp Qiang Kou [email protected] April 20, 2020 1 MLPACK MLPACK[1] is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. It outperforms competing machine learning libraries by large margins, for detailed results of benchmarking, please refer to Ref[1]. 1.1 Input/Output using Armadillo MLPACK uses Armadillo as input and output, which provides vector, matrix and cube types (integer, floating point and complex numbers are supported)[2]. By providing Matlab-like syntax and various matrix decompositions through integration with LAPACK or other high performance libraries (such as Intel MKL, AMD ACML, or OpenBLAS), Armadillo keeps a good balance between speed and ease of use. Armadillo is widely used in C++ libraries like MLPACK. However, there is one point we need to pay attention to: Armadillo matrices in MLPACK are stored in a column-major format for speed. That means observations are stored as columns and dimensions as rows. So when using MLPACK, additional transpose may be needed. 1.2 Simple API Although MLPACK relies on template techniques in C++, it provides an intuitive and simple API. For the standard usage of methods, default arguments are provided. The MLPACK paper[1] provides a good example: standard k-means clustering in Euclidean space can be initialized like below: 1 KMeans<> k(); Listing 1: k-means with all default arguments If we want to use Manhattan distance, a different cluster initialization policy, and allow empty clusters, the object can be initialized with additional arguments: 1 KMeans<ManhattanDistance, KMeansPlusPlusInitialization, AllowEmptyClusters> k(); Listing 2: k-means with additional arguments 1 1.3 Available methods in MLPACK Commonly used machine learning methods are all implemented in MLPACK.
    [Show full text]
  • Deep Learning and Big Data in Healthcare: a Double Review for Critical Beginners
    applied sciences Review Deep Learning and Big Data in Healthcare: A Double Review for Critical Beginners Luis Bote-Curiel 1 , Sergio Muñoz-Romero 1,2,* , Alicia Gerrero-Curieses 1 and José Luis Rojo-Álvarez 1,2 1 Department of Signal Theory and Communications, Rey Juan Carlos University, 28943 Fuenlabrada, Spain; [email protected] (L.B.-C.); [email protected] (A.G.-C.); [email protected] (J.L.R.-Á.) 2 Center for Computational Simulation, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain * Correspondence: [email protected] Received: 14 April 2019; Accepted: 3 June 2019; Published: 6 June 2019 Abstract: In the last few years, there has been a growing expectation created about the analysis of large amounts of data often available in organizations, which has been both scrutinized by the academic world and successfully exploited by industry. Nowadays, two of the most common terms heard in scientific circles are Big Data and Deep Learning. In this double review, we aim to shed some light on the current state of these different, yet somehow related branches of Data Science, in order to understand the current state and future evolution within the healthcare area. We start by giving a simple description of the technical elements of Big Data technologies, as well as an overview of the elements of Deep Learning techniques, according to their usual description in scientific literature. Then, we pay attention to the application fields that can be said to have delivered relevant real-world success stories, with emphasis on examples from large technology companies and financial institutions, among others.
    [Show full text]
  • Survey on Recent Machine Learning Tools, Platforms and Interface
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTING SCIENCE ISSN NO: 0972-1347 Survey on Recent Machine learning Tools, Platforms and Interface 1.Mr.S.Karthi, M.E,AP/IT, St.Joseph College of Engineering, Chennai, [email protected] 2.Mrs.R.Raja Ramya, M.E.(Ph.D),AP/IT, Saveetha Engineering College, Chennai, ramyanitha @ gmail.com 3.Mrs.N.Kanagavalli, M.E.(Ph.D),AP/IT, Saveetha Engineering College, Chennai, [email protected] ABSTRACT- Machine learning and deep in the process of working through a machine learning are recent booming research areas. Tools are learning problem a big part of machine learning and choosing the right tool can be as important as working with the Why Use Tools? best algorithms. So that the new researchers are not aware of the tools and frameworks are helped to Machine learning tools make applied machine machine learning. There are lots of open source tools learning faster, easier and more fun. and frameworks are available in machine learning and deep learning. In this paper, various open source Faster: This means that the time from ideas to machine learning tools and frameworks are explained. results is greatly shortened. The alternative is that you have to implement each capability Keywords-open source tools, frameworks, platforms yourself. Introduction Easier: The open source tools are very easier to learn by individual. Based on the input, we A programming tool or software development tool is form the output in an easiest way. a computer program that software developers use to create, debug, maintain, or otherwise support other This requires research, deeper exercise in order programs and applications.
    [Show full text]
  • Arxiv:1210.6293V1 [Cs.MS] 23 Oct 2012 So the Finally, Accessible
    Journal of Machine Learning Research 1 (2012) 1-4 Submitted 9/12; Published x/12 MLPACK: A Scalable C++ Machine Learning Library Ryan R. Curtin [email protected] James R. Cline [email protected] N. P. Slagle [email protected] William B. March [email protected] Parikshit Ram [email protected] Nishant A. Mehta [email protected] Alexander G. Gray [email protected] College of Computing Georgia Institute of Technology Atlanta, GA 30332 Editor: Abstract MLPACK is a state-of-the-art, scalable, multi-platform C++ machine learning library re- leased in late 2011 offering both a simple, consistent API accessible to novice users and high performance and flexibility to expert users by leveraging modern features of C++. ML- PACK provides cutting-edge algorithms whose benchmarks exhibit far better performance than other leading machine learning libraries. MLPACK version 1.0.3, licensed under the LGPL, is available at http://www.mlpack.org. 1. Introduction and Goals Though several machine learning libraries are freely available online, few, if any, offer efficient algorithms to the average user. For instance, the popular Weka toolkit (Hall et al., 2009) emphasizes ease of use but scales poorly; the distributed Apache Mahout library offers scal- ability at a cost of higher overhead (such as clusters and powerful servers often unavailable to the average user). Also, few libraries offer breadth; for instance, libsvm (Chang and Lin, 2011) and the Tilburg Memory-Based Learner (TiMBL) are highly scalable and accessible arXiv:1210.6293v1 [cs.MS] 23 Oct 2012 yet each offer only a single method.
    [Show full text]
  • ML Cheatsheet Documentation
    ML Cheatsheet Documentation Team Oct 02, 2018 Basics 1 Linear Regression 3 2 Gradient Descent 19 3 Logistic Regression 23 4 Glossary 37 5 Calculus 41 6 Linear Algebra 53 7 Probability 63 8 Statistics 65 9 Notation 67 10 Concepts 71 11 Forwardpropagation 77 12 Backpropagation 87 13 Activation Functions 93 14 Layers 101 15 Loss Functions 105 16 Optimizers 109 17 Regularization 113 18 Architectures 115 19 Classification Algorithms 125 20 Clustering Algorithms 127 i 21 Regression Algorithms 129 22 Reinforcement Learning 131 23 Datasets 133 24 Libraries 149 25 Papers 179 26 Other Content 185 27 Contribute 191 ii ML Cheatsheet Documentation Brief visual explanations of machine learning concepts with diagrams, code examples and links to resources for learning more. Warning: This document is under early stage development. If you find errors, please raise an issue or contribute a better definition! Basics 1 ML Cheatsheet Documentation 2 Basics CHAPTER 1 Linear Regression • Introduction • Simple regression – Making predictions – Cost function – Gradient descent – Training – Model evaluation – Summary • Multivariable regression – Growing complexity – Normalization – Making predictions – Initialize weights – Cost function – Gradient descent – Simplifying with matrices – Bias term – Model evaluation 3 ML Cheatsheet Documentation 1.1 Introduction Linear Regression is a supervised machine learning algorithm where the predicted output is continuous and has a constant slope. It’s used to predict values within a continuous range, (e.g. sales, price) rather than trying to classify them into categories (e.g. cat, dog). There are two main types: Simple regression Simple linear regression uses traditional slope-intercept form, where m and b are the variables our algorithm will try to “learn” to produce the most accurate predictions.
    [Show full text]
  • ML Cheatsheet Documentation
    ML Cheatsheet Documentation Team Sep 02, 2021 Basics 1 Linear Regression 3 2 Gradient Descent 21 3 Logistic Regression 25 4 Glossary 39 5 Calculus 45 6 Linear Algebra 57 7 Probability 67 8 Statistics 69 9 Notation 71 10 Concepts 75 11 Forwardpropagation 81 12 Backpropagation 91 13 Activation Functions 97 14 Layers 105 15 Loss Functions 117 16 Optimizers 121 17 Regularization 127 18 Architectures 137 19 Classification Algorithms 151 20 Clustering Algorithms 157 i 21 Regression Algorithms 159 22 Reinforcement Learning 161 23 Datasets 165 24 Libraries 181 25 Papers 211 26 Other Content 217 27 Contribute 223 ii ML Cheatsheet Documentation Brief visual explanations of machine learning concepts with diagrams, code examples and links to resources for learning more. Warning: This document is under early stage development. If you find errors, please raise an issue or contribute a better definition! Basics 1 ML Cheatsheet Documentation 2 Basics CHAPTER 1 Linear Regression • Introduction • Simple regression – Making predictions – Cost function – Gradient descent – Training – Model evaluation – Summary • Multivariable regression – Growing complexity – Normalization – Making predictions – Initialize weights – Cost function – Gradient descent – Simplifying with matrices – Bias term – Model evaluation 3 ML Cheatsheet Documentation 1.1 Introduction Linear Regression is a supervised machine learning algorithm where the predicted output is continuous and has a constant slope. It’s used to predict values within a continuous range, (e.g. sales, price) rather than trying to classify them into categories (e.g. cat, dog). There are two main types: Simple regression Simple linear regression uses traditional slope-intercept form, where m and b are the variables our algorithm will try to “learn” to produce the most accurate predictions.
    [Show full text]
  • MACHINE LEARNING METHODS in LOGICBLOX 2 1| an Introduction to Machine Learning
    Smart database for next-generation applications MACHINE LEARNING METHODS IN LOGICBLOX 2 1| An Introduction to Machine Learning Machine Learning (ML) is a combination/customization of three fundamental mathematical areas: linear algebra, statistics, and optimization The main goal of ML is to analyze large volumes of data and extract patterns, rules and models that can be useful either for characterizing existing data or for predicting the properties of future data. Specifically, ML allows you to determine the following: 1. Classification: Given labeled data (for e.g., class labels), predict the class membership of a new data point. Examples of classification methods are: (a) K-nearest neighbor classifier (see Neighbors (Nearest, Farthest, Range, k, Classification)) (b) Kernel Discriminant Analysis (see Kernel Density Estimation and Non-parametric Bayes Classifier) (c) Support Vector Machines (d) Decision Tree 2. Regression: Given the values associated with points, predict the associated value of a new point. Examples of regression algorithms are: (a) Linear Regression (b) Non-parametric Regression (c) Mixture of Exports (d) Multi-Time Series Regression (e) LASSO 3. Dimensionality Reduction: Given a set of points, determine how many dimensions are required to represent it. Potentially find the dimensions that are important or generate new ones. Examples of dimensionality reduction algorithms are: (a) Singular Value Decomposition (b) Ensemble Singular Value Decomposition (c) Maximum Variance Unfolding (d) Non-Negative Matrix Factorization (e) Tensor Factorization 4. Clustering: Given a set of data points, group the points in clusters according to a criterion. Examples of clustering algo- rithms are: 3 (a) K-Means (b) Kernel Density Estimation and Non-parametric Bayes Classifier (c) Non-Negative Matrix Factorization (d) Kernel Principal Components Analysis Most ML settings involve two stages: training and testing/evaluation.
    [Show full text]
  • Vision Document
    mlpack: A Vision for an Efficient Prototype-to-Deployment Machine Learning Library March 18, 2021 For well over a decade, mlpack has provided efficient implementations of machine learning al- gorithms in C++ for use both by industry practitioners and researchers. In recent years, modern trends in the data science software ecosystem have focused on ease of prototyping, and this has resulted in a significant problem: the complexities of the Python ecosystem mean that deployment of Python-based data science workflows is often a laborious and complicated task. This problem also exists with other popular frameworks used for machine learning. In part, this is why the job data engineer or machine learning engineer exists. But mlpack only requires a modern C++ compiler, meaning deployment is easy, lightweight, and flexible. This guides our vision for the future: we can focus on developing mlpack into a library where both prototyping and deployment are easy, thus alleviating lots of the pain associated with deployment or productization of typical modern machine learning workflows. This document gives a quick history of how mlpack got to where it is today (or at least at the time of this writing), then discusses the problems with current machine learning tools, and finally provides details and a high-level roadmap for making this vision a reality. All of this roadmap is pointed at making the following statement true: The mlpack community is dedicated to demonstrating the advantages and simplicity of a native-C++ data science workflow. 1 A Quick History Over the past few decades, the field of machine learning has seen an explosion of interest and excitement, with hundreds or even thousands of algorithms developed for different tasks every year.
    [Show full text]
  • The Ensmallen Library for Flexible Numerical Optimization
    Journal of Machine Learning Research 22 (2021) 1-6 Submitted 5/20; Revised 2/21; Published 6/21 The ensmallen library for flexible numerical optimization Ryan R. Curtin [email protected] | RelationalAI, Atlanta, GA, USA Marcus Edel Free University of Berlin, Germany Rahul Ganesh Prabhu Birla Institute of Technology and Science Pilani, India Suryoday Basak University of Texas at Arlington, USA Zhihao Lou Epsilon, Chicago, IL, USA Conrad Sanderson Data61/CSIRO, Australia, and Griffith University, Australia Editor: Antti Honkela Abstract We overview the ensmallen numerical optimization library, which provides a flexible C++ framework for mathematical optimization of user-supplied objective functions. Many types of objective functions are supported, including general, differentiable, separable, con- strained, and categorical. A diverse set of pre-built optimizers is provided, including Quasi- Newton optimizers and many variants of Stochastic Gradient Descent. The underlying framework facilitates the implementation of new optimizers. Optimization of an objective function typically requires supplying only one or two C++ functions. Custom behavior can be easily specified via callback functions. Empirical comparisons show that ensmallen outperforms other frameworks while providing more functionality. The library is available at https://ensmallen.org and is distributed under the permissive BSD license. Keywords: Numerical optimization, mathematical optimization, function minimization. 1. Introduction The problem of numerical optimization is generally expressed as argminx f(x) where f(x) is a given objective function and x is typically a vector or matrix. Such optimization problems are fundamental and ubiquitous in the computational sciences (Nocedal and Wright, 2006). Many frameworks or libraries for specific machine learning approaches have an integrated optimization component for distinct and limited use cases, such as TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 2019) and LibSVM (Chang and Lin, 2011).
    [Show full text]
  • Neural Network and Support Vector Machine for the Prediction of Chronic Kidney Disease: a Comparative Study T
    Computers in Biology and Medicine 109 (2019) 101–111 Contents lists available at ScienceDirect Computers in Biology and Medicine journal homepage: www.elsevier.com/locate/compbiomed Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study T Njoud Abdullah Almansour, Hajra Fahim Syed, Nuha Radwan Khayat, Rawan Kanaan Altheeb, ∗ Renad Emad Juri, Jamal Alhiyafi , Saleh Alrashed, Sunday O. Olatunji Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam, Saudi Arabia ARTICLE INFO ABSTRACT Keywords: This paper aims to assist in the prevention of Chronic Kidney Disease (CKD) by utilizing machine learning Machine learning techniques to diagnose CKD at an early stage. Kidney diseases are disorders that disrupt the normal function of Artificial Neural Network (ANN) the kidney. As the percentage of patients affected by CKD is significantly increasing, effective prediction pro- Support Vector Machine (SVM) cedures should be considered. In this paper, we focus on applying different machine learning classification Chronic Kidney Disease (CKD) algorithms to a dataset of 400 patients and 24 attributes related to diagnosis of chronic kidney disease. The classification techniques used in this study include Artificial Neural Network (ANN) and Support Vector Machine (SVM). To perform experiments, all missing values in the dataset were replaced by the mean of the corre- sponding attributes. Then, the optimized parameters for the Artificial Neural Network (ANN) and Support Vector Machine (SVM) techniques were determined by tuning the parameters and performing several experiments. The final models of the two proposed techniques were developed using the best-obtained parameters and features.
    [Show full text]