Miscibility of Egg Yolk Lecithin with Palmitic Acid and Hexadecanol At

Total Page:16

File Type:pdf, Size:1020Kb

Miscibility of Egg Yolk Lecithin with Palmitic Acid and Hexadecanol At Journal of Oleo Science Copyright ©2013 by Japan Oil Chemists’ Society J. Oleo Sci. 62, (7) 471-480 (2013) Miscibility of Egg Yolk Lecithin with Palmitic Acid and Hexadecanol at the Air-Water Interface Hiromichi Nakahara and Osamu Shibata* Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University; 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan Abstract: The miscibility of Langmuir monolayers of egg yolk lecithin (eggPC) with n-hexadecanoic acid (PA), 1-hexadecanol (HD), and their equimolar mixture (PA/HD) was investigated thermodynamically and morphologically. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms for the binary and ternary systems were measured, employing the Wilhelmy method and the ionizing 241Am electrode method, respectively. From the thermodynamic perspective, eggPC was partially miscible with PA, HD, and PA/HD within the monolayer state, in terms of an excess Gibbs free energy of mixing calculated from the π-A isotherms and a two-dimensional phase diagram based on a monolayer collapse pressure. This was also directly supported by phase behavior observations using fluorescence microscopy (FM). EggPC formed a typical liquid-expanded (LE) monolayer, and the others formed liquid-condensed (LC) monolayers. The FM images exhibited miscible modes at middle molar fractions of PA, HD, and PA/ HD, and immiscible patterns at large molar fractions for all the systems examined. A new finding in the present study was that the eggPC/PA, eggPC/HD, and eggPC/(PA/HD) systems exhibited partial miscibility, although the systems were made of both LE (eggPC) and LC monolayers (the others). This miscibility is considered to be attributable to the molecular species comprising eggPC. Key words: Langmuir monolayer, EggPC, Palmitic acid, Hexadecanol, Surface pressure, Surface potential 1 INTRODUCTION classified into two types: protein(or peptide)-free prepara- Pulmonary surfactants, lipid-protein complexes secreted tion(s e.g., Exosurf®)2-4) and protein(peptide)-containing from alveolar type II cells, are essential for the mainte- preparation(s e.g., Surfaxin®)5-7). Indeed, the protein nance of respiration in human beings and animals. Their (peptide)-containing preparation is currently under inves- main function is to reduce the surface tension of the tigation with the aim of developing effective treatments for alveoli1). An infant with a native lack of pulmonary surfac- NRDS and other conditions. As replacements of the lipid tants suffers neonatal respiratory distress syndrome components in pulmonary surfactants, DPPC, phosphati- (NRDS). The artificial pulmonary surfactant preparation, dylglycero(l PG), PA, and hexadecano(l HD)are often uti- ® 4, 6, 8, 9) 10, 11) 12, 13) Surfacten , a bovine-derived pulmonary surfactant extract lized . Further examples, such as KL4 , rSP-C , supplemented with dipalmitoylphosphatidylcholine and Hel 13-5 peptides14-16), are also under consideration as (DPPC), palmitic acid(PA), and tripalmitin, is used in protein(or peptide)mimics of natural SP-B and SP-C pro- Japan as a first-line treatment for NRDS. In addition, many teins, which are the hydrophobic proteins in pulmonary medical doctors have recognized the possibility of applying surfactants. pulmonary surfactants to a wide range of pulmonary dis- As a biophysical function, pulmonary surfactant prepara- eases. However, the current preparation is expensive, such tions must form a stable monolayer that can reduce the that the application of Surfacten® only in NRDS is covered surface tension nearly to zero at the air-alveolar fluid inter- by health insurance in Japan. A further complication stems face during expiration17). The stability is also deeply related from the risk of anthropozoonosis. As the development of a to the prevention of alveolar collapse during periods of lower cost preparation with fewer side effects is necessary, lung compression17). It is widely accepted that these func- synthetic preparations which are not derived from animal tions are primarily induced by phospholipid(s particularly sources have been extensively investigated. These can be DPPC)in pulmonary surfactants. However, the convention- *Correspondence to: Osamu Shibata, Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University; 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan E-mail: [email protected] Accepted February 13, 2013 (received for review January 5, 2013) Journal of Oleo Science ISSN 1345-8957 print / ISSN 1347-3352 online http://www.jstage.jst.go.jp/browse/jos/ http://mc.manusriptcentral.com/jjocs 471 H. Nakahara and O. Shibata al artificial pulmonary surfactant preparation, which is con- mitic acid(PA); 99%)was purchased from Sigma-Aldrich tains DPPC as its main component, is considered to be pro- Co(. St. Louis, MO). 1-Hexadecano(l palmityl alcoho(l HD); hibitively expensive for extending its application to other >99%)was obtained from nacalai tesque(Kyoto, Japan). pulmonary diseases. In fact, the drug cost of Surfaxin®, the 3,6-Bi(s diethylamino)-9(- 2-octadecyloxycarbonyl)phenyl first FDA-approved peptide-containing synthetic surfac- chloride(R18)from Molecular Probes Inc(. Eugene, OR) tant, amounts to about $700 per infant treated. Surfaxin® is was employed as a fluorescent probe. These lipids were formulated as an 8.5 mL intratracheal suspension in a glass used without further purification. n-Hexane(98.5%)and vial. According to Discovery Laboratories, Inc(. PA, USA), ethano(l 99.5%)were purchased from Merck(Uvasol ®, each milliliter contains 30 mg phospholipid[s 22.50 mg Darmstadt, Germany)and nacalai tesque, respectively. A DPPC and 7.50 mg palmitoyloleoylphosphatidylglycerol 9:1 v/v n-hexane/ethanol mixture was used as a spreading sodium sal(t POPG, Na)], 4.05 mg PA, and 0.862 mg KL4. solvent. Sodium chloride(nacalai tesque)was roasted at Thus, Surfaxin® consists mainly of DPPC. Considering also 1023 K for 24 h to remove all surface-active organic impuri- the drug cost of Surfacten(® ~¥100,000), the synthetic- ties. The substrate solution was prepared using thrice-dis- surfactant types of RDS drugs obviously have not achieved tilled wate(r surface tension=72.0 mN m-1 at 298.2 K; extensive cost reductions for RDS treatments. This short- electrical resistivity=18 MΩ cm). coming, related to the high production costs of DPPC, prompted our exploration for a DPPC alternative. In the 2.2 Methods present study, we targeted virus-free egg yolk phosphati- 2.2.1 Surface pressure-area isotherms dylcholine(eggPC), extracted and purified from relatively The surface pressure(s π)of the monolayers were mea- less expensive egg yolk lecithin. DPPC possesses double sured using an automated homemade Wilhelmy balance. saturated hydrocarbon chain(s 2C16:0). Similarly, the fatty The surface pressure balanc(e Mettler Toledo, AG-64)had a acid moieties in eggPC are double hydrocarbon chains, resolution of 0.01 mN m-1. The pressure-measuring system comprising combinations of both saturated and unsaturat- was equipped with filter pape(r Whatman 541, periphery= ed acyl chains. Thus, we considered PA(C16:0)and HD 4 cm). The trough was made from Teflon®-coated brass (C16:0)as materials complementary to the degree of satu- (area=750 cm2), and Teflon® barrier(s both hydrophobic ration in eggPC. and lipophobic)were used in this study. Surface pressure In a first approach, we considered two-dimensiona(l 2D) (π)-molecular are(a A)isotherms were recorded at 298.2± monolayers at the air-water interface to investigate the 0.1 K. Stock solutions of eggPC(1.3 mM), PA(1.3 mM), and physicochemical interactions of eggPC with PA, HD, and an HD(1.3 mM)were prepared in n-hexane/ethano(l 9:1 v/v). equimolar PA/HD mixture. The only structural difference The spreading solvents were allowed