(12) Patent Application Publication (10) Pub. No.: US 2008/0108602 A1 Nagy Et Al
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The In¯Uence of Medication on Erectile Function
International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted. -
The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone -
Association Between N-Desmethylclozapine and Clozapine-Induced Sialorrhea
JPET Fast Forward. Published on August 29, 2020 as DOI: 10.1124/jpet.120.000164 This article has not been copyedited and formatted. The final version may differ from this version. 1 Title page Association between N-desmethylclozapine and clozapine-induced sialorrhea: Involvement of increased nocturnal salivary secretion via muscarinic receptors by N- desmethylclozapine Downloaded from Authors and Affiliations: Shuhei Ishikawa, PhD1, 2, a, Masaki Kobayashi, PhD1, 3, *, Naoki Hashimoto, PhD, jpet.aspetjournals.org MD4, Hideaki Mikami, BPharm1, Akihiko Tanimura, PhD5, Katsuya Narumi, PhD1, Ayako Furugen, PhD1, Ichiro Kusumi, PhD, MD4, and Ken Iseki, PhD1 at ASPET Journals on September 23, 2021 1 Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University 2 Department of Pharmacy, Hokkaido University Hospital 3 Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University 4 Department of Psychiatry, Hokkaido University Graduate School of Medicine 5 Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido a Present address: Department of Psychiatry, Hokkaido University Hospital JPET Fast Forward. Published on August 29, 2020 as DOI: 10.1124/jpet.120.000164 This article has not been copyedited and formatted. The final version may differ from this version. 2 Running title page Association between N-desmethylclozapine and CIS Corresponding author: Masaki Kobayashi Downloaded from Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, jpet.aspetjournals.org Kita-ku, Sapporo 060-0812, Japan. Phone/Fax: +81-11-706-3772/3235. E-mail: [email protected] at ASPET Journals on September 23, 2021 Number of text pages: 25 Number of tables: 1 Number of figures: 6 Number of words in the Abstract: 249 Number of words in the Introduction: 686 Number of words in the Discussion: 1492 JPET Fast Forward. -
Table II. EPCRA Section 313 Chemical List for Reporting Year 2017 (Including Toxic Chemical Categories)
Table II. EPCRA Section 313 Chemical List For Reporting Year 2017 (including Toxic Chemical Categories) Individually listed EPCRA Section 313 chemicals with CAS numbers are arranged alphabetically starting on page II-3. Following the alphabetical list, the EPCRA Section 313 chemicals are arranged in CAS number order. Covered chemical categories follow. Note: Chemicals may be added to or deleted from the list. The Emergency Planning and Community Right-to-Know Call Center or the TRI-Listed Chemicals website will provide up-to-date information on the status of these changes. See section B.3.c of the instructions for more information on the de minimis % limits listed below. There are no de minimis levels for PBT chemicals since the de minimis exemption is not available for these chemicals (an asterisk appears where a de minimis limit would otherwise appear in Table II). However, for purposes of the supplier notification requirement only, such limits are provided in Appendix C. Chemical Qualifiers Certain EPCRA Section 313 chemicals listed in Table II have parenthetic “qualifiers.” These qualifiers indicate that these EPCRA Section 313 chemicals are subject to the section 313 reporting requirements if manufactured, processed, or otherwise used in a specific form or when a certain activity is performed. An EPCRA Section 313 chemical that is listed without a qualifier is subject to reporting in all forms in which it is manufactured, processed, and otherwise used. The following chemicals are reportable only if they are manufactured, processed, or otherwise used in the specific form(s) listed below: Chemical/ Chemical Category CAS Number Qualifier Aluminum (fume or dust) 7429-90-5 Only if it is a fume or dust form. -
Chapter 231. Poisons and Dangerous Substances Act 1952
Chapter 231. Poisons and Dangerous Substances Act 1952. Certified on: / /20 . INDEPENDENT STATE OF PAPUA NEW GUINEA. Chapter 231. Poisons and Dangerous Substances Act 1952. ARRANGEMENT OF SECTIONS. PART I – PRELIMINARY. 1. Interpretation. “automatic machine” “the British Pharmacopoeia” “container” “dangerous substance” “methylated spirit” “package” “poison” “poisons licence” “Poisons Register” “rectified spirit” “the regulations” “sell” “this Act” 2. Application. 3. Calculations of percentages. 4. Variation of schedules. PART II – LICENCES. 5. Poisons licence. 6. Revocation of poisons licences. PART III – SALE OF POISONS AND DANGEROUS SUBSTANCES. 7. Application of Part III to wholesalers. 8. Sale of things specified in Schedules 1 and 2. 9. Sale, etc., of things specified in Schedule 1. 10. Sale of things specified in Schedule 3. 11. Sale of things specified in Schedule 4. 12. Sale of things specified in Schedule 5. 13. Hawking poisons and dangerous substances. 14. Sale of poisons to persons under 18 years, etc. 15. Automatic vending machines. 16. Poisons Registers. 17. Entries in Poisons Registers. 18. Person unable to sign his name. 19. Sale on order by letter, etc. 20. Sale to medical practitioners, etc. 21. Application of Sections 14, 17, 18 and 19. 22. Records to be kept by medical practitioners, etc. PART IV – LABELLING AND PACKING POISONS AND DANGEROUS SUBSTANCES. 23. Sale of poisons and dangerous substances. 24. Sale of liquid dangerous substances. 25. Colouring of methylated spirits. 26. Sale of poisons. PART V – MISCELLANEOUS. 27. Drinking of methylated spirit prohibited. 28. Methylated spirit not to be sold for drinking purposes. 29. Inspection. 30. Offences in relation to the sale of poisons, etc. -
Rapid and Robust Analysis Method for Quantifying Antidepressants and Major Metabolites in Human Serum by UHPLC-MS/MS
PO-CON1352E Rapid and Robust Analysis Method for Quantifying Antidepressants and Major Metabolites in Human Serum by UHPLC-MS/MS ASMS 2013 WP-095 Vincent Goudriaan1, Christ Pijnenburg2, Jacob Diepenbroek2, Jan Giesbertsen2, Annemieke Vermeulen Windsant-v.d. Tweel2 1Shimadzu Benelux BV, ‘s-Hertogenbosch, Netherlands. 2ZANOB BV, ‘s-Hertogenbosch, Netherlands. Rapid and Robust Analysis Method for Quantifying Antidepressants and Major Metabolites in Human Serum by UHPLC-MS/MS 1. Introduction Therapeutic drug monitoring (TDM) of antidepressants is administered drugs, metabolites or endogenic compounds. one of the most widely utilized analysis in clinical labs in UHPLC-MS/MS is much more sensitive, more selective, and Dutch hospitals nowadays. Traditionally quantitation of if robust the perfect replacement of routine HPLC analysis. antidepressants is performed by means of HPLC with Due to simplified sample prep, faster analysis and less diode-array detection (DAD). Obvious disadvantages of the solvent consumption UHPLC-MS/MS is much more cost latter method are: sensitivity, selectivity and possibility of effective. UHPLC-MS/MS methods will replace routine HPLC false positives as a result of co-elution with other methods in clinical labs. 2. Methods and Materials Human serum samples were extracted by means of off-line solid phase extraction. The extracts were analyzed with a Shimadzu Nexera UHPLC combined with a LCMS-8040 Tandem Mass Spectrometer. 5 µL of sample was injected with a SIL-30AC autosampler. 2-1. Sample Preparation Standards both for calibration and control are ready made serum standards. The standards are pretreated in the same way as the samples. 1. Precondition SPE material1 with 1 mL 3% ammonia in acetonitrile 2. -
Clozapine and Gastrointestinal Adverse Effects – a Pain in the Gut? Graylands Hospital Drug Bulletin 2004 Vol
Clozapine and Gastrointestinal Adverse Effects – A Pain in the Gut? Graylands Hospital Drug Bulletin 2004 Vol. 12 No. 3 September ISSN 1323-1251 Gastrointestinal adverse effects of clozapine impaction5. The patient died three weeks after are very common and include nausea, presentation from refractory shock and vomiting and constipation. Other troublesome progressive multi-system organ failure, unwanted effects include dry mouth and despite maximal care. hypersalivation, which involve the autonomic nervous system. A further case involved a 29 year old man who had only been taking clozapine for 36 Constipation is a particularly common days2. He died after aspiration of vomitus adverse effect that has been reported to occur secondary to bowel obstruction. in 14-60% of patients1,2. The management of clozapine-induced constipation has been the Intestinal Obstruction/Occlusion subject of a past Drug Bulletin3. Clozapine’s association with constipation could be There is a French report of three cases of intestinal occlusion in clozapine treated explained by its potent anticholinergic 6 properties. patients, one of which was fatal . Another report describes two cases of Rarely, clozapine-induced constipation has 7 lead to serious complications including ileus, clozapine-induced intestinal obstruction . bowel obstruction and necrotising colitis. A One of these involved a 51 year old man with review was conducted to determine what no past history of constipation, who had been serious gastrointestinal adverse effects have taking clozapine for two months. He suffered been reported in the literature and these are from an intestinal obstruction, from which he discussed below. fully recovered and clozapine was recommenced. The other case involved a 35 Faecal Impaction year old woman who had been taking clozapine for four months when she There are three reported cases of death developed abdominal symptoms. -
Screening of 300 Drugs in Blood Utilizing Second Generation
Forensic Screening of 300 Drugs in Blood Utilizing Exactive Plus High-Resolution Accurate Mass Spectrometer and ExactFinder Software Kristine Van Natta, Marta Kozak, Xiang He Forensic Toxicology use Only Drugs analyzed Compound Compound Compound Atazanavir Efavirenz Pyrilamine Chlorpropamide Haloperidol Tolbutamide 1-(3-Chlorophenyl)piperazine Des(2-hydroxyethyl)opipramol Pentazocine Atenolol EMDP Quinidine Chlorprothixene Hydrocodone Tramadol 10-hydroxycarbazepine Desalkylflurazepam Perimetazine Atropine Ephedrine Quinine Cilazapril Hydromorphone Trazodone 5-(p-Methylphenyl)-5-phenylhydantoin Desipramine Phenacetin Benperidol Escitalopram Quinupramine Cinchonine Hydroquinine Triazolam 6-Acetylcodeine Desmethylcitalopram Phenazone Benzoylecgonine Esmolol Ranitidine Cinnarizine Hydroxychloroquine Trifluoperazine Bepridil Estazolam Reserpine 6-Monoacetylmorphine Desmethylcitalopram Phencyclidine Cisapride HydroxyItraconazole Trifluperidol Betaxolol Ethyl Loflazepate Risperidone 7(2,3dihydroxypropyl)Theophylline Desmethylclozapine Phenylbutazone Clenbuterol Hydroxyzine Triflupromazine Bezafibrate Ethylamphetamine Ritonavir 7-Aminoclonazepam Desmethyldoxepin Pholcodine Clobazam Ibogaine Trihexyphenidyl Biperiden Etifoxine Ropivacaine 7-Aminoflunitrazepam Desmethylmirtazapine Pimozide Clofibrate Imatinib Trimeprazine Bisoprolol Etodolac Rufinamide 9-hydroxy-risperidone Desmethylnefopam Pindolol Clomethiazole Imipramine Trimetazidine Bromazepam Felbamate Secobarbital Clomipramine Indalpine Trimethoprim Acepromazine Desmethyltramadol Pipamperone -
(PANSS) in First-Episoderecent-Onset Psychosis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository Studies in the psychopathology, neurobiology and psychopharmacology of schizophrenia. Dissertation presented for the Degree of Doctor of Science (D.Sc.) at the University of Stellenbosch. Promoter: Dan Stein Professor and Head Department of Psychiatry and Mental Health University of Cape Town March 2008 1 Declaration I, the undersigned, declare that the work contained in this dissertation is my own original work, and has not previously been submitted for a degree in its entirety or in part at any other University for a degree …………………………. Robin Emsley December 2007 Copyright © 2008 Stellenbosch University All rights reserved. 2 Summary The overall aim of these studies was to investigate selected aspects of psychopathology, neurobiological abnormalities and treatment in schizophrenia. The following topics were researched: 1. Psychopathology: We explored the symptom structure of schizophrenia by means of principal components and factor analysis in two separate samples. a. The first study investigated the nature of symptoms in patients with a first-episode of schizophrenia, in a large cohort of patients who were participating in a multinational clinical trial. We compared our findings with similar analyses previously conducted in multi-episode schizophrenia patients. b. We then assessed the influence of culture on the symptom structure of schizophrenia by conducting a principal components and factor analysis of the symptom ratings in a large sample of South African Xhosa patients with schizophrenia, and comparing the results with those in other parts of the world. c. We investigated the occurrence of co-morbid depressive and anxiety symptoms, and their demographic and clinical correlates. -
Evaluating the Evidence|J Clin Psychiatry
THE JOURNAL OF CLINICALCLINICAL PSYCHIATRYPSYCHIATRY This work may not be copied, distributed, displayed, published, reproduced, transmitted, modified, posted, sold, licensed, or used for commercial purposes. By downloading this file, you are agreeing to the publisher’s Terms & Conditions. See letters by Stip and Stip and reply by Correll et al The Use of Long-Acting Injectable Antipsychotics in Schizophrenia: Evaluating the Evidence Christoph U. Correll, MD (Chair); Leslie Citrome, MD, MPH; Peter M. Haddad, MD; John Lauriello, MD; Mark Olfson, MD, MPH; Stephen M. Calloway; and John M. Kane, MD Long-acting injectable antipsychotics (LAIs) are among the most effective treatments in psychiatry, yet they remain underutilized in clinical practice. Although LAIs are typically used to maintain treatment adherence in patients with chronic schizophrenia, recent research has suggested that they may also provide an effective treatment strategy for patients with early- phase or first-episode disease. In October 2015, a group of 8 experts on the management of schizophrenia and LAIs met to evaluate the evidence surrounding the efficacy, safety, and cost-effectiveness of LAIs and to develop practical recommendations regarding the clinical use, education, and unmet needs related to LAIs. Participants were also asked to rate the importance of several patient characteristics when choosing an LAI versus an oral antipsychotic, from the perspectives of 4 different stakeholder groups: patients, health care professionals, families, and payers. The evidence review demonstrated that LAIs are superior to placebo for acute and maintenance treatment of schizophrenia and, in general, appear to be similar to one another in terms of schizophrenia relapse prevention. Study design impacts the demonstrated efficacy of LAIs versus oral antipsychotics, but recent database and randomized controlled studies favor the use of LAIs in early-phase schizophrenia patients. -
LEGISLATIVE ASSEMBLY Question on Notice
LEGISLATIVE ASSEMBLY Question On Notice Thursday, 15 February 2018 2560. Ms M. M Quirk to the Minister for Police; I refer to the commencement of operation of the Road Traffic Amendment Act 2016 in March 2017 which introduced compulsory blood or urine samples to be taken from drivers involved in serious crashes, and I ask: (a) since March 2017 how many such samples have been taken; (b) for what specific substances are those blood or urine samples tested; (c) what are the results of those tests to date; and (d) what percentage of drivers have been found to have ingested more than one substance capable of impairing driving skills? Answer (a) The compulsory taking of blood from all drivers involved in serious crashes commenced on 10 March 2017. Between 10 March 2017 and 22 February 2018 (inclusive) a total of 398 blood test samples have been collected under the provision of the Road Traffic Amendment Act 2016. There have been no urine tests collected. (b) Please see attached table for a list of substances in blood sample that are identifiable in ChemCentre toxicology analysis (Paper Number). (c) Of the 398 blood samples collected, 48 are pending results of ChemCentre analysis. Of the 350 analysed, 259 samples had a specific substance(s) detected and 91 samples had no specific substance detected. d) Of the 259 samples with specific substance(s) detected, 92% were found to have multiple substances (more than one). Detectable Substances in Blood Samples capable of identification by the ChemCentre WA. ACETALDEHYDE AMITRIPTYLINE/NORTRIPTYLINE -
The Teratological Effects of Trimethadione and Diphenylhydantoin on Development in the CD-1 Mouse
INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.