An Update on Contraindications for Lung Function Testing

Total Page:16

File Type:pdf, Size:1020Kb

An Update on Contraindications for Lung Function Testing Review An update on contraindications for lung Thorax: first published as 10.1136/thx.2010.139881 on 29 July 2010. Downloaded from function testing Brendan G Cooper Correspondence to ABSTRACT medicine, this is a timely and worthwhile review Brendan G Cooper, Lung Guidelines on contraindications for lung function tests that needs wide dissemination and discussion in Investigation Unit, University > order to formulate new guidelines. Hospitals Birmingham NHS have been based on expert opinion from 30 years ago. Foundation Trust, Edgbaston, High-risk contraindications to lung function testing are Contraindications generally fall under the Birmingham B10 2TH, UK; associated with cardiovascular complications such as umbrella of risk management and clinical gover- [email protected] myocardial infarct, pulmonary embolism or ascending nance issues in most health centres. Risk manage- aortic aneurysm. Slightly less risky but still serious ment is made up of two components (1) the Received 31 March 2010 Accepted 11 May 2010 contraindications are predominantly centred on recovery likelihood of the event happening and (2) the Published Online First from major thoracic, abdominal or head surgery. Less severity of the consequences for the patient if it 29 July 2010 serious surgical procedures will present a possible risk, happens. In most areas of respiratory physiology but the RR depends upon whether the lung function is testing, the likelihood of an adverse event is very essential or can wait until the patient’s condition low and many often have relatively minor (non- improves. In recent decades there have been moves life-threatening) consequences (eg, cataract towards less invasive surgical techniques, keyhole detachment during spirometry). Even the more surgery and new technology such as laser surgery which serious surgical complications such as rupture of an minimise the amount of collateral damage to surrounding aortic aneurysm which has an absolute prevalence tissues. In thoracic surgery there is a shift in emphasis to of only 7.1% in men and 1.6% in women8 are quicker postsurgical mobility. Furthermore there has relatively rare, so the likelihood of these happening been little analysis of the scientific facts behind the during spirometry is very rare. Postponed lung current recommendations and contraindications. The function testing due to current contraindications in principle absolute and relative contraindications are in our experience is only w0.3e0.5% (personal need of revision, and recommended times of abstaining communication, ARTP website Forum 2009). A from lung function tests needs to be reviewed. This suggested table of relative risks appears in review aims to outline the key issues and suggests appendix 1. newer recommendations for contraindications for Contraindications can be considered as being http://thorax.bmj.com/ performing lung function using a risk matrix, as well as ‘relative’ or ‘absolute’. Most contraindications are offering alternative approaches to testing patients who relative and require the requesting physician/ may be at risk of complication from testing. In general, healthcare expert to judge when it is safe and the previous recommendation of waiting for 6 weeks appropriate to undertake the breathing test. Abso- after surgical procedures or medical complications before lute contraindications are those that would cause performing lung function can often now be reduced to trauma, injury or death to the patient if they were <3 weeks with modern less invasive surgical undertaken. Sometimes the contraindication just techniques. means that the test is unnecessary or unlikely to be on September 24, 2021 by guest. Protected copyright. of real clinical benefit to a compromised patient, and a lung function test would be better when they are remote from surgery or infection. Similarly, INTRODUCTION a dogmatic approach of refusal to test patients with As lung function testing, and particularly spirom- any contraindication needs to be tempered. etry, becomes more widespread across primary and The main principle of performing lung function secondary, care there are greater numbers of prac- tests is that the risks of the procedure will provide information that will be outweighed by the benefit titioners and commissioners who are unaware of ’ the potential harm and discomfort that these tests the patient s assessment for operation or treatment provides. If the reverse is true and the lung function can cause to some patients. International guidelines fi on contraindications for lung function tests1 have test does not entail any bene t for the level of risk been cited by many sources23but their evidence sustained, then the test should not be undertaken. base is generally from the USA and is founded only Close liaison between surgical staff, medical staff e on expert opinion which is now >30 years old.4 7 and healthcare scientists/technologists in lung Recent developments in surgical practice and function should eradicate most unnecessary risk to technology have decreased the invasive nature of patients. procedures, so some of the contraindications may The key relative contraindications cited by the fi 1996 American Association for Respiratory Care now need modi cation. 