Chandrachandra Andand XMMXMM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Local Radio-Galaxy Population at 20
Mon. Not. R. Astron. Soc. 000, 1–?? (2013) Printed 2 December 2013 (MN LATEX style file v2.2) The local radio-galaxy population at 20GHz Elaine M. Sadler1⋆, Ronald D. Ekers2, Elizabeth K. Mahony3, Tom Mauch4,5, Tara Murphy1,6 1Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia 2Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia 3ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands 4Oxford Astrophysics, Department of Physics, Keble Road, Oxford OX1 3RH 5SKA Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405, South Africa 6School of Information Technologies, The University of Sydney, NSW 2006, Australia Accepted 0000 December 08. Received 0000 December 08; in original form 0000 December 08 ABSTRACT We have made the first detailed study of the high-frequency radio-source population in the local universe, using a sample of 202 radio sources from the Australia Telescope 20GHz (AT20G) survey identified with galaxies from the 6dF Galaxy Survey (6dFGS). The AT20G- 6dFGS galaxies have a median redshift of z=0.058 and span a wide range in radio luminosity, allowing us to make the first measurement of the local radio luminosity function at 20GHz. Our sample includes some classical FR-1 and FR-2 radio galaxies, but most of the AT20G-6dFGS galaxies host compact (FR-0) radio AGN which appear lack extended radio emission even at lower frequencies. Most of these FR-0 sources show no evidence for rela- tivistic beaming, and the FR-0 class appears to be a mixed population which includes young Compact Steep-Spectrum (CSS) and Gigahertz-Peaked Spectrum (GPS) radio galaxies. -
The X-Ray Emission of Local Luminous Infrared Galaxies⋆
A&A 535, A93 (2011) Astronomy DOI: 10.1051/0004-6361/201117420 & c ESO 2011 Astrophysics The X-ray emission of local luminous infrared galaxies M. Pereira-Santaella1, A. Alonso-Herrero1, M. Santos-Lleo2, L. Colina1, E. Jiménez-Bailón3, A. L. Longinotti4, G. H. Rieke5,M.Ward6, and P. Esquej1 1 Departamento de Astrofísica, Centro de Astrobiología, CSIC/INTA, Carretera de Torrejón a Ajalvir, km 4, 28850 Torrejón de Ardoz, Madrid, Spain e-mail: [email protected] 2 XMM-Newton Science Operation Centre, European Space Agency, 28691 Villanueva de la Cañada, Madrid, Spain 3 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, 04510 Mexico DF, México 4 MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, NE80-6011, Cambridge, MA 02139, USA 5 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 6 Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK Received 6 June 2011 / Accepted 5 September 2011 ABSTRACT We study the X-ray emission of a representative sample of 27 local luminous infrared galaxies (LIRGs). The median IR luminosity of our sample is log LIR/L = 11.2, therefore the low-luminosity end of the LIRG class is well represented. We used new XMM-Newton data as well as Chandra and XMM-Newton archive data. The soft X-ray (0.5–2 keV) emission of most of the galaxies (>80%), including LIRGs hosting a Seyfert 2 nucleus, is dominated by star-formation-related processes. These LIRGs follow the star-formation rate (SFR) versus soft X-ray luminosity correlation observed in local starbursts. -
The Origin of the Iron Lines in NGC 7213
A&A 407, L21–L24 (2003) Astronomy DOI: 10.1051/0004-6361:20031054 & c ESO 2003 Astrophysics The origin of the iron lines in NGC 7213 S. Bianchi, G. Matt, I. Balestra, and G. C. Perola Dipartimento di Fisica, Universit`a degli Studi Roma Tre, Italy Received 20 June 2003 / Accepted 8 July 2003 Letter to the Editor Abstract. The analysis of a simultaneous XMM-Newton/BeppoSAX plus three previous BeppoSAX observations revealed that NGC 7213 is a rather peculiar Seyfert 1. No significant Compton reflection component was observed, while an iron line complex, best explained in terms of three narrow lines, is clearly apparent in the data. Due to the absence of the reflection component, the neutral iron line is likely not produced in a Compton-thick material, but current data do not allow to choose between a Compton-thin torus and the BLR. The two ionized iron lines from Fe xxv and Fe xxvi may be produced in a 23 2 photoionized gas with a column density of a few 10 cm− , in analogy with the case of NGC 5506. Key words. galaxies: individual: NGC 7213 – galaxies: Seyfert – X-rays: galaxies 1. Introduction the BeppoSAX PDS instrument. On the other hand, if the line is produced in the BLR, a much fainter Compton reflection Iron Kα emission lines are common features in Seyfert 1s. The component is expected, and the intrinsic width of the iron line profile of the line provides fundamental information on their should be the same as that of the optical broad lines. origin. If it is produced in the innermost regions of the accre- The nuclear activity of NGC 7213 (z = 0:005977) was tion disk, kinematic and relativistic effects contribute to forge discovered by the HEAO A-2 satellite (Marshall et al. -
1. Introduction
THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other. -
Southern Arp - AM # Order
Southern Arp - AM # Order A B C D E F G H I J 1 AM # Constellation Object Name RA DEC Mag. Size Uranom. Uranom. Millenium 2 1st Ed. 2nd Ed. 3 AM 0003-414 Phoenix ESO 293-G034 00h06m19.9s -41d30m00s 13.7 3.2 x 1.0 386 177 430 Vol I 4 AM 0006-340 Sculptor NGC 10 00h08m34.5s -33d51m30s 13.3 2.4 x 1.2 350 159 410 Vol I 5 AM 0007-251 Sculptor NGC 24 00h09m56.5s -24d57m47s 12.4 5.8 x 1.3 305 141 366 Vol I 6 AM 0011-232 Cetus NGC 45 00h14m04.0s -23d10m55s 11.6 8.5 x 5.9 305 141 366 Vol I 7 AM 0027-333 Sculptor NGC 134 00h30m22.0s -33d14m39s 11.4 8.5 x 2.0 351 159 409 Vol I 8 AM 0029-643 Tucana ESO 079- G003 00h32m02.2s -64d15m12s 12.6 2.7 x 0.4 440 204 409 Vol I 9 AM 0031-280B Sculptor NGC 150 00h34m15.5s -27d48m13s 12 3.9 x 1.9 306 141 387 Vol I 10 AM 0031-320 Sculptor NGC 148 00h34m15.5s -31d47m10s 13.3 2 x 0.8 351 159 387 Vol I 11 AM 0033-253 Sculptor IC 1558 00h35m47.1s -25d22m28s 12.6 3.4 x 2.5 306 141 365 Vol I 12 AM 0041-502 Phoenix NGC 238 00h43m25.7s -50d10m58s 13.1 1.9 x 1.6 417 177 449 Vol I 13 AM 0045-314 Sculptor NGC 254 00h47m27.6s -31d25m18s 12.6 2.5 x 1.5 351 176 386 Vol I 14 AM 0050-312 Sculptor NGC 289 00h52m42.3s -31d12m21s 11.7 5.1 x 3.6 351 176 386 Vol I 15 AM 0052-375 Sculptor NGC 300 00h54m53.5s -37d41m04s 9 22 x 16 351 176 408 Vol I 16 AM 0106-803 Hydrus ESO 013- G012 01h07m02.2s -80d18m28s 13.6 2.8 x 0.9 460 214 509 Vol I 17 AM 0105-471 Phoenix IC 1625 01h07m42.6s -46d54m27s 12.9 1.7 x 1.2 387 191 448 Vol I 18 AM 0108-302 Sculptor NGC 418 01h10m35.6s -30d13m17s 13.1 2 x 1.7 352 176 385 Vol I 19 AM 0110-583 Hydrus NGC -
Active Galactic Nuclei and Their Neighbours
CCD Photometric Observations of Active Galactic Nuclei and their Neighbours by Traianou Efthalia A dissertation submitted in partial fulfillment of the requirements for the degree of Ptychion (Physics) in Aristotle University of Thessaloniki September 2016 Supervisor: Manolis Plionis, Professor To my loved ones Many thanks to: Manolis Plionis for accepting to be my thesis adviser. ii TABLE OF CONTENTS DEDICATION :::::::::::::::::::::::::::::::::: ii LIST OF FIGURES ::::::::::::::::::::::::::::::: v LIST OF TABLES :::::::::::::::::::::::::::::::: ix LIST OF APPENDICES :::::::::::::::::::::::::::: x ABSTRACT ::::::::::::::::::::::::::::::::::: xi CHAPTER I. Introduction .............................. 1 II. Active Galactic Nuclei ........................ 4 2.1 Early History of AGN’s ..................... 4 2.2 AGN Phenomenology ...................... 7 2.2.1 Seyfert Galaxies ................... 7 2.2.2 Low Ionization Nuclear Emission-Line Regions(LINERS) 10 2.2.3 ULIRGS ........................ 11 2.2.4 Radio Galaxies .................... 12 2.2.5 Quasars or QSO’s ................... 14 2.2.6 Blazars ......................... 15 2.3 The Unification Paradigm .................... 16 2.4 Beyond the Unified Model ................... 18 III. Research Goal and Methodology ................. 21 3.1 Torus ............................... 21 3.2 Ha Balmer Line ......................... 23 3.3 Galaxy-Galaxy Interactions ................... 25 3.4 Our Aim ............................. 27 iii IV. Observations .............................. 29 4.1 The Telescope -
The Bright Galaxies NGC 1068 (M 77), NGC 2146, NGC 3079, NGC 4826 (M 64), and NGC 7469 F
A&A 493, 525–538 (2009) Astronomy DOI: 10.1051/0004-6361:200810655 & c ESO 2009 Astrophysics CI and CO in nearby galaxy centers The bright galaxies NGC 1068 (M 77), NGC 2146, NGC 3079, NGC 4826 (M 64), and NGC 7469 F. P. Israel Sterrewacht Leiden, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] Received 22 July 2008 / Accepted 5 November 2008 ABSTRACT Aims. We study the physical properties and amount of molecular gas in the central regions of galaxies with active nuclei. Methods. Maps and measurements of the J = 1−0, J = 2−1, J = 3−2, J = 4−3 12CO, the J = 1−0, J = 2−1, and J = 3−2 13CO lines in the central arcminute squared of NGC 1068, NGC 2146, NGC 3079, NGC 4826, and NGC 7469, as well as 492 GHz CI maps in three of these are used to model the molecular gas clouds in these galaxies. Results. Bright CO concentrations were detected and mapped in all five objects. In all cases, the observed lines could be fitted with two distinct gas components. The physical condition of the molecular gas is found to differ from galaxy to galaxy. Rather high kinetic temperatures of 125−150 K occur in NGC 2146 and NGC 3079. Very high densities of 0.3−1.0 × 105 cm−3 occur in NGC 2146, NGC 3079, and NGC 7469. The CO to H2 conversion factor X is typically an order of magnitude less than the “standard” value in the solar neighborhood. -
Bright Star Double Variable Globular Open Cluster Planetary Bright Neb Dark Neb Reflection Neb Galaxy Int:Pec Compact Galaxy Gr
bright star double variable globular open cluster planetary bright neb dark neb reflection neb galaxy int:pec compact galaxy group quasar ALL AND ANT APS AQL AQR ARA ARI AUR BOO CAE CAM CAP CAR CAS CEN CEP CET CHA CIR CMA CMI CNC COL COM CRA CRB CRT CRU CRV CVN CYG DEL DOR DRA EQU ERI FOR GEM GRU HER HOR HYA HYI IND LAC LEO LEP LIB LMI LUP LYN LYR MEN MIC MON MUS NOR OCT OPH ORI PAV PEG PER PHE PIC PSA PSC PUP PYX RET SCL SCO SCT SER1 SER2 SEX SGE SGR TAU TEL TRA TRI TUC UMA UMI VEL VIR VOL VUL Object ConRA Dec Mag z AbsMag Type Spect Filter Other names CFHQS J23291-0301 PSC 23h 29 8.3 - 3° 1 59.2 21.6 6.430 -29.5 Q ULAS J1319+0950 VIR 13h 19 11.3 + 9° 50 51.0 22.8 6.127 -24.4 Q I CFHQS J15096-1749 LIB 15h 9 41.8 -17° 49 27.1 23.1 6.120 -24.1 Q I FIRST J14276+3312 BOO 14h 27 38.5 +33° 12 41.0 22.1 6.120 -25.1 Q I SDSS J03035-0019 CET 3h 3 31.4 - 0° 19 12.0 23.9 6.070 -23.3 Q I SDSS J20541-0005 AQR 20h 54 6.4 - 0° 5 13.9 23.3 6.062 -23.9 Q I CFHQS J16413+3755 HER 16h 41 21.7 +37° 55 19.9 23.7 6.040 -23.3 Q I SDSS J11309+1824 LEO 11h 30 56.5 +18° 24 13.0 21.6 5.995 -28.2 Q SDSS J20567-0059 AQR 20h 56 44.5 - 0° 59 3.8 21.7 5.989 -27.9 Q SDSS J14102+1019 CET 14h 10 15.5 +10° 19 27.1 19.9 5.971 -30.6 Q SDSS J12497+0806 VIR 12h 49 42.9 + 8° 6 13.0 19.3 5.959 -31.3 Q SDSS J14111+1217 BOO 14h 11 11.3 +12° 17 37.0 23.8 5.930 -26.1 Q SDSS J13358+3533 CVN 13h 35 50.8 +35° 33 15.8 22.2 5.930 -27.6 Q SDSS J12485+2846 COM 12h 48 33.6 +28° 46 8.0 19.6 5.906 -30.7 Q SDSS J13199+1922 COM 13h 19 57.8 +19° 22 37.9 21.8 5.903 -27.5 Q SDSS J14484+1031 BOO -
Multi-Wavelength Campaign on NGC 7469: Deciphering Variability of the Ionised Outflows
Multi-wavelength campaign on NGC 7469: deciphering variability of the ionised outflows Missagh Mehdipour SRON Netherlands Institute for Space Research Jelle Kaastra, Ehud Behar, Gerard Kriss, Massimo Cappi, Pierre-Olivier Petrucci, Nahum Arav, Shai Kaspi, Uria Peretz, Elisa Costantini! Chandra Workshop 2016! R.G. Detmers et al.: Multiwavelength campaign on Mrk 509 3 Table 1. Spline continuum parameters. Ionised Wavelength Flux (Å) (photons m−2 s−1 Å−1) outflows 5.00 0 5.95 0.7 ± 0.6 in AGN 7.07 13.95 ± 0.09 8.41 14.28 ± 0.06 10.00 15.10 ± 0.04 11.89 15.92 ± 0.09 14.14 17.27 ± 0.09 16.82 19.36 ± 0.16 20.00 21.31 ± 0.11 X-ray 23.78 25.15 ± 0.08 Mrk 509 - XMM RGS 28.28 27.83 ± 0.11 Detmers+11 33.64 33.62 ± 0.19 40.00 9.80 ± 0.18 Fig. 1. The fluxed stacked RGS spectrum in the 7 - 38 Å range. account for the separate outflow velocities observed. All mod- The strongest lines are indicated and the O i ISM edge can be els take a wide range of ionization states into account. These clearly seen around 23 Å. models are described in more detail in Sect. 3.2. We also in- UV cluded eleven broad and narrow emission lines, which are mod- Mrk 509 - HST COS eled with a Gaussian line profile. Radiative recombination con- fitting package to fit the spectrum.Kriss+11 We updated the wavelengths tinua (RRCs) are also included using an ad-hoc model that takes of some important transitions for our study (see Appendix A). -
Observing Galaxies in Pegasus 01 October 2015 23:07
Observing galaxies in Pegasus 01 October 2015 23:07 Context As you look towards Pegasus you are looking below the galactic plane under the Orion spiral arm of our galaxy. The Perseus-Pisces supercluster wall of galaxies runs through this constellation. It stretches from RA 3h +40 in Perseus to 23h +10 in Pegasus and is around 200 million light years away. It includes the Pegasus I group noted later this document. The constellation is well placed from mid summer to late autumn. Pegasus is a rich constellation for galaxy observing. I have observed 80 galaxies in this constellation. Relatively bright galaxies This section covers the galaxies that were visible with direct vision in my 16 inch or smaller scopes. This list will therefore grow over time as I have not yet viewed all the galaxies in good conditions at maximum altitude in my 16 inch scope! NGC 7331 MAG 9 This is the stand out galaxy of the constellation. It is similar to our milky way. Around it are a number of fainter NGC galaxies. I have seen the brightest one, NGC 7335 in my 10 inch scope with averted vision. I have seen NGC 7331 in my 25 x 100mm binoculars. NGC 7814 - Mag 10 ? Not on observed list ? This is a very lovely oval shaped galaxy. By constellation Page 1 NGC 7332 MAG 11 / NGC 7339 MAG 12 These galaxies are an isolated bound pair about 67 million light years away. NGC 7339 is the fainter of the two galaxies at the eyepiece. I have seen NGC 7332 in my 25 x 100mm binoculars. -
University of Southampton Research Repository Eprints Soton
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Physics And Astronomy Fast Spectral Variability in the X-ray Emission of Accreting Black Holes by Chris J. Skipper Thesis for the degree of Doctor of Philosophy October 2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Physics And Astronomy Doctor of Philosophy FAST SPECTRAL VARIABILITY IN THE X-RAY EMISSION OF ACCRETING BLACK HOLES by Chris J. Skipper The X-ray emission from accreting black holes provides the perfect probe for testing the geometry, behaviour and conditions present in the innermost regions of the accretion flow. In this thesis I use X-ray spectral analysis to investigate the properties of accret- ing black holes that extend over several orders of magnitude in accretion rate (m˙ E) and black hole mass (MBH), from the stellar mass black holes in X-ray binary systems (XRBs) to the supermassive black holes in active galactic nuclei (AGN). -
Understanding the H2/HI Ratio in Galaxies 3
Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization.