Virtual Rational Tangles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mutant Knots and Intersection Graphs 1 Introduction
Mutant knots and intersection graphs S. V. CHMUTOV S. K. LANDO We prove that if a finite order knot invariant does not distinguish mutant knots, then the corresponding weight system depends on the intersection graph of a chord diagram rather than on the diagram itself. Conversely, if we have a weight system depending only on the intersection graphs of chord diagrams, then the composition of such a weight system with the Kontsevich invariant determines a knot invariant that does not distinguish mutant knots. Thus, an equivalence between finite order invariants not distinguishing mutants and weight systems depending on intersections graphs only is established. We discuss relationship between our results and certain Lie algebra weight systems. 57M15; 57M25 1 Introduction Below, we use standard notions of the theory of finite order, or Vassiliev, invariants of knots in 3-space; their definitions can be found, for example, in [6] or [14], and we recall them briefly in Section 2. All knots are assumed to be oriented. Two knots are said to be mutant if they differ by a rotation of a tangle with four endpoints about either a vertical axis, or a horizontal axis, or an axis perpendicular to the paper. If necessary, the orientation inside the tangle may be replaced by the opposite one. Here is a famous example of mutant knots, the Conway (11n34) knot C of genus 3, and Kinoshita–Terasaka (11n42) knot KT of genus 2 (see [1]). C = KT = Note that the change of the orientation of a knot can be achieved by a mutation in the complement to a trivial tangle. -
A Remarkable 20-Crossing Tangle Shalom Eliahou, Jean Fromentin
A remarkable 20-crossing tangle Shalom Eliahou, Jean Fromentin To cite this version: Shalom Eliahou, Jean Fromentin. A remarkable 20-crossing tangle. 2016. hal-01382778v2 HAL Id: hal-01382778 https://hal.archives-ouvertes.fr/hal-01382778v2 Preprint submitted on 16 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A REMARKABLE 20-CROSSING TANGLE SHALOM ELIAHOU AND JEAN FROMENTIN Abstract. For any positive integer r, we exhibit a nontrivial knot Kr with r− r (20·2 1 +1) crossings whose Jones polynomial V (Kr) is equal to 1 modulo 2 . Our construction rests on a certain 20-crossing tangle T20 which is undetectable by the Kauffman bracket polynomial pair mod 2. 1. Introduction In [6], M. B. Thistlethwaite gave two 2–component links and one 3–component link which are nontrivial and yet have the same Jones polynomial as the corre- sponding unlink U 2 and U 3, respectively. These were the first known examples of nontrivial links undetectable by the Jones polynomial. Shortly thereafter, it was shown in [2] that, for any integer k ≥ 2, there exist infinitely many nontrivial k–component links whose Jones polynomial is equal to that of the k–component unlink U k. -
How Can We Say 2 Knots Are Not the Same?
How can we say 2 knots are not the same? SHRUTHI SRIDHAR What’s a knot? A knot is a smooth embedding of the circle S1 in IR3. A link is a smooth embedding of the disjoint union of more than one circle Intuitively, it’s a string knotted up with ends joined up. We represent it on a plane using curves and ‘crossings’. The unknot A ‘figure-8’ knot A ‘wild’ knot (not a knot for us) Hopf Link Two knots or links are the same if they have an ambient isotopy between them. Representing a knot Knots are represented on the plane with strands and crossings where 2 strands cross. We call this picture a knot diagram. Knots can have more than one representation. Reidemeister moves Operations on knot diagrams that don’t change the knot or link Reidemeister moves Theorem: (Reidemeister 1926) Two knot diagrams are of the same knot if and only if one can be obtained from the other through a series of Reidemeister moves. Crossing Number The minimum number of crossings required to represent a knot or link is called its crossing number. Knots arranged by crossing number: Knot Invariants A knot/link invariant is a property of a knot/link that is independent of representation. Trivial Examples: • Crossing number • Knot Representations / ~ where 2 representations are equivalent via Reidemester moves Tricolorability We say a knot is tricolorable if the strands in any projection can be colored with 3 colors such that every crossing has 1 or 3 colors and or the coloring uses more than one color. -
ON TANGLES and MATROIDS 1. Introduction Two Binary Operations on Matroids, the Two-Sum and the Tensor Product, Were Introduced I
ON TANGLES AND MATROIDS STEPHEN HUGGETT School of Mathematics and Statistics University of Plymouth, Plymouth PL4 8AA, Devon ABSTRACT Given matroids M and N there are two operations M ⊕2 N and M ⊗ N. When M and N are the cycle matroids of planar graphs these operations have interesting interpretations on the corresponding link diagrams. In fact, given a planar graph there are two well-established methods of generating an alternating link diagram, and in each case the Tutte polynomial of the graph is related to polynomial invariant (Jones or homfly) of the link. Switching from one of these methods to the other corresponds in knot theory to tangle insertion in the link diagrams, and in combinatorics to the tensor product of the cycle matroids of the graphs. Keywords: tangles, knots, Jones polynomials, Tutte polynomials, matroids 1. Introduction Two binary operations on matroids, the two-sum and the tensor product, were introduced in [13] and [4]. In the case when the matroids are the cycle matroids of graphs these give rise to corresponding operations on graphs. Strictly speaking, however, these operations on graphs are not in general well defined, being sensitive to the Whitney twist. Consider the two-sum for a moment: when it is well defined it can be seen simply in terms of the replacement of an edge by a new subgraph: a special case of this is the operation leading to the homeomorphic graphs studied in [11]. Planar graphs define alternating link diagrams, and so the two-sum and tensor product operations are defined on these too: they correspond to insertions of tangles. -
TANGLES for KNOTS and LINKS 1. Introduction It Is
TANGLES FOR KNOTS AND LINKS ZACHARY ABEL 1. Introduction It is often useful to discuss only small \pieces" of a link or a link diagram while disregarding everything else. For example, the Reidemeister moves describe manipulations surrounding at most 3 crossings, and the skein relations for the Jones and Conway polynomials discuss modifications on one crossing at a time. Tangles may be thought of as small pieces or a local pictures of knots or links, and they provide a useful language to describe the above manipulations. But the power of tangles in knot and link theory extends far beyond simple diagrammatic convenience, and this article provides a short survey of some of these applications. 2. Tangles As Used in Knot Theory Formally, we define a tangle as follows (in this article, everything is in the PL category): Definition 1. A tangle is a pair (A; t) where A =∼ B3 is a closed 3-ball and t is a proper 1-submanifold with @t 6= ;. Note that t may be disconnected and may contain closed loops in the interior of A. We consider two tangles (A; t) and (B; u) equivalent if they are isotopic as pairs of embedded manifolds. An n-string tangle consists of exactly n arcs and 2n boundary points (and no closed loops), and the trivial n-string 2 tangle is the tangle (B ; fp1; : : : ; png) × [0; 1] consisting of n parallel, unintertwined segments. See Figure 1 for examples of tangles. Note that with an appropriate isotopy any tangle (A; t) may be transformed into an equivalent tangle so that A is the unit ball in R3, @t = A \ t lies on the great circle in the xy-plane, and the projection (x; y; z) 7! (x; y) is a regular projection for t; thus, tangle diagrams as shown in Figure 1 are justified for all tangles. -
Bracket Calculations -- Pdf Download
Knot Theory Notes - Detecting Links With The Jones Polynonmial by Louis H. Kau®man 1 Some Elementary Calculations The formula for the bracket model of the Jones polynomial can be indicated as follows: The letter chi, Â, denotes a crossing in a link diagram. The barred letter denotes the mirror image of this ¯rst crossing. A crossing in a diagram for the knot or link is expanded into two possible states by either smoothing (reconnecting) the crossing horizontally, , or 2 2 vertically ><. Any closed loop (without crossings) in the plane has value ± = A ³A¡ : ¡ ¡ 1  = A + A¡ >< ³ 1  = A¡ + A >< : ³ One useful consequence of these formulas is the following switching formula 1 2 2 A A¡  = (A A¡ ) : ¡ ¡ ³ Note that in these conventions the A-smoothing of  is ; while the A-smoothing of  is >< : Properly interpreted, the switching formula abo³ve says that you can switch a crossing and smooth it either way and obtain a three diagram relation. This is useful since some computations will simplify quite quickly with the proper choices of switching and smoothing. Remember that it is necessary to keep track of the diagrams up to regular isotopy (the equivalence relation generated by the second and third Reidemeister moves). Here is an example. View Figure 1. K U U' Figure 1 { Trefoil and Two Relatives You see in Figure 1, a trefoil diagram K, an unknot diagram U and another unknot diagram U 0: Applying the switching formula, we have 1 2 2 A¡ K AU = (A¡ A )U 0 ¡ ¡ 3 3 2 6 and U = A and U 0 = ( A¡ ) = A¡ : Thus ¡ ¡ 1 3 2 2 6 A¡ K A( A ) = (A¡ A )A¡ : ¡ ¡ ¡ Hence 1 4 8 4 A¡ K = A + A¡ A¡ : ¡ ¡ Thus 5 3 7 K = A A¡ + A¡ : ¡ ¡ This is the bracket polynomial of the trefoil diagram K: We have used to same symbol for the diagram and for its polynomial. -
The Kauffman Bracket and Genus of Alternating Links
California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 6-2016 The Kauffman Bracket and Genus of Alternating Links Bryan M. Nguyen Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Other Mathematics Commons Recommended Citation Nguyen, Bryan M., "The Kauffman Bracket and Genus of Alternating Links" (2016). Electronic Theses, Projects, and Dissertations. 360. https://scholarworks.lib.csusb.edu/etd/360 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. The Kauffman Bracket and Genus of Alternating Links A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Bryan Minh Nhut Nguyen June 2016 The Kauffman Bracket and Genus of Alternating Links A Thesis Presented to the Faculty of California State University, San Bernardino by Bryan Minh Nhut Nguyen June 2016 Approved by: Dr. Rolland Trapp, Committee Chair Date Dr. Gary Griffing, Committee Member Dr. Jeremy Aikin, Committee Member Dr. Charles Stanton, Chair, Dr. Corey Dunn Department of Mathematics Graduate Coordinator, Department of Mathematics iii Abstract Giving a knot, there are three rules to help us finding the Kauffman bracket polynomial. Choosing knot's orientation, then applying the Seifert algorithm to find the Euler characteristic and genus of its surface. Finally finding the relationship of the Kauffman bracket polynomial and the genus of the alternating links is the main goal of this paper. -
Character Varieties of Knots and Links with Symmetries Leona H
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2017 Character Varieties of Knots and Links with Symmetries Leona H. Sparaco Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES CHARACTER VARIETIES OF KNOTS AND LINKS WITH SYMMETRIES By LEONA SPARACO A Dissertation submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2017 Copyright c 2017 Leona Sparaco. All Rights Reserved. Leona Sparaco defended this dissertation on July 6, 2017. The members of the supervisory committee were: Kathleen Petersen Professor Directing Dissertation Kristine Harper University Representative Sam Ballas Committee Member Philip Bowers Committee Member Eriko Hironaka Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii ACKNOWLEDGMENTS I would not have been able to write this paper without the help and support of many people. I would first like to thank my major professor, Dr. Kathleen Petersen. I fell in love with topology when I was in her topology class. I would also like to thank the members of my committee and Dr. Case for their support over the years. I would like to thank my family for their love and support. Finally I want to thank all the wonderful friends I have made here while at Florida State University. iii TABLE OF CONTENTS List of Figures . v Abstract . -
Jones Polynomial of Knots
KNOTS AND THE JONES POLYNOMIAL MATH 180, SPRING 2020 Your task as a group, is to research the topics and questions below, write up clear notes as a group explaining these topics and the answers to the questions, and then make a video presenting your findings. Your video and notes will be presented to the class to teach them your findings. Make sure that in your notes and video you give examples and intuition, along with formal definitions, theorems, proofs, or calculations. Make sure that you point out what the is most important take away message, and what aspects may be tricky or confusing to understand at first. You will need to work together as a group. You should all work on Problem 1. Each member of the group must be responsible for one full example from problem 2. Then you can split up problem 3-7 as you wish. 1. Resources The primary resource for this project is The Knot Book by Colin Adams, Chapter 6.1 (page 147-155). An Introduction to Knot Theory by Raymond Lickorish Chapter 3, could also be helpful. You may also look at other resources online about knot theory and the Jones polynomial. Make sure to cite the sources you use. If you find it useful and you are comfortable, you can try to write some code to help you with computations. 2. Topics and Questions As you research, you may find more examples, definitions, and questions, which you defi- nitely should feel free to include in your notes and/or video, but make sure you at least go through the following discussion and questions. -
Knot Polynomials
Knot Polynomials André Schulze & Nasim Rahaman July 24, 2014 1 Why Polynomials? First introduced by James Wadell Alexander II in 1923, knot polynomials have proved themselves by being one of the most efficient ways of classifying knots. In this spirit, one expects two different projections of a knot to have the same knot polynomial; one therefore demands that a good knot polynomial be invariant under the three Reide- meister moves (although this is not always case, as we shall find out). In this report, we present 5 selected knot polynomials: the Bracket, Kauffman X, Jones, Alexander and HOMFLY polynomials. 2 The Bracket Polynomial 2.1 Calculating the Bracket Polynomial The Bracket polynomial makes for a great starting point in constructing knotpoly- nomials. We start with three simple rules, which are then iteratively applied to all crossings in the knot: A direct application of the third rule leads to the following relation for (untangled) unknots: The process of obtaining the Bracket polynomial can be streamlined by evaluating the contribution of a particular sequence of actions in undoing the knot (states) and summing over all such contributions to obtain the net polynomial. 2.2 The Problem with Bracket Polynomials The bracket polynomials can be shown to be invariant under types 2 and 3Reidemeis- ter moves. However by considering type 1 moves, its one major drawback becomes apparent. From: 1 we conclude that that the Bracket polynomial does not remain invariant under type 1 moves. This can be fixed by introducing the writhe of a knot, as we shallsee in the next section. -
An Introduction to Knot Theory
An Introduction to Knot Theory Matt Skerritt (c9903032) June 27, 2003 1 Introduction A knot, mathematically speaking, is a closed curve sitting in three dimensional space that does not intersect itself. Intuitively if we were to take a piece of string, cord, or the like, tie a knot in it and then glue the loose ends together, we would have a knot. It should be impossible to untangle the knot without cutting the string somewhere. The use of the word `should' here is quite deliberate, however. It is possible, if we have not tangled the string very well, that we will be able to untangle the mess we created and end up with just a circle of string. Of course, this circle of string still ¯ts the de¯nition of a closed curve sitting in three dimensional space and so is still a knot, but it's not very interesting. We call such a knot the trivial knot or the unknot. Knots come in many shapes and sizes from small and simple like the unknot through to large and tangled and messy, and beyond (and everything in between). The biggest questions to a knot theorist are \are these two knots the same or di®erent" or even more importantly \is there an easy way to tell if two knots are the same or di®erent". This is the heart of knot theory. Merely looking at two tangled messes is almost never su±cient to tell them apart, at least not in any interesting cases. Consider the following four images for example. -
Prime Knots and Tangles by W
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 267. Number 1, September 1981 PRIME KNOTS AND TANGLES BY W. B. RAYMOND LICKORISH Abstract. A study is made of a method of proving that a classical knot or link is prime. The method consists of identifying together the boundaries of two prime tangles. Examples and ways of constructing prime tangles are explored. Introduction. This paper explores the idea of the prime tangle that was briefly introduced in [KL]. It is here shown that summing together two prime tangles always produces a prime knot or link. Here a tangle is just two arcs spanning a 3-ball, and such a tangle is prime if it contains no knotted ball pair and its arcs cannot be separated by a disc. A few prototype examples of prime tangles are given (Figure 2), together with ways of using them to create infinitely many more (Theorem 3). Then, usage of the prime tangle idea becomes a powerful machine, nicely complementing other methods, in the production of prime knots and links. Finally it is shown (Theorem 5) that the idea of the prime tangle has a very natural interpretation in terms of double branched covers. The paper should be interpreted as being in either the P.L. or smooth category. With the exception of the section on double branched covers, all the methods used are the straightforward (innermost disc) techniques of the elementary theory of 3-manifolds. None of the proofs is difficult; the paper aims for significance rather than sophistication. Indeed various possible generalizations of the prime tangle have not been developed (e.g.