1 This paper aims to review the evidence base for (AARC) documents are: these contraindications and, where it is lacking, < Haemoptysis of unknown origin (forced expira- examine the known facts around the potential tory manoeuvre may aggravate the underlying problems in order to suggest new recommenda- condition); tions. In the current culture of evidence-based < Pneumothorax; 714 Thorax 2011;66:714e723. doi:10.1136/thx.2010.139881 Review < Unstable cardiovascular status (forced expiratory manoeuvre Excellennce (NICE) has published general recommendations on Thorax: first published as 10.1136/thx.2010.139881 on 29 July 2010. Downloaded from may worsen angina or cause changes in blood pressure) or surgical site infection and healing (http://www.nice.org.uk/ ‘recent’ myocardial infarction or pulmonary embolus; nicemedia/pdf/CG74NICEGuideline.pdf). < Thoracic, abdominal or cerebral aneurysms (danger of rupture ‘Healing time’ is a general term and may refer to functional due to increased thoracic pressure); healing rather than tissue repair, and does not of course mean < ‘Recent’ eye surgery (eg, cataract); that patients could not perform lung function tests before this < Presence of an acute illness or symptom that might interfere time. The time taken before maximal manouevres would cause with test performance (eg, nausea, vomiting); and damage to the surgical area (eg, rupture stitches, etc.) or pain to < Recent thoracic or abdominal surgery. the patient needs to be considered. Also, there are a number of These recommendations are based on very little concrete risk factors which prolong healing, including smoking, diabetes, e e evidence.4 7 and to date there have been no randomised age, poor nutritional status and general health.11 13 controlled trials (RCTs) published in this area. Each of these key Surgical procedures that could be affected by lung function issues will be reviewed in this paper and, where possible, new testing include the following categories: recommendations will be suggested. < Abdominal surgery. < Eye surgery. POTENTIAL HARM FROM LUNG FUNCTION TESTS < Thoracic surgery. The most likely harm from lung function testing originates < Ear surgery. probably from four key factors: < Brain surgery. 1. Maximal pressures generated in the thorax and their impact on abdominal and thoracic organs/tissues. ABDOMINAL SURGERY 2. Large swings in blood pressure causing stresses on tissues in Generally, the more muscular damage involved in abdominal the body (head, limbs, etc.). surgery, the longer the time for healing is required. 3. Expansion of the chest wall and lungs. 4. Active communicable diseases (tuberculosis (TB), hepatitis B, Laparotomy HIV, etc.). Laparotomy for abdominal surgery is increasingly being reduced It is worth noting that postoperative physiotherapy including by using laparoscopy involving ‘keyhole’ techniques. A recent encouraging deep breathing, coughing and incentive spirometry Cochrane review14 has shown that people who have keyhole after thoracic surgery is actually thought to be beneficial in procedures can return to their normal daily activities on average terms of reversing atelectasis, thus reducing the risk of pneu- 3e4 days earlier than those who have open surgery. One study monia.8 9 Similarly in cardiothoracic surgery the emphasis is on gastric bypass surgery comparing laparoscopic with conven- now shifting towards earlier mobilisation of the patient post- tional surgery15 has shown that lung function (forced expiratory operatively in order to re-establish normal respiration rather volume in 1 s (FEV1)) falls to 40% of the preoperative value on 910 than a policy of avoiding activity. the first postoperative day, 50% by day 3 and 80% by day 7. By http://thorax.bmj.com/ Many contraindications have a higher risk, with the more day 7 there was no difference in lung function after either volitional tests involving forced manoeuvres such as spirometry, surgical technique. This suggests that meaningful spirometry maximum mouth pressures and possibly full exercise tests. can be performed if required within 1 week of abdominal surgery However, considerable information can be gained from less by either technique. forced tests such as oscillometry, relaxed vital capacity, static lung volume assessment, gas transfer and some
Recommended publications
  • Acr–Scbt-Mr–Spr–Str Practice Parameter for the Performance of Thoracic Computed Tomography (Ct)
    p The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields. The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized. Revised 2018 (Resolution 7)* ACR–SCBT-MR–SPR–STR PRACTICE PARAMETER FOR THE PERFORMANCE OF THORACIC COMPUTED TOMOGRAPHY (CT) PREAMBLE This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care1.
    [Show full text]
  • Coding Billing
    CodingCoding&Billing FEBRUARY 2020 Quarterly Editor’s Letter Welcome to the February issue of the ATS Coding and Billing Quarterly. There are several important updates about the final Medicare rules for 2020 that will be important for pulmonary, critical care and sleep providers. Additionally, there is discussion of E/M documentation rules that will be coming in 2021 that practices might need some time to prepare for, and as always, we will answer coding, billing and regulatory compliance questions submitted from ATS members. If you are looking for a more interactive way to learn about the 2020 Medicare final rules, there is a webinar on the ATS website that covers key parts of the Medicare final rules. But before we get to all this important information, I have a request for your help. EDITOR ATS Needs Your Help – Recent Invoices for Bronchoscopes and PFT Lab ALAN L. PLUMMER, MD Spirometers ATS RUC Advisor TheA TS is looking for invoices for recently purchased bronchoscopes and ADVISORY BOARD MEMBERS: PFT lab spirometer. These invoices will be used by theA TS to present practice KEVIN KOVITZ, MD expense cost equipment to CMS to help establish appropriate reimbursement Chair, ATS Clinical Practice Committee rates for physician services using this equipment. KATINA NICOLACAKIS, MD Member, ATS Clinical Practice Committee • Invoices should not include education or service contract as those ATS Alternate RUC Advisorr are overhead and cannot be considered by CMS for this portion of the STEPHEN P. HOFFMANN, MD Member, ATS Clinical Practice Committee formula and payment rates. ATS CPT Advisor • Invoices can be up to five years old.
    [Show full text]
  • Thoracentesis
    The new england journal of medicine videos in clinical medicine Thoracentesis Todd W. Thomsen, M.D., Jennifer DeLaPena, M.D., and Gary S. Setnik, M.D. INDICATIONS From the Department of Emergency Medi- Thoracentesis is a valuable diagnostic procedure in a patient with pleural effusion cine, Mount Auburn Hospital, Cambridge, of unknown causation. Analysis of the pleural fluid will allow its categorization as MA (T.W.T., G.S.S.); the Department of Emergency Medicine, Beth Israel Deacon- either a transudate (a product of unbalanced hydrostatic forces) or an exudate (a ess Medical Center, Boston (J.D.); and the product of increased capillary permeability or lymphatic obstruction) (Table 1). If Division of Emergency Medicine, Harvard the effusion seems to have an obvious source (e.g., in an afebrile patient with con- Medical School, Boston (T.W.T., J.D., G.S.S.). Address reprint requests to Dr. Thomsen gestive heart failure and bilateral pleural effusions), diagnostic thoracentesis may at the Department of Emergency Medi- be deferred while the underlying process is treated. The need for the procedure cine, Mount Auburn Hospital, 330 Mount should be reconsidered if there is no appropriate response to therapy.1 Auburn St., Cambridge, MA 02238, or at [email protected]. Thoracentesis, as a therapeutic procedure, may dramatically reduce respiratory distress in patients presenting with large effusions. N Engl J Med 2006;355:e16. Copyright © 2006 Massachusetts Medical Society. CONTRAINDICATIONS There are limited data on the safety of thoracentesis
    [Show full text]
  • Update in Anaesthesia
