Salient Point and Scale Detection by Minimum Likelihood
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exploiting Information Theory for Filtering the Kadir Scale-Saliency Detector
Introduction Method Experiments Conclusions Exploiting Information Theory for Filtering the Kadir Scale-Saliency Detector P. Suau and F. Escolano {pablo,sco}@dccia.ua.es Robot Vision Group University of Alicante, Spain June 7th, 2007 P. Suau and F. Escolano Bayesian filter for the Kadir scale-saliency detector 1 / 21 IBPRIA 2007 Introduction Method Experiments Conclusions Outline 1 Introduction 2 Method Entropy analysis through scale space Bayesian filtering Chernoff Information and threshold estimation Bayesian scale-saliency filtering algorithm Bayesian scale-saliency filtering algorithm 3 Experiments Visual Geometry Group database 4 Conclusions P. Suau and F. Escolano Bayesian filter for the Kadir scale-saliency detector 2 / 21 IBPRIA 2007 Introduction Method Experiments Conclusions Outline 1 Introduction 2 Method Entropy analysis through scale space Bayesian filtering Chernoff Information and threshold estimation Bayesian scale-saliency filtering algorithm Bayesian scale-saliency filtering algorithm 3 Experiments Visual Geometry Group database 4 Conclusions P. Suau and F. Escolano Bayesian filter for the Kadir scale-saliency detector 3 / 21 IBPRIA 2007 Introduction Method Experiments Conclusions Local feature detectors Feature extraction is a basic step in many computer vision tasks Kadir and Brady scale-saliency Salient features over a narrow range of scales Computational bottleneck (all pixels, all scales) Applied to robot global localization → we need real time feature extraction P. Suau and F. Escolano Bayesian filter for the Kadir scale-saliency detector 4 / 21 IBPRIA 2007 Introduction Method Experiments Conclusions Salient features X HD(s, x) = − Pd,s,x log2Pd,s,x d∈D Kadir and Brady algorithm (2001): most salient features between scales smin and smax P. -
Context-Aware Features and Robust Image Representations 5 6 ∗ 7 P
CAKE_article_final.tex Click here to view linked References 1 2 3 4 Context-Aware Features and Robust Image Representations 5 6 ∗ 7 P. Martinsa, , P. Carvalhoa,C.Gattab 8 aCenter for Informatics and Systems, University of Coimbra, Coimbra, Portugal 9 bComputer Vision Center, Autonomous University of Barcelona, Barcelona, Spain 10 11 12 13 14 Abstract 15 16 Local image features are often used to efficiently represent image content. The limited number of types of 17 18 features that a local feature extractor responds to might be insufficient to provide a robust image repre- 19 20 sentation. To overcome this limitation, we propose a context-aware feature extraction formulated under an 21 information theoretic framework. The algorithm does not respond to a specific type of features; the idea is 22 23 to retrieve complementary features which are relevant within the image context. We empirically validate the 24 method by investigating the repeatability, the completeness, and the complementarity of context-aware fea- 25 26 tures on standard benchmarks. In a comparison with strictly local features, we show that our context-aware 27 28 features produce more robust image representations. Furthermore, we study the complementarity between 29 strictly local features and context-aware ones to produce an even more robust representation. 30 31 Keywords: Local features, Keypoint extraction, Image content descriptors, Image representation, Visual 32 saliency, Information theory. 33 34 35 1. Introduction While it is widely accepted that a good local 36 37 feature extractor should retrieve distinctive, accu- 38 Local feature detection (or extraction, if we want 39 rate, and repeatable features against a wide vari- to use a more semantically correct term [1]) is a 40 ety of photometric and geometric transformations, 41 central and extremely active research topic in the 42 it is equally valid to claim that these requirements fields of computer vision and image analysis. -
Topic: 9 Edge and Line Detection
V N I E R U S E I T H Y DIA/TOIP T O H F G E R D I N B U Topic: 9 Edge and Line Detection Contents: First Order Differentials • Post Processing of Edge Images • Second Order Differentials. • LoG and DoG filters • Models in Images • Least Square Line Fitting • Cartesian and Polar Hough Transform • Mathemactics of Hough Transform • Implementation and Use of Hough Transform • PTIC D O S G IE R L O P U P P A D E S C P I Edge and Line Detection -1- Semester 1 A S R Y TM H ENT of P V N I E R U S E I T H Y DIA/TOIP T O H F G E R D I N B U Edge Detection The aim of all edge detection techniques is to enhance or mark edges and then detect them. All need some type of High-pass filter, which can be viewed as either First or Second order differ- entials. First Order Differentials: In One-Dimension we have f(x) d f(x) dx d f(x) dx We can then detect the edge by a simple threshold of d f (x) > T Edge dx ⇒ PTIC D O S G IE R L O P U P P A D E S C P I Edge and Line Detection -2- Semester 1 A S R Y TM H ENT of P V N I E R U S E I T H Y DIA/TOIP T O H F G E R D I N B U Edge Detection I but in two-dimensions things are more difficult: ∂ f (x,y) ∂ f (x,y) Vertical Edges Horizontal Edges ∂x → ∂y → But we really want to detect edges in all directions. -
Pavement Crack Detection by Ridge Detection on Fractional Calculus and Dual-Thresholds
International Journal of Multimedia and Ubiquitous Engineering Vol.10, No.4 (2015), pp.19-30 http://dx.doi.org/10.14257/ijmue.2015.10.4.03 Pavement Crack Detection by Ridge Detection on Fractional Calculus and Dual-thresholds Song Hongxun, Wang Weixing, Wang Fengