(12) Patent Application Publication (10) Pub. No.: US 2007/0259814 A1 Lynch (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2007/0259814 A1 Lynch (43) Pub US 20070259814A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0259814 A1 Lynch (43) Pub. Date: Nov. 8, 2007 (54) PLATELET DERIVED GROWTH FACTOR tion No. 10/965,319, filed on Oct. 14, 2004, now AND METHODS OF USE THEREOF abandoned. (76) Inventor: Samuel E. Lynch, Franklin, TN (US) Publication Classification Correspondence Address: (51) Int. Cl. JOHN S. PRATT, ESQ A6II 38/18 (2006.01) KILPATRICK STOCKTON, LLP A6IP 9/00 (2006.01) 11OO PEACHTREE STREET (52) U.S. Cl. ................................................................ S14/12 ATLANTA, GA 30309 (US) (57) ABSTRACT (21)21) Appl. NoNo.: 11 ft/84989 A method for promoting growth of bone, periodontium, (22) Filed: Jul. 16, 2007 ligament, or cartilage in a mammal by applying to the bone, periodontium, ligament, or cartilage a composition compris Related U.S. Application Data ing platelet-derived growth factor at a concentration in the range of about 0.1 mg/mL to about 1.0 mg/mL in a phar (60) Division of application No. 11/159.533, filed on Jun. maceutically acceptable liquid carrier and a pharmaceuti 23, 2005, which is a continuation-in-part of applica cally-acceptable solid carrier. Patent Application Publication Nov. 8, 2007 Sheet 1 of 2 US 2007/0259814 A1 ce e C Y ... < Patent Application Publication Nov. 8, 2007 Sheet 2 of 2 US 2007/0259814 A1 US 2007/0259814 A1 Nov. 8, 2007 PLATELET DERVED GROWTH FACTOR AND tered in an amount in the range of about 0.1 to about 1.0 METHODS OF USE THEREOF mg/ml. In several embodiments, the PDGF is administered in an amount of between about 0.2 to about 0.75 mg/ml, CROSS REFERENCE TO RELATED about 0.25 to about 0.6 mg/ml, and about 0.25 to about 0.5 APPLICATIONS mg/ml. In an embodiment, the PDGF is administered in an 0001. This application is a continuation-in-part of, and amount of about 0.1 mg/ml, 0.3 mg/ml, or 1.0 mg/ml. claims priority from, U.S. patent application Ser. No. preferably 0.3 mg/mL. In another embodiment, the PDGF is 10/965,319, filed Oct. 14, 2004, which is incorporated either partially or substantially purified. In yet a further herein by reference in its entirety. embodiment, the PDGF is isolated or purified from other contaminants. In a further embodiment, the PDGF is FIELD OF THE INVENTION released from the implant material upon administration at an average rate of 0.3 mg/day. In another embodiment, the 0002 This invention relates to the healing of bone and PDGF is released from the implant material upon adminis connective tissues. tration at an average rate of 300 lug/day. In still further embodiments, the PDGF is released from the implant mate BACKGROUND OF THE INVENTION rial at an average rate of less than 100 g/day, less than 50 0003 Growth factors are proteins that bind to receptors ug/day, less than 10 ug/day, or less than 1 g/day. Preferably, on a cell Surface, with the primary result of activating the PDGF is delivered over a few days, e.g., 1, 2, 5, 10, 15, cellular proliferation and/or differentiation. Many growth 20, or 25 days, or up to 28 days or more. factors are quite versatile, stimulating cellular division in 0007. A second aspect of the invention features a method numerous different cell types; while others are specific to a for promoting bone, periodontium, ligament, or cartilage particular cell-type. Examples of growth factors include growth in a mammal, e.g., a human, by administering an platelet-derived growth factor (PDGF), insulin-like growth implant material containing an amount of platelet-derived factors IGF-I and II), transforming growth factor beta (TGF growth factor (PDGF) of less than about 1.0 mg/ml and a B), epidermal growth factor (EGF), and fibroblast growth pharmaceutically acceptable carrier Such that the implant factor (FGF). PDGF is a cationic, heat stable protein found material promotes the growth of the bone, periodontium, in a variety of cell types, including the granules of circu ligament, or cartilage, and allowing the bone, periodontium, lating platelets, vascular Smooth muscle cells, endothelial ligament, or cartilage to grow. Preferably, the PDGF is equal cells, macrophage, and keratinocytes, and is known to to or less than about 0.3 mg/ml. In an embodiment, the stimulate in vitro protein synthesis and collagen production PDGF is administered in a range of about 0.1 to 1.0 mg/ml. by fibroblasts. It is also known to act as an in vitro mitogen In other embodiments, the amount of PDGF is about 0.1 and chemotactic agent for fibroblasts, Smooth muscle cells, mg/ml, 0.3 mg/ml, or 1.0 mg/ml, preferably 0.3 mg/mL. In osteoblasts, and glial cells. another embodiment, the PDGF is either partially or sub 0004 Recombinant human PDGF-BB (rhPDGF-BB) has stantially purified. In yet a further embodiment, the PDGF is been shown to stimulate wound healing and bone regenera isolated or purified from other contaminants. Prior to admin tion in both animals and humans. It is approved in both the istering the implant material to the mammal, the method can United States and Europe for human use in topical applica additionally include the step of producing a Surgical flap of tions to accelerate healing of chronic diabetic foot Sores. skin to expose the bone, periodontium, ligament, or carti Recombinant hPDGF-BB has also been shown to be effec lage, and following the administration step, replacing the tive either singly or in combination with other growth flap. In yet another embodiment, after producing the Surgical factors for improving periodontal regeneration, i.e., flap, but prior to administering the implant material to the regrowth of bone, cementum, and ligament around teeth bone, periodontium, ligament, or cartilage, the method can (see, e.g., U.S. Pat. No. 5,124.316, incorporated herein by additionally include the step of planing the bone or peri odontium to remove organic matter from the bone or peri reference). odontium. In yet another embodiment, the method promotes SUMMARY OF THE INVENTION the growth of damaged or diseased bone, periodontium, ligament, or cartilage. In yet another embodiment, the 0005 We have now demonstrated that a low dose of method promotes the growth of bone in locations where new rhPDGF (-0.1 to 1.0 mg/mL) promotes repair of bone, bone formation is required as a result of Surgical interven periodontium, ligament, and cartilage. A low amount of tions. Such as, e.g., tooth extraction, ridge augmentation, rhPDGF can be adsorbed to B-TCP, which can be implanted esthetic grafting, and sinus lift. at the site of repair, such that the rhPDGF is released in vivo. 0008. A third aspect of the invention features an implant Addition of rhPDGF to B-TCP has been shown to enhance material for promoting the growth of bone, periodontium, osteoblast cell attachment and proliferation compared to ligament, or cartilage in a mammal, e.g., a human. The untreated B-TCP. implant material includes a pharmaceutically acceptable 0006. In a first aspect, the invention features a method for carrier (e.g., a biocompatible binder, a bone Substituting promoting bone, periodontium, ligament, or cartilage agent, a liquid, or a gel) and platelet-derived growth factor growth in a mammal, e.g., a human, by administering an (PDGF), which is present at a concentration of less than implant material containing platelet-derived growth factor about 1.0 mg/mL. Preferably, the PDGF is present in the (PDGF) at a concentration of less than about 1.0 mg/ml, implant material at a concentration equal to or less than Such that the implant material promotes growth of the bone, about 0.3 mg/ml. In an embodiment, the PDGF is adminis periodontium, ligament, or cartilage. In an embodiment, the tered in a range of about 0.1 to 1.0 mg/ml. In other PDGF is administered in an amount of less than or equal to embodiments, the amount of PDGF is about 0.1 mg/ml, 0.3 0.3 mg/ml. In another embodiment, the PDGF is adminis mg/ml, or 1.0 mg/ml, preferably 0.3 mg/mL. In an embodi US 2007/0259814 A1 Nov. 8, 2007 ment, the pharmaceutically acceptable carrier of the implant concentration of PDGF is about 0.3 mg/mL, the calcium material includes a scaffold or matrix consisting of a bio phosphate is selected from tricalcium phosphate, hydroxya compatible binder (e.g., carboxymethylcellulose) or a bone patite, poorly crystalline hydroxyapatite, amorphous cal substituting agent (B-TCP) that is capable of absorbing a cium phosphate, calcium metaphosphate, dicalcium phos Solution that includes PDGF (e.g., a solution containing phate dihydrate, heptacalcium phosphate, calcium PDGF at a concentration in the range of about 0.1 mg/mL to pyrophosphate dihydrate, calcium pyrophosphate, and octa about 1.0 mg/mL). In another embodiment, the pharmaceu calcium phosphate, and the PDGF is provided in a sterile tically acceptable carrier is capable of absorbing an amount liquid, for example, Sodium acetate buffer. of the PDGF solution that is equal to at least about 25% of 0012. A seventh aspect of the invention features a method its own weight. In other embodiments, the pharmaceutically of preparing an implant material by Saturating a calcium acceptable carrier is capable of absorbing an amount of the phosphate material in a sterile liquid that includes platelet PDGF solution that is equal to at least about 50%, 75%, derived growth factor (PDGF) at a concentration in the 100%, 200%, 250%, or 300% or its own weight.
Recommended publications
  • Augmentation of Morphine-Induced Sensitization but Reduction in Morphine Tolerance and Reward in Delta-Opioid Receptor Knockout Mice
    Neuropsychopharmacology (2009) 34, 887–898 & 2009 Nature Publishing Group All rights reserved 0893-133X/09 $32.00 www.neuropsychopharmacology.org Augmentation of Morphine-Induced Sensitization but Reduction in Morphine Tolerance and Reward in Delta-Opioid Receptor Knockout Mice ,1 1 VI Chefer* and TS Shippenberg 1Integrative Neuroscience Section, Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA Studies in experimental animals have shown that individuals exhibiting enhanced sensitivity to the locomotor-activating and rewarding properties of drugs of abuse are at increased risk for the development of compulsive drug-seeking behavior. The purpose of the present study was to assess the effect of constitutive deletion of delta-opioid receptors (DOPr) on the rewarding properties of morphine as well as on the development of sensitization and tolerance to the locomotor-activating effects of morphine. Locomotor activity testing revealed that mice lacking DOPr exhibit an augmentation of context-dependent sensitization following repeated, alternate injections of morphine (20 mg/kg; s.c.; 5 days). In contrast, the development of tolerance to the locomotor-activating effects of morphine following chronic morphine administration (morphine pellet: 25 mg: 3 days) is reduced relative to WT mice. The conditioned rewarding effects of morphine were reduced significantly in DOPrKO mice as compared to WT controls. Similar findings were obtained in response to pharmacological inactivation of DOPr in WT mice, indicating that observed effects are not due to developmental adaptations that occur as a consequence of constitutive deletion of DOPr. Together, these findings indicate that the endogenous DOPr system is recruited in response to both repeated and chronic morphine administration and that this recruitment serves an essential function in the development of tolerance, behavioral sensitization, and the conditioning of opiate reward.
    [Show full text]
  • Targeting Fibrosis in the Duchenne Muscular Dystrophy Mice Model: an Uphill Battle
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427485; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Targeting fibrosis in the Duchenne Muscular Dystrophy mice model: an uphill battle 2 Marine Theret1#, Marcela Low1#, Lucas Rempel1, Fang Fang Li1, Lin Wei Tung1, Osvaldo 3 Contreras3,4, Chih-Kai Chang1, Andrew Wu1, Hesham Soliman1,2, Fabio M.V. Rossi1 4 1School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical 5 Genetics, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada 6 2Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Minia 7 University, Minia, Egypt 8 3Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 9 Darlinghurst, NSW, 2010, Australia 10 4Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE- 11 ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 12 Santiago, Chile 13 # Denotes Co-first authorship 14 15 Keywords: drug screening, fibro/adipogenic progenitors, fibrosis, repair, skeletal muscle. 16 Correspondence to: 17 Marine Theret 18 School of Biomedical Engineering and the Biomedical Research Centre 19 University of British Columbia 20 2222 Health Sciences Mall, Vancouver, British Columbia 21 Tel: +1(604) 822 0441 fax: +1(604) 822 7815 22 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427485; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • In Vivoactivation of a Mutantμ-Opioid Receptor by Naltrexone Produces A
    The Journal of Neuroscience, March 23, 2005 • 25(12):3229–3233 • 3229 Brief Communication In Vivo Activation of a Mutant ␮-Opioid Receptor by Naltrexone Produces a Potent Analgesic Effect But No Tolerance: Role of ␮-Receptor Activation and ␦-Receptor Blockade in Morphine Tolerance Sabita Roy, Xiaohong Guo, Jennifer Kelschenbach, Yuxiu Liu, and Horace H. Loh Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455 Opioid analgesics are the standard therapeutic agents for the treatment of pain, but their prolonged use is limited because of the development of tolerance and dependence. Recently, we reported the development of a ␮-opioid receptor knock-in (KI) mouse in which the ␮-opioid receptor was replaced by a mutant receptor (S196A) using a homologous recombination gene-targeting strategy. In these animals, the opioid antagonist naltrexone elicited antinociceptive effects similar to those of partial agonists acting in wild-type (WT) mice; however, development of tolerance and physical dependence were greatly reduced. In this study, we test the hypothesis that the failure of naltrexone to produce tolerance in these KI mice is attributable to its simultaneous inhibition of ␦-opioid receptors and activation of ␮-opioid receptors. Simultaneous implantation of a morphine pellet and continuous infusion of the ␦-opioid receptor antagonist naltrindole prevented tolerance development to morphine in both WT and KI animals. Moreover, administration of SNC-80 [(ϩ)-4-[(␣R)-␣-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide], a ␦ agonist, in the naltrexone- pelleted KI animals resulted in a dose-dependent induction in tolerance development to both morphine- and naltrexone-induced anal- gesia. We conclude that although simultaneous activation of both ␮- and ␦-opioid receptors results in tolerance development, ␮-opioid receptor activation in conjunction with ␦-opioid receptor blockade significantly attenuates the development of tolerance.
    [Show full text]
  • From Celebrex to a Novel Class of Phosphoinositide-Dependent Kinase 1 (Pdk-1) Inhibitors for Androgen-Independent Prostate Caner
    FROM CELEBREX TO A NOVEL CLASS OF PHOSPHOINOSITIDE-DEPENDENT KINASE 1 (PDK-1) INHIBITORS FOR ANDROGEN-INDEPENDENT PROSTATE CANER DISSERTATION Presented in Partial Fulfillment of the requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jiuxiang Zhu, M.S. * * * * * The Ohio State University 2005 Dissertation Committee: Approved by Professor Ching-Shih Chen, Advisor Professor Robert Brueggemeier Advisor Professor Pui-Kai (Tom) Li Graduate Program in Pharmacy Professor Matthew D. Ringel ABSTRACT Celebrex, a nonsteroidal anti-inflammatory drug (NSAID, cyclooxygenase-2 inhibitor), was reported to induce apoptosis in the prostate cancer cell line PC-3 at 50µM. Early research from our laboratory demonstrated that this apoptotic inducing effect was independent of its COX-2 inhibitory activity. Further investigation showed that PDK-1 was a major protein targeted by celebrex in PC-3 cells to induce apoptosis. However, celebrex was very weak in inhibiting PDK-1 with IC50 of 48µM. To improve its potency, two series of analogs were designed and synthesized. In the first series of 24 compounds, the 5-position methylphenyl moiety of celebrex was replaced by various aromatic ring systems to explore the optimal hydrophobic group. OSU02067 (IC50=9µM) with phenanthrene at the 5-position was the best inhibitor among this series and was selected as the lead compound for further modification. Enzyme kinetics study of PDK-1 inhibition by celebrex indicated that it competed with ATP for binding. Docking of OSU02067 into the ATP binding domain of PDK-1 showed that the sulfonamide moiety hydrogen bonded to hinge region residue Ala162.
    [Show full text]
  • Opioid Receptorsreceptors
    OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors.
    [Show full text]
  • 4 Supplementary File
    Supplemental Material for High-throughput screening discovers anti-fibrotic properties of Haloperidol by hindering myofibroblast activation Michael Rehman1, Simone Vodret1, Luca Braga2, Corrado Guarnaccia3, Fulvio Celsi4, Giulia Rossetti5, Valentina Martinelli2, Tiziana Battini1, Carlin Long2, Kristina Vukusic1, Tea Kocijan1, Chiara Collesi2,6, Nadja Ring1, Natasa Skoko3, Mauro Giacca2,6, Giannino Del Sal7,8, Marco Confalonieri6, Marcello Raspa9, Alessandro Marcello10, Michael P. Myers11, Sergio Crovella3, Paolo Carloni5, Serena Zacchigna1,6 1Cardiovascular Biology, 2Molecular Medicine, 3Biotechnology Development, 10Molecular Virology, and 11Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy 4Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy 5Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany 6Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy 7National Laboratory CIB, Area Science Park Padriciano, Trieste, 34149, Italy 8Department of Life Sciences, University of Trieste, Trieste, 34127, Italy 9Consiglio Nazionale delle Ricerche (IBCN), CNR-Campus International Development (EMMA- INFRAFRONTIER-IMPC), Rome, Italy This PDF file includes: Supplementary Methods Supplementary References Supplementary Figures with legends 1 – 18 Supplementary Tables with legends 1 – 5 Supplementary Movie legends 1, 2 Supplementary Methods Cell culture Primary murine fibroblasts were isolated from skin, lung, kidney and hearts of adult CD1, C57BL/6 or aSMA-RFP/COLL-EGFP mice (1) by mechanical and enzymatic tissue digestion. Briefly, tissue was chopped in small chunks that were digested using a mixture of enzymes (Miltenyi Biotec, 130- 098-305) for 1 hour at 37°C with mechanical dissociation followed by filtration through a 70 µm cell strainer and centrifugation.
    [Show full text]
  • Tyrosine Kinase Inhibitor, Vatalanib, Inhibits Proliferation and Migration of Human Pterygial Fibroblasts
    BASIC INVESTIGATION Tyrosine Kinase Inhibitor, Vatalanib, Inhibits Proliferation and Migration of Human Pterygial Fibroblasts Hong Kyu Kim, MD,* Ji-Young Choi, PhD,† Sang Min Park, PhD,‡ Chang Rae Rho, MD, PhD,§ Kyong Jin Cho, MD, PhD,¶ and Sangmee Ahn Jo, PhD‡k b significantly reduced, but there was no alteration in p53 protein Purpose: Vatalanib is a small-molecule tyrosine kinase inhibitor. levels in HPFs. We investigated the effects of vatalanib on the proliferation and migration of cultured human pterygial fibroblasts (HPFs). Conclusions: These results indicate that vatalanib significantly suppressed the proliferation and migration of HPFs by decreasing Methods: Pterygium tissues were obtained after pterygium exci- vascular endothelial growth factor and transforming growth factor-b. sion surgery and subjected to primary culture. HPFs were treated Vatalanib showed less toxicity than that of MMC. Based on these with vatalanib at various concentrations. Mitomycin C (MMC) was results, vatalanib may potentially serve as a new adjuvant treatment used as a positive control. Cell proliferation and migration assays after pterygium excision surgery. were used to investigate the effects of vatalanib. Cell death was measured using flow cytometry analysis. Western blot analysis was Key Words: tyrosine kinase inhibitor, vatalanib, mitomycin C, performed to identify signaling molecules associated with the pterygium, cell growth response to vatalanib. (Cornea 2017;36:1116–1123) Results: Vatalanib inhibited both proliferation and migration of HPFs in a dose-dependent manner. Cell proliferation was signif- m terygium is one of the most common ocular surface icantly suppressed by vatalanib (10 and 100 M) and MMC diseases. It is characterized by remodeling, proliferation, (0.004% and 0.04%) treatments.
    [Show full text]
  • Prognostic and Predictive Role of Lactate Dehydrogenase 5 ( LDH5) Expression in Colorectal Cancer Patients Treated with PTK787/Z
    Author Manuscript Published OnlineFirst on June 1, 2011; DOI: 10.1158/1078-0432.CCR-10-2918 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Prognostic and predictive role of lactate dehydrogenase 5 ( LDH5) expression in colorectal cancer patients treated with PTK787/ZK 222584 (Vatalanib) anti- angiogenic therapy. Short title: LDH5 and PTK/ZK in colorectal cancer 1 1 1 Michael I. Koukourakis, Alexandra Giatromanolaki, Efthimios Sivridis, 2 3 4 Kevin C. Gatter, Tanja Trarbach Gunnar Folprecht 5 5 6 7 Michael M. Shi , David Lebwohl , Tarja Jalava , Dirk Laurent 8 2 Gerold Meinhardt , Adrian L. Harris For the ‘Tumour and Angiogenesis Research Group’ 1 Departments of Pathology, and Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece Tel/Fax 0030-2551-31522, Email: [email protected] 2 Cancer Research UK, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, OX3 9DS, UK; Tel -44-1865-222457 Fax: -44-1865- 222431 E-mail: [email protected] 3 University of Essen, West German Cancer Center, Essen, Germany; [email protected] 4 University Hospital Dresden, Dresden, Germany; [email protected] 5 Novartis Pharmaceuticals Co, East Hanover, NJ, USA; [email protected] 6 ; Bayer Schering Pharma Oy, Espoo, Finland [email protected] 7 Bayer Healthcare Pharmaceuticals, Berlin, Germany; [email protected] 8 Bayer Healthcare Pharmaceuticals, NJ, USA, [email protected] Address for correspondence Michael I. Koukourakis, MD Department of Radiotherapy – Oncology Democritus University of Thrace Alexandroupolis 68100, Greece Tel; 25510-74628 Fax: 25510-30329 Email: [email protected] Downloaded from clincancerres.aacrjournals.org on September 23, 2021.
    [Show full text]
  • Monotherapy with Pixantrone in Histologically Confirmed Relapsed Or
    research paper Monotherapy with pixantrone in histologically confirmed relapsed or refractory aggressive B-cell non-Hodgkin lymphoma: post-hoc analyses from a phase III trial Ruth Pettengell,1 Catherine Sebban,2 This post hoc analysis of a phase 3 trial explored the effect of pixantrone in Pier Luigi Zinzani,3 Hans Gunter patients (50 pixantrone, 47 comparator) with relapsed or refractory aggres- 4 5 Derigs, Sergey Kravchenko, Jack W. sive B-cell non-Hodgkin lymphoma (NHL) confirmed by centralized histo- 6 7 Singer, Panteli Theocharous, Lixia logical review. Patients received 28-d cycles of 85 mg/m2 pixantrone 7 8 Wang, Mariya Pavlyuk, Kahina M. dimaleate (equivalent to 50 mg/m2 in the approved formulation) on days Makhloufi8 and Bertrand Coiffier9,10 1, 8 and 15, or comparator. The population was subdivided according to 1St George’s University of London, London, UK, 2 previous rituximab use and whether they received the study treatment as Leon Berard Cancer Centre, Lyon, France, – 3Institute of Haematology “Le A Seragnoli”, 3rd or 4th line. Median number of cycles was 4 (range, 2 6) with pix- – University of Bologna, Bologna, Italy, 4St€adt Kli- antrone and 3 (2 6) with comparator. In 3rd or 4th line, pixantrone was Á Á nikum, Frankfurt-Hoeschest, Klinik fur€ Innere associated with higher complete response (CR) (23 1% vs. 5 1% compara- Medizin III, Frankfurt am Main, Germany, tor, P = 0Á047) and overall response rate (ORR, 43Á6% vs. 12Á8%, 5Chemotherapy and Intensive Treatment of Hae- P = 0Á005). In 3rd or 4th line with previous rituximab (20 pixantrone, 18 matology Diseases, Haematology Scientific Centre comparator), pixantrone produced better ORR (45Á0% vs.
    [Show full text]
  • Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia
    Published OnlineFirst September 20, 2013; DOI: 10.1158/2159-8290.CD-13-0350 RESEARCH ARTICLE Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia Tea Pemovska 1 , Mika Kontro 2 , Bhagwan Yadav 1 , Henrik Edgren 1 , Samuli Eldfors1 , Agnieszka Szwajda 1 , Henrikki Almusa 1 , Maxim M. Bespalov 1 , Pekka Ellonen 1 , Erkki Elonen 2 , Bjørn T. Gjertsen5 , 6 , Riikka Karjalainen 1 , Evgeny Kulesskiy 1 , Sonja Lagström 1 , Anna Lehto 1 , Maija Lepistö1 , Tuija Lundán 3 , Muntasir Mamun Majumder 1 , Jesus M. Lopez Marti 1 , Pirkko Mattila 1 , Astrid Murumägi 1 , Satu Mustjoki 2 , Aino Palva 1 , Alun Parsons 1 , Tero Pirttinen 4 , Maria E. Rämet 4 , Minna Suvela 1 , Laura Turunen 1 , Imre Västrik 1 , Maija Wolf 1 , Jonathan Knowles 1 , Tero Aittokallio 1 , Caroline A. Heckman 1 , Kimmo Porkka 2 , Olli Kallioniemi 1 , and Krister Wennerberg 1 ABSTRACT We present an individualized systems medicine (ISM) approach to optimize cancer drug therapies one patient at a time. ISM is based on (i) molecular profi ling and ex vivo drug sensitivity and resistance testing (DSRT) of patients’ cancer cells to 187 oncology drugs, (ii) clinical implementation of therapies predicted to be effective, and (iii) studying consecutive samples from the treated patients to understand the basis of resistance. Here, application of ISM to 28 samples from patients with acute myeloid leukemia (AML) uncovered fi ve major taxonomic drug-response sub- types based on DSRT profi les, some with distinct genomic features (e.g., MLL gene fusions in subgroup IV and FLT3 -ITD mutations in subgroup V). Therapy based on DSRT resulted in several clinical responses.
    [Show full text]
  • Constitutive Activity of the Δ-Opioid Receptor Expressed in C6 Glioma Cells
    British Journal of Pharmacology (1999) 128, 556 ± 562 ã 1999 Stockton Press All rights reserved 0007 ± 1188/99 $15.00 http://www.stockton-press.co.uk/bjp Constitutive activity of the d-opioid receptor expressed in C6 glioma cells: identi®cation of non-peptide d-inverse agonists 1Claire L. Neilan, 3Huda Akil, 1,2James H. Woods & *,1John R. Traynor 1Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, Ann Arbor, Michigan, MI 48109-0632, USA; 2Department of Psychology, University of Michigan Medical School, 1301 MSRB III, Ann Arbor, Michigan, MI 48109-0632, USA and 3Mental Health Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, MI 48109-0720, USA 1 G-protein coupled receptors can exhibit constitutive activity resulting in the formation of active ternary complexes in the absence of an agonist. In this study we have investigated constitutive activity in C6 glioma cells expressing either the cloned d-(OP1) receptor (C6d), or the cloned m-(OP3) opioid receptor (C6m). 2 Constitutive activity was measured in the absence of Na+ ions to provide an increased signal. The degree of constitutive activity was de®ned as the level of [35S]-GTPgS binding that could be inhibited by pre-treatment with pertussis toxin (PTX). In C6d cells the level of basal [35S]-GTPgS binding was reduced by 51.9+6.1 fmols mg71 protein, whereas in C6m and C6 wild-type cells treatment with PTX reduced basal [35S]-GTPgS binding by only 10.0+3.5 and 8.6+3.1 fmols mg71 protein respectively. 3 The d-antagonists N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864), 7-benzylidenenaltrexone (BNTX) and naltriben (NTB), in addition to clocinnamox (C-CAM), acted as d-opioid receptor inverse agonists.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,945,572 B2 Chant Et Al
    USOO8945572B2 (12) United States Patent (10) Patent No.: US 8,945,572 B2 Chant et al. (45) Date of Patent: Feb. 3, 2015 (54) METHODS AND COMPOSITIONS FOR THE FOREIGN PATENT DOCUMENTS DAGNOSIS AND TREATMENT OF CANCER WO WO 1999/44062 9, 1999 WO OOf 46343 8, 2000 (75) Inventors: John Chant, Millbrae, CA (US); WO O3,024987 A1 3, 2003 Anthony S. Guerrero, San Francisco, WO 2005/066211 A2 7/2005 CA (US); Peter Haverty, San Francisco, WO WO 2005,115363 12/2005 CA (US); Cynthia Honchell, San WO 2006/110581 A2 10, 2006 Francisco, CA (US); Kenneth Jung, San WO 2007 134210 A2 11/2007 Francisco, CA (US); Thomas Wu, San OTHER PUBLICATIONS Francisco, CA (US) Gura (Science, 1997, 278: 1041-1042).* (73) Assignee: Genentech, Inc., South San Francisco, Kaiser (Science, 2006, 313: 1370).* CA (US) Gura (Science, 1995, 270:575-577).* Tockman et al (Cancer Res., 1992, 52:271 1s-2718s).* (*) Notice: Subject to any disclaimer, the term of this Pritzker (Clinical Chemistry, 2002, 48: 1147-1150).* patent is extended or adjusted under 35 Bai et al. (Cancer Res., 2010, 70: 7630-9).* Otte et al. (European Journal of Clinical Investigation, 2000, 30, U.S.C. 154(b) by 902 days. 222-229).* Yoshino et al. (Oncology Reports 2005, 13: 247-252).* (21) Appl. No.: 12/300,156 Eswarakumar et al., “Cellular signaling by fibroblast growth factor receptors' Cytokine Growth Factor Rev. 16(2): 139-49 (Apr. 2005). (22) PCT Filed: May 11, 2007 Miki et al., “Determination of ligand-binding specificity by alterna tive splicing: two distinct growth factor receptors encoded by a single (86).
    [Show full text]