    Update in Anaesthesia Pulmonary Function Tests and Assessment for Lung Resection David Portch*, Bruce McCormick *Correspondence Email: [email protected] INTRODUCTION Summary respectively. There are 2400 lobectomies and 500 The aim of this article is to describe the tests available This article describes the for the assessment of patients presenting for lung pneumonectomies performed in the UK each year, steps taken to evaluate resection. The individual tests are explained and we with in-hospital mortality 2-4% for lobectomy and patients’ fitness for lung 4 describe how patients may progress through a series of 6-8% for pneumonectomy. resection surgery. Examples tests to identify those amenable to lung resection. Lung resection is most frequently performed to treat are used to demonstrate interpretation of these tests. Pulmonary function testing is a vital part of the non-small cell lung cancer. This major surgery places It is vital to use these tests in assessment process for thoracic surgery. However, large metabolic demands on patients, increasing conjunction with a thorough for other types of surgery there is no evidence postoperative oxygen consumption by up to 50%. history and examination that spirometry is more effective than history and Patients presenting for lung resection are often high in order to achieve an examination in predicting postoperative pulmonary risk due to a combination of their age (median age accurate assessment of each complications in patients with known chronic lung is 70 years)5 and co-morbidities. Since non-surgical patient’s level of function. conditions. Furthermore specific spirometric values mortality approaches 100%, a thorough assessment of Much of this assessment (e.g.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Annex 2. List of Procedure Case Rates (Revision 2.0)
    ANNEX 2. LIST OF PROCEDURE CASE RATES (REVISION 2.0) FIRST CASE RATE RVS CODE DESCRIPTION Health Care Case Rate Professional Fee Institution Fee Integumentary System Skin, Subcutaneous and Accessory Structures Incision and Drainage Incision and drainage of abscess (e.g., carbuncle, suppurative hidradenitis, 10060 3,640 840 2,800 cutaneous or subcutaneous abscess, cyst, furuncle, or paronychia) 10080 Incision and drainage of pilonidal cyst 3,640 840 2,800 10120 Incision and removal of foreign body, subcutaneous tissues 3,640 840 2,800 10140 Incision and drainage of hematoma, seroma, or fluid collection 3,640 840 2,800 10160 Puncture aspiration of abscess, hematoma, bulla, or cyst 3,640 840 2,800 10180 Incision and drainage, complex, postoperative wound infection 5,560 1,260 4,300 Excision - Debridement 11000 Debridement of extensive eczematous or infected skin 10,540 5,040 5,500 Debridement including removal of foreign material associated w/ open 11010 10,540 5,040 5,500 fracture(s) and/or dislocation(s); skin and subcutaneous tissues Debridement including removal of foreign material associated w/ open 11011 fracture(s) and/or dislocation(s); skin, subcutaneous tissue, muscle fascia, 11,980 5,880 6,100 and muscle Debridement including removal of foreign material associated w/ open 11012 fracture(s) and/or dislocation(s); skin, subcutaneous tissue, muscle fascia, 12,120 6,720 5,400 muscle, and bone 11040 Debridement; skin, partial thickness 3,640 840 2,800 11041 Debridement; skin, full thickness 3,640 840 2,800 11042 Debridement; skin, and
    [Show full text]
  • ANMC Specialty Clinic Services
    Cardiology Dermatology Diabetes Endocrinology Ear, Nose and Throat (ENT) Gastroenterology General Medicine General Surgery HIV/Early Intervention Services Infectious Disease Liver Clinic Neurology Neurosurgery/Comprehensive Pain Management Oncology Ophthalmology Orthopedics Orthopedics – Back and Spine Podiatry Pulmonology Rheumatology Urology Cardiology • Cardiology • Adult transthoracic echocardiography • Ambulatory electrocardiology monitor interpretation • Cardioversion, electrical, elective • Central line placement and venous angiography • ECG interpretation, including signal average ECG • Infusion and management of Gp IIb/IIIa agents and thrombolytic agents and antithrombotic agents • Insertion and management of central venous catheters, pulmonary artery catheters, and arterial lines • Insertion and management of automatic implantable cardiac defibrillators • Insertion of permanent pacemaker, including single/dual chamber and biventricular • Interpretation of results of noninvasive testing relevant to arrhythmia diagnoses and treatment • Hemodynamic monitoring with balloon flotation devices • Non-invasive hemodynamic monitoring • Perform history and physical exam • Pericardiocentesis • Placement of temporary transvenous pacemaker • Pacemaker programming/reprogramming and interrogation • Stress echocardiography (exercise and pharmacologic stress) • Tilt table testing • Transcutaneous external pacemaker placement • Transthoracic 2D echocardiography, Doppler, and color flow Dermatology • Chemical face peels • Cryosurgery • Diagnosis
    [Show full text]
  • Core Curriculum for Surgical Technology Sixth Edition
    Core Curriculum for Surgical Technology Sixth Edition Core Curriculum 6.indd 1 11/17/10 11:51 PM TABLE OF CONTENTS I. Healthcare sciences A. Anatomy and physiology 7 B. Pharmacology and anesthesia 37 C. Medical terminology 49 D. Microbiology 63 E. Pathophysiology 71 II. Technological sciences A. Electricity 85 B. Information technology 86 C. Robotics 88 III. Patient care concepts A. Biopsychosocial needs of the patient 91 B. Death and dying 92 IV. Surgical technology A. Preoperative 1. Non-sterile a. Attire 97 b. Preoperative physical preparation of the patient 98 c. tneitaP noitacifitnedi 99 d. Transportation 100 e. Review of the chart 101 f. Surgical consent 102 g. refsnarT 104 h. Positioning 105 i. Urinary catheterization 106 j. Skin preparation 108 k. Equipment 110 l. Instrumentation 112 2. Sterile a. Asepsis and sterile technique 113 b. Hand hygiene and surgical scrub 115 c. Gowning and gloving 116 d. Surgical counts 117 e. Draping 118 B. Intraoperative: Sterile 1. Specimen care 119 2. Abdominal incisions 121 3. Hemostasis 122 4. Exposure 123 5. Catheters and drains 124 6. Wound closure 128 7. Surgical dressings 137 8. Wound healing 140 1 c. Light regulation d. Photoreceptors e. Macula lutea f. Fovea centralis g. Optic disc h. Brain pathways C. Ear 1. Anatomy a. External ear (1) Auricle (pinna) (2) Tragus b. Middle ear (1) Ossicles (a) Malleus (b) Incus (c) Stapes (2) Oval window (3) Round window (4) Mastoid sinus (5) Eustachian tube c. Internal ear (1) Labyrinth (2) Cochlea 2. Physiology of hearing a. Sound wave reception b. Bone conduction c.
    [Show full text]
  • Mechanical Ventilation Guide
    MAYO CLINIC MECHANICAL VENTILATION GUIDE RESP GOALS INITIAL MONITORING TARGETS FAILURE SETTINGS 6 P’s BASIC HEMODYNAMIC 1 BLOOD PRESSURE SBP > 90mmHg STABILITY PEAK INSPIRATORY 2 < 35cmH O PRESSURE (PIP) 2 BAROTRAUMA PLATEAU PRESSURE (P ) < 30cmH O PREVENTION PLAT 2 SAFETY SAFETY 3 AutoPEEP None VOLUTRAUMA Start Here TIDAL VOLUME (V ) ~ 6-8cc/kg IBW PREVENTION T Loss of AIRWAY Female ETT 7.0-7.5 AIRWAY / ETT / TRACH Patent Airway MAINTENANCE Male ETT 8.0-8.5 AIRWAY AIRWAY FiO2 21 - 100% PULSE OXIMETRY (SpO2) > 90% Hypoxia OXYGENATION 4 PEEP 5 [5-15] pO2 > 60mmHg 5’5” = 350cc [max 600] pCO2 40mmHg TIDAL 6’0” = 450cc [max 750] 5 VOLUME 6’5” = 500cc [max 850] ETCO2 45 Hypercapnia VENTILATION pH 7.4 GAS GAS EXCHANGE BPM (RR) 14 [10-30] GAS EXCHANGE MINUTE VENTILATION (VMIN) > 5L/min SYNCHRONY WORK OF BREATHING Decreased High Work ASSIST CONTROL MODE VOLUME or PRESSURE of Breathing PATIENT-VENTILATOR AC (V) / AC (P) 6 Comfortable Breaths (WOB) SUPPORT SYNCHRONY COMFORT COMFORT 2⁰ ASSESSMENT PATIENT CIRCUIT VENT Mental Status PIP RR, WOB Pulse, HR, Rhythm ETT/Trach Position Tidal Volume (V ) Trachea T Blood Pressure Secretions Minute Ventilation (V ) SpO MIN Skin Temp/Color 2 Connections Synchrony ETCO Cap Refill 2 Air-Trapping 1. Recognize Signs of Shock Work-up and Manage 2. Assess 6Ps If single problem Troubleshoot Cause 3. If Multiple Problems QUICK FIX Troubleshoot Cause(s) PROBLEMS ©2017 Mayo Clinic Foundation for Medical Education and Research CAUSES QUICK FIX MANAGEMENT Bleeding Hemostasis, Transfuse, Treat cause, Temperature control HYPOVOLEMIA Dehydration Fluid Resuscitation (End points = hypoxia, ↑StO2, ↓PVI) 3rd Spacing Treat cause, Beware of hypoxia (3rd spacing in lungs) Pneumothorax Needle D, Chest tube Abdominal Compartment Syndrome FLUID Treat Cause, Paralyze, Surgery (Open Abdomen) OBSTRUCTED BLOOD RETURN Air-Trapping (AutoPEEP) (if not hypoxic) Pop off vent & SEE SEPARATE CHART PEEP Reduce PEEP Cardiac Tamponade Pericardiocentesis, Drain.
    [Show full text]
  • Post-Pneumonectomy Bronchopleural Fistula
    9 Review Article Page 1 of 9 Complications of thoracic surgery: post-pneumonectomy bronchopleural fistula Anuj Wali1, Andrea Billè1,2 1Thoracic Surgery Department, Guy’s Hospital, London, UK; 2Division of Cancer Studies, King’s College London Faculty of Life Sciences & Medicine at Guy’s, Kings College and St. Thomas’ Hospitals, London, UK Contributions: (I) Conception and design: All authors; (II) Administrative support: A Billè; (III) Provision of study materials or patients: A Wali; (IV) Collection and assembly of data: A Wali; (V) Data analysis and interpretation: A Wali; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Andrea Billè. Thoracic Surgery Department, Guy’s Hospital, 6th Floor, Borough Wing, London SE1 9RT, UK. Email: [email protected]. Abstract: Bronchopleural fistula (BPF) describes an abnormal connection between a bronchus (main, lobar or segmental) and the pleural cavity. BPF is a recognized complication after pneumonectomy and is associated with significant morbidity and mortality. The risk of post-pneumonectomy BPF (PP-BPF) is greater in right sided operations, male patients, residual tumor, barotrauma, previous TB and active infection. If suspected, diagnosis of BPF should be made expeditiously with computed tomography scanning and bronchoscopy. The management depends on the timing of presentation, the size of the fistula and the clinical status of the patient. All patients require drainage of the infected pleural space and intravenous antibiotics. In early presentations, re-do thoracotomy followed by stump closure and reinforcement with a pedicled muscle flap is recommended. If the fistula is small (<5 mm) or the patient is not fit enough for major surgery, bronchoscopic repair using fibrin glue application, stents or closure devices can be attempted.
    [Show full text]
  • Both Left Upper Lobectomy and Left Pneumonectomy Are Risk Factors For
    www.nature.com/scientificreports OPEN Both left upper lobectomy and left pneumonectomy are risk factors for postoperative stroke Received: 12 December 2018 Nanchang Xie1, Xianghe Meng1, Chuanjie Wu2, Yajun Lian1, Cui Wang3, Mengyan Yu1, Accepted: 8 July 2019 Yingjiao Li1 & Yali Wang1 Published: xx xx xxxx Retrospective studies have found that left upper lobectomy (LUL) may be a new risk factor for stroke, and the potential mechanism is pulmonary vein thrombosis, which more likely develops in the left superior pulmonary vein (LSPV) stump. The LSPV remaining after left pneumonectomy is similar to that remaining after LUL. However, the association between left pneumonectomy, LUL, and postoperative stroke remains unclear. Thus, we sought to analyze whether both LUL and left pneumonectomy are risk factors for postoperative stroke. We prospectively included consecutive patients who underwent resection between November 2016 and March 2018 at our institution with 6 months of follow-up. Baseline demographic and clinical data were taken. A logistic regression model was used to determine independent predictors of postoperative stroke. In our study, 756 patients who underwent an isolated pulmonary lobectomy procedure were screened; of these, 637 patients who completed the 6-month follow-up were included in the analysis. Multivariable logistic regression analysis adjusted for common risk factors showed that the LUL and left pneumonectomy were independent predictors of stroke (odds ratio, 18.12; 95% confdence interval, 2.12–155.24; P = 0.008). Moreover, diabetes mellitus also was a predictor of postoperative stroke. In conclusion, both LUL and left pneumonectomy are signifcant risk factors for postoperative stroke. Stroke is one of the most feared complications of surgery, which occurs in 0.08–0.7% and 0.6% of general and thoracic surgery patients, respectively1–3.
    [Show full text]
  • Treatment of Post Pneumonectomy Pleural Empyema by Open Window Thoracostomy
    Eur Respir J 1989, 2, 853-855 Treatment of post pneumonectomy pleural empyema by open window thoracostomy P.E. Postmus*, J.M. Kerstjens,* W.J. de Boer*, J.N. Homan van der Heide*, G.H. KoE:Her* Treatmenl of post pneumonectomy pleural empyema by open window thora­ Dcpts of Pulmonary Diseases' , and Thoracic costomy. P.E. Postmus, J.M. Kerstjens, W.J. de Boer, JN. Homan van der Surgery "· University Hospital, Groningen, The Heide, GH. Koiiter. Netherlands. ABSTRACT: In 13 patients an open window thoracostomy (OWT) was Correspondence: P.E. Postmus, Dept of Pulmonol· performed for post pneumonectomy pleural empyema. The operation, and ogy, University Hospital, 59 Oostersingel, 9713 EZ life with an OWT cavity, were tolerated well. Early closure of an OWT Groningen, The Netherlands. is not advisable because of a high chance of recurrence of the infection and, In lung cancer patients also the risk of tumour relapse within two Keywords: Emphyema: pneumonectomy; window years after tumour surgery. thoracostomy. Eur Respir J., 1989, 2, 853-855 Received: November 14, 1988; accepted after revi­ sion February 2, 1989. Post pneumonectomy empyema with or without a Subsequenlly the cavity is thoroughly cleaned from bronchopleural fistula represents a rare but, without debris and necrotic tissue, whereupon the edges of the doubt, serious complication of thoracic surgery. skin are sutured onto Ll1e edges of the parietal pleura. In the majority of patients the infection will resolve After a check for bronchopleural fistulae and filling of after systemic antibiotics, adequate tube drainage and ir­ the cavity with moist gauze pads, the patient is extu­ rigation with or without lavage [I) and/or local instil­ bated.
    [Show full text]