to evaporate for 15 between PA and HD is their head group; their monolayer min prior to compression. The monolayer was compressed properties are very similar. Thus, in this study, the compo- at a speed of ~0.10 nm2 molecule-1 min-1. The standard sition of the PA/HD mixture was kept constant at a 1:1 deviation(s SD)for molecular surface area and surface molar ratio. Our objective was to elucidate the miscibility, pressure were ~0.01 nm2 and ~0.1 mN m-1, respective- interactions, and phase behaviors of the binary and ternary ly14, 18, 19). mixtures. The interfacial behaviors of eggPC with PA, HD, 2.2.2 Surface potential-area isotherms and their equimolar mixture in the monolayer state were The surface potentia(l ΔV)was recorded simultaneously evaluated by surface pressure(π)-molecular are(a A)and with surface pressure, when the monolayer was com- surface potentia(l ΔV)-A isotherms on 0.15 M NaCl at 298.2 pressed and expanded at the air-water interface. It was K. The excess Gibbs free energy of mixing was calculated monitored with an ionizing 241Am electrode at 1-2 mm from the isotherm data, and a 2D phase diagram was con- above the interface, while a reference electrode was dipped structed from the monolayer collapse pressures. In addi- in the subphase. An electromete(r Keithley 614)was used tion, the phase behaviors for the monolayers upon com- to measure the surface potential. The SD for the surface pression were examined using in situ fluorescence potential was 5 mV20, 21). microscop(y FM). 2.2.3 Fluorescence microscop(y FM) Fluorescence microscopi(c U.S.I. System BM-1000)ob- servations and compression isotherm measurements were carried out simultaneously. A spreading solution of the sur- 2 EXPERIMENTAL factants was prepared as a mixed solution doped with 1 2.1 Materials mol% fluorescence probe(R18). A 300 W xenon lamp(XL Egg yolk lecithin PC-98N(>98% phosphatidylcholine; 300, Pneum)was used for the excitation of the FM probe. virus-free; lot# AT2002), abbreviated as eggPC, was a gift Excitation and emission wavelengths were selected by an from the Kewpie Corporation Fine Chemical Division appropriate beam splitter/filter combination(Mitutoyo band (Tokyo, Japan).
Recommended publications
  • Synthetic Surfactants: Where Are We? Evidence from Randomized, Controlled Clinical Trials
    Journal of Perinatology (2009) 29, S23–S28 r 2009 Nature Publishing Group All rights reserved. 0743-8346/09 $32 www.nature.com/jp REVIEW Synthetic surfactants: where are we? Evidence from randomized, controlled clinical trials F Moya1,2 1Department of Neonatology, New Hanover Regional Medical Center, Wilmington, NC, USA and 2Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA were shown in that meta-analysis or in any individual trials The benefits of exogenous synthetic or animal-derived surfactants for comparing these surfactants. None of these surfactant comparison prevention or treatment of respiratory distress syndrome (RDS) are well trials reported outcomes beyond the initial stay in the neonatal established. Data from head-to-head trials comparing animal-derived intensive care unit (NICU). surfactants primarily with the synthetic surfactant colfosceril suggest that Multiple studies have shown that synthetic surfactants lacking the major clinical advantages afforded by the presence of surfactant protein SP-B and SP-C fail to lower surface tension in vitro, whereas (SP)-B and SP-C in animal-derived preparations relate to faster onset of animal-derived surfactants can reduce it to an extent somewhat action, a reduction in the incidence of RDS when used prophylactically, and directly related to their SP content.3,4 The absence of SP-B seems to a lower incidence of air leaks and RDS-related deaths. However, no benefits be particularly important as animals or humans lacking SP-B in terms of overall mortality or BPD have been shown in these head-to-head because of a genetic mutation develop a fatal form of respiratory comparisons.
    [Show full text]
  • Lucinactant Attenuates Pulmonary Inflammatory Response, Preserves Lung Structure, and Improves Physiologic Outcomes in a Preterm Lamb Model of RDS
    nature publishing group Translational Investigation Articles Lucinactant attenuates pulmonary inflammatory response, preserves lung structure, and improves physiologic outcomes in a preterm lamb model of RDS Marla R. Wolfson1–4, Jichuan Wu1,4, Terrence L. Hubert1, Timothy J. Gregory5, Jan Mazela5,6 and Thomas H. Shaffer1,3,7 BACKGROUND: Acute inflammatory responses to supple­ (2). Theoretically, a reduction in the lung inflammatory load mental oxygen and mechanical ventilation have been impli­ related to RDS may not only equate to an improvement in cated in the pathophysiological sequelae of respiratory distress pulmonary outcome but also to a potential improvement in syndrome (RDS). Although surfactant replacement therapy other neonatal morbidities such as necrotizing enterocoli- (SRT) has contributed to lung stability, the effect on lung tis, retinopathy of prematurity, and cerebral palsy. Although inflammation is inconclusive. Lucinactant contains sinapultide more classical forms of anti-inflammatory agents such as early (KL4), a novel synthetic peptide that functionally mimics sur­ postnatal steroids have demonstrated acute improvements in factant protein B, a protein with anti-inflammatory proper­ oxygenation and pulmonary mechanics in preterm infants, ties. We tested the hypothesis that lucinactant may modulate because of significant adverse effects these agents are not con- lung inflammatory response to mechanical ventilation in the sidered safe for routine use in critically ill preterm infants (3). management of RDS and may confer greater protection than New therapies are urgently needed and being explored that animal-derived surfactants. specifically target the acute inflammatory responses in the METHODS: Preterm lambs (126.8 ± 0.2 SD d gestation) were lung (4–7). randomized to receive lucinactant, poractant alfa, beractant, or Events leading to inflammation in the lung and subsequent no surfactant and studied for 4 h.
    [Show full text]
  • What's New in Surfactant?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Eur J Pediatr (2007) 166:889–899 DOI 10.1007/s00431-007-0501-4 REVIEW What’s new in surfactant? A clinical view on recent developments in neonatology and paediatrics Jasper V. Been & Luc J. I. Zimmermann Received: 26 March 2007 /Accepted: 18 April 2007 / Published online: 22 May 2007 # Springer-Verlag 2007 Abstract Surfactant therapy has significantly changed evolving and recent developments include further evolution clinical practice in neonatology over the last 25 years. of synthetic surfactants, evaluation of surfactant as a Recent trials in infants with respiratory distress syndrome therapeutic option in lung diseases other than RDS and (RDS) have not shown superiority of any natural surfactant the discovery of genetic disorders of surfactant metabolism. over another. Advancements in the development of syn- Ongoing research is essential to continue to improve thetic surfactants are promising, yet to date none has been therapeutic prospects for children with serious respiratory shown to be superior to natural preparations. Ideally, disease involving disturbances in surfactant. surfactant would be administered without requiring mechanical ventilation. An increasing number of studies Keywords Surfactant . Lung disease . investigate the roles of alternative modes of administration Respiratory distress syndrome . Preterm . Therapy and the use of nasal continuous positive airway pressure to minimise the need for mechanical
    [Show full text]
  • Is There a Difference in Surfactant Treatment
    y & R ar esp on ir m a l to u r y Ramanthan et al., J Pulmon Resp Med 2013, S13 P f M o e l Journal of Pulmonary & Respiratory d a i DOI: 10.4172/2161-105X.S13-004 n c r i n u e o J ISSN: 2161-105X Medicine Review Article Open Access Is there a Difference in Surfactant Treatment of Respiratory Distress Syndrome in Premature Neonates? A Review Rangasamy Ramanthan1, Karen Kamholz2 and Alan M Fujii3* 1LAC+USC Medical center and Children’s Hospital of Los Angeles, University of Southern California, Keck School of Medicine, USA 2Department of Pediatrics, MedStar Georgetown University Hospital, USA 3Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, USA Abstract Exogenous surfactant treatment of premature infants with Respiratory Distress Syndrome (RDS) has been the standard of care for more than two decades. There are now many studies comparing various surfactant preparations. Data are clear that the synthetic surfactants without surfactant proteins are inferior to animal derived surfactant preparations. In the United States, commercially available surfactants are beractant, calfactant, poractant alfa, and lucinactant. Relative efficacy of the various available animal derived surfactants in the United States appear to favor poractant alfa, the surfactant preparation with the highest concentrations of phospholipids and high concentration of surfactant proteins, allowing a higher initial dose of phospholipids in preterm infants less than 32 weeks. A new synthetic surfactant with a surfactant protein analog, lucinactant, has been recently been approved for use in the United States. Synthetic surfactants hold the possibility of surfactant treatments without potential animal-born infectious agents or animal proteins that could induce an immune response in fragile premature infants with multiple medical problems.
    [Show full text]
  • Animal-Derived Surfactants for the Treatment and Prevention of Neonatal Respiratory Distress Syndrome: Summary of Clinical Trials
    REVIEW Animal-derived surfactants for the treatment and prevention of neonatal respiratory distress syndrome: summary of clinical trials J Wells Logan Introduction: Available literature suggests that the advantage of animal-derived surfactants Fernando R Moya over fi rst-generation synthetic agents derives from the presence of surface-active proteins and their phospholipid content. Here we summarize the results of clinical trials comparing animal- Department of Neonatology, derived surfactant preparations with other animal-derived surfactants and with both fi rst- and Southeast Area Health Educational second-generation synthetic surfactants. Center, New Hanover Regional Medical Center, Wilmington, NC, USA Methods: Published clinical trials of comparisons of animal-derived surfactants were sum- marized and compared. Comparisons emphasized differences in (1) key surfactant components attributed with effi cacy and (2) differences in published outcomes. Results: For the most important outcomes, mortality and chronic lung disease, currently avail- able natural surfactants are essentially similar in effi cacy. When examining secondary outcomes (pneumothorax, ventilator weaning, and need for supplemental oxygen), it appears that both calfactant and poractant have an advantage over beractant. The weight of the evidence, especially For personal use only. for study design and secondary outcomes, favors the use of calfactant. However, the superiority of poractant over beractant, when the higher initial dose of poractant is used, strengthens the case for use of poractant as well. Conclusions: Clinical trials suggest that the higher surfactant protein-B content in calfactant, and perhaps the higher phospholipid content in poractant (at higher initial dose), are the factors that most likely confer the observed advantage over other surfactant preparations.
    [Show full text]
  • Windtree Therapeutics Company Overview August 20, 2020 OTCQB:(NASDAQ: WINT) WINT Forward-Looking Statements
    Windtree Therapeutics Company Overview August 20, 2020 OTCQB:(NASDAQ: WINT) WINT Forward-looking Statements This presentation includes forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. These statements, among other things, include statements about the Company's clinical development programs, business strategy, outlook, objectives, plans, intentions, goals, future financial conditions, future collaboration agreements, the success of the Company's product development activities, or otherwise as to future events. The forward-looking statements provide our current expectations or forecasts of future events and financial performance and may be identified by the use of forward-looking terminology, including such terms as “believes,” “estimates,” “anticipates,” “expects,” “plans,” “intends,” “may,” “will,” “should,” “could,” “targets,” “projects,” “contemplates,” “predicts,” “potential” or “continues” or, in each case, their negative, or other variations or comparable terminology, though the absence of these words does not necessarily mean that a statement is not forward-looking. We intend that all forward-looking statements be subject to the safe-harbor provisions of the Private Securities Litigation Reform Act of 1995. Because forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified and some of which are beyond our control, you should not rely on these forward-looking statements as predictions of future events. The events and circumstances reflected in our forward-looking statements may not be achieved or occur and actual results could differ materially from those projected in the forward-looking statements. These risks and uncertainties are further described in the Company's periodic filings with the Securities and Exchange Commission (“SEC”), including the most recent reports on Form 10-K, Form 10-Q and Form 8-K, and any amendments thereto (“Company Filings”).
    [Show full text]
  • Comparative Efficacy of Pulmonary Surfactant in Respiratory Distress Syndrome in Preterm Infants: a Bayesian Network Meta-Analysis
    Systematic review/Meta-analysis Comparative efficacy of pulmonary surfactant in respiratory distress syndrome in preterm infants: a Bayesian network meta-analysis Caihong Qiu, Cui Ma, Nana Fan, Xiaoyu Zhang, Guofeng Zheng Maternity and Child Health Care of Zaozhuang, China Corresponding author: Guofeng Zheng PhD Submitted: 4 April 2020 Maternity and Child Accepted: 18 June 2020 Health Care of Zaozhuang China Arch Med Sci E-mail: zheng__guofeng@ DOI: https://doi.org/10.5114/aoms.2020.97065 sina.com Copyright © 2020 Termedia & Banach Abstract Introduction: The comparative efficacy of pulmonary surfactant in the treat- ment of respiratory distress syndrome in preterm infants remains unclear. We aimed to evaluate the effectiveness of different pulmonary surfactant in the treatment of respiratory distress syndrome in preterm infants and to provide an evidence-based reference for clinical use. Material and methods: MEDLINE, Embase, The Cochrane Library, and Clini- cal Trials databases were electronically searched from inception to January 2019. Two reviewers independently screened literature and extracted data, and then R and RevMan 5.3 software packages were used to perform net- work meta-analysis. Results: The relative risk of respiratory distress syndrome in preterm infants associated with six different pulmonary surfactant was analysed, including beractant (Survanta), surfactant A (Alveofact), calfactant (Infasurf), porac- tant (Curosurf), lucinactant (Surfaxin), and colfosceril (Exosurf). Patients with the following drugs appeared to have significantly reduced mortality of respiratory distress syndrome compare with beractant: surfactant A (OR = 0.53, 95% CI: 0.31–0.90), calfactant (OR = 0.91, 95% CI: 0.85–0.97), porac- tant (OR = 0.72, 95% CI: 0.67–0.77), lucinactant (OR = 0.80, 95% CI: 0.71– 0.90), and colfosceril (OR = 0.93, 95% CI: 0.87–0.99).
    [Show full text]
  • Surfactant Replacement Therapy: 2013
    AARC Clinical Practice Guideline. Surfactant Replacement Therapy: 2013 Brian K Walsh RRT-NPS RPFT FAARC, Brandon Daigle RRT-NPS, Robert M DiBlasi RRT-NPS FAARC, and Ruben D Restrepo MD RRT FAARC We searched the MEDLINE, CINAHL, and Cochrane Library databases for English-language randomized controlled trials, systematic reviews, and articles investigating surfactant replacement therapy published between January 1990 and July 2012. By inspection of titles, references having no relevance to the clinical practice guideline were eliminated. The update of this clinical practice guideline is based on 253 clinical trials and systematic reviews, and 12 articles investigating sur- factant replacement therapy. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation scoring system: 1: Administration of surfactant replacement therapy is strongly recommended in a clinical setting where properly trained personnel and equipment for intubation and resuscitation are readily available. 2: Prophylactic surfactant administration is recommended for neonatal respiratory distress syndrome (RDS) in which surfactant deficiency is suspected. 3: Rescue or therapeutic administration of surfactant after the initiation of mechanical ventilation in infants with clinically confirmed RDS is strongly recom- mended. 4: A multiple surfactant dose strategy is recommended over a single dose strategy. 5: Nat- ural exogenous surfactant preparations are recommended over laboratory derived synthetic suspen- sions at this time. 6: We suggest that aerosolized delivery of surfactant not be utilized at this time. Key words: exogenous surfactant administration; intratracheal administration; prematurity; neonatal respiratory distress syndrome; surfactant. [Respir Care 2013;58(2):367–375. © 2013 Daedalus Enterprises] SRT 1.0 PROCEDURE forms a layer between the terminal airways/alveolar sur- faces and the alveolar gas.
    [Show full text]
  • An Overview of Acute Lung Injury in General and in Particular Viral
    Journal of Respiratory Diseases and Medicine Review Article ISSN: 2633-1063 An overview of acute lung injury in general and in particular viral infections with specific reference to nebulized surfactant and anticoagulation Johan Smith1, Andre R Coetzee2 and Johann M van Zyl3* 1Department of Paediatrics and Child Health, Tygerberg Children’s Hospital, Stellenbosch University and Tygerberg Hospital, South Africa 2Emeritus Professor of Anaesthesiology and Critical Care, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa 3Emeritus Professor of Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa Abstract The coronavirus 2 (SARS-CoV-2) has resulted in an international pandemic. The SARS-CoV-2 affects cardiovascular, digestive and urogenital systems. In an attempt to develop a multimodal and targeted approach to the pathophysiology associated with viral lung injury, we reviewed lung histopathology, inflammation, surfactant biology and pathophysiology related to viral associated acute lung injury (ALI / ARDS). Histopathology of viral pneumonia/ARDS cases of the past 100 years has revealed that lung parenchymal and vascular pathologic changes described in the 1918 influenza pandemic, are no different from the histopathology observed in other viral pandemics. Given the inflammatory storm which can occur in COVID-19 infection, the patient is a candidate to develop the classic multi-organ dysfunction and / or failure (MOD/F) which may well include ALI and ARDS. Because there is a well described temporal change in the pathophysiology associated with ALI /ARDS, a “one size fit al” remedy will not suffice, hence our attempt at a targeted functional approach. For instance, variable results in adults treated with surfactant have relegated the use of surfactant in adult ARDS to an uncertainty.
    [Show full text]
  • Comparison of Poractant Alfa and Lyophilized Lucinactant in a Preterm Lamb Model of Acute Respiratory Distress
    nature publishing group Articles Translational Investigation Comparison of poractant alfa and lyophilized lucinactant in a preterm lamb model of acute respiratory distress Jan Mazela1, T. Allen Merritt2, Michael H. Terry3, Timothy J. Gregory4 and Arlin B. Blood2 INTRODUCTiON: A lyophilized formulation of lucinactant of neonatal RDS. All of these surfactants, including porac- has been developed to simplify preparation and dosing. tant alfa, beractant, calfactant, and surfactant-TA, are derived Endotracheal administration of surfactant can be associated from animals. These products contain both hydrophobic sur- with potentially harmful transient hemodynamic changes factant proteins (SPs) B and C in various quantities and pro- including decreases in cerebral blood flow and delivery of O2 portions. The critical importance of SP-B was demonstrated to the brain. Efficacy and peri-dosing effects of poractant alfa by Clark et al., who showed respiratory failure occurring and a lyophilized form of lucinactant were compared in this soon after birth in an SP-B gene knockout mouse model (7). study. Synthetic surfactants such as colfosceril palmitate and pumac- METHODS: Premature lambs (126–129 d gestation) were tant did not contain any SPs (8) and are no longer used for the delivered by c-section, tracheostomized, ventilated, and instru- treatment of RDS. A meta-analysis by the Cochrane Library mented with cerebral laser Doppler flowmetry and tissue showed that animal-derived surfactants, when used to treat PO2 probes. Pulmonary compliance and tidal volumes were RDS, provide a significant benefit over synthetic surfactants by monitored continuously and surfactant lung distribution was decreasing the incidences of pulmonary air leaks and all-cause assessed.
    [Show full text]
  • Exogenous Surfactant Therapy in Pediatrics
    0021-7557/03/79-Supl.2/S205 Jornal de Pediatria Copyright © 2003 by Sociedade Brasileira de Pediatria ARTIGO DE REVISÃO Terapia com surfactante pulmonar exógeno em pediatria Exogenous surfactant therapy in pediatrics Norberto A. Freddi1, José Oliva Proença Filho2, Humberto Holmer Fiori3 Resumo Abstract Objetivo: Revisar o estágio atual do conhecimento sobre a Objective: To review current knowledge about the use of utilização do surfactante exógeno nas diferentes doenças pulmona- exogenous surfactants in the treatment of different lung diseases res que levam à insuficiência respiratória aguda em crianças. causing acute respiratory failure in children. Fontes dos dados: Este manuscrito baseia-se na experiência Source of data: This review is based on the authors’ experience clínica dos autores sobre o assunto e na revisão da literatura recente and on recent data retrieved from ONIA, Mdconsult, Medline and através de consulta aos bancos de dados ONIA, Mdconsult, Medline the Cochrane Database Library. e Cochrane Database Library. Summary of the findings: In spite of the success of the use of Síntese dos dados: Apesar do sucesso obtido com a utilização exogenous surfactants in Respiratory Distress Syndrome (RDS) of do surfactante exógeno na síndrome de desconforto respiratório do the newborn, some questions remain unanswered, such as the optimal recém-nascido, questões permanecem indefinidas, como o momento administration timing - either very early (prophylactic), based on do seu emprego, muito precoce (profilático), baseado na idade gestational age or on quick tests of lung maturity, or later, when the gestacional ou em testes rápidos de maturidade pulmonar, ou então clinical picture becomes unequivocal. In other severe diseases mais tardiamente, após o quadro clínico instalado.
    [Show full text]
  • Label Portion of the Trial (Part A) and 102 Patients Participated in a Subsequent Randomized Controlled Portion (Part B)
    HIGHLIGHTS OF PRESCRIBING INFORMATION -------------------------------CONTRAINDICATIONS------------------------------ None. (4) These highlights do not include all the information needed to use SURFAXIN® safely and effectively. See full prescribing information for -----------------------WARNINGS AND PRECAUTIONS-----------------------­ SURFAXIN. • Acute Changes in Lung Compliance: Infants receiving SURFAXIN should receive frequent clinical assessments so that oxygen and SURFAXIN (lucinactant) Intratracheal Suspension ventilatory support can be modified to respond to changes in respiratory Initial U.S. Approval: [year] status. (5.1) • Administration-Related Adverse Reactions: If adverse reactions ----------------------------INDICATIONS AND USAGE--------------------------- including bradycardia, oxygen desaturation, reflux of SURFAXIN into SURFAXIN is indicated for the prevention of respiratory distress syndrome the endotracheal tube (ETT), and airway/ETT obstruction occur during (RDS) in premature infants at high risk for RDS. (1) administration of SURFAXIN, dosing should be interrupted and the infant’s clinical condition assessed and stabilized. Suctioning of the ETT ----------------------DOSAGE AND ADMINISTRATION----------------------- or reintubation may be required if airway obstruction persists or is • The recommended dose of SURFAXIN is 5.8 mL per kg birth weight severe. (5.2) administered by intratracheal administration. (2.1) • Increased Serious Adverse Reactions in Adults with Acute Respiratory • Up to 4 doses of SURFAXIN can be administered in the first 48 hours of Distress Syndrome (ARDS): Adults with ARDS who received life. (2.1) lucinactant via segmental bronchoscopic lavage had an increased • Doses should be given no more frequently than every 6 hours. (2.1) incidence of death, multi-organ failure, sepsis, anoxic encephalopathy, renal failure, hypoxia, pneumothorax, hypotension, and pulmonary ---------------------DOSAGE FORMS AND STRENGTHS---------------------- embolism. SURFAXIN is not indicated for use in ARDS.
    [Show full text]