EPSC Abstracts Vol. 15, EPSC2021-669, 2021 https://doi.org/10.5194/epsc2021-669 Europlanet Science Congress 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Hubble Asteroid Hunter: Identifying Asteroid Trails in Hubble Space Telescope Images Sandor Kruk1, Pablo García Martín2, Marcel Popescu3, Bruno Merín4, Max Mahlke5, Benoît Carry5, Samet Karadag6, Ross Thomson7, Elena Racero4, Fabrizio Giordano4, Deborah Baines4, and Guido de Marchi1 1European Space Agency, ESTEC, Netherlands (
[email protected]) 2Universidad Autónoma de Madrid (UAM), Madrid, Spain 3Astronomical Institute of the Romanian Academy, Bucharest, Romania 4European Space Agency, ESAC, Spain 5Observatoire de la Côte d'Azur, Nice, France 6Google, Amsterdam, The Netherlands 7Google Cloud, Pittsburgh, United States In thirty-one years of observations, the Hubble Space Telescope (HST) has produced a vast archive of thousands of targeted observations. This includes galaxies, clusters of galaxies, and gravitational lenses. Occasionally, closer objects such as Solar System bodies or artificial satellites cross the telescope's field of view during the observations, leaving trails in the images. On one hand, these trails can impact the observations. The standard data processing pipeline (DrizzlePac) cleans cosmic rays artifacts (Hoffmann et al., 2021), also removing asteroid trails, but it leaves residuals in the combined images. On the other hand, this is a great opportunity for the Solar System small bodies science, considering the already existing images from the huge HST Archive, containing more than 100 Tb of data and spanning three decades. Our project is focused on studying serendipitous asteroid trails appearing in archival HST images. We used images from two instruments, namely the Advanced Camera for Surveys and Wide Field Camera 3, the ultraviolet and visible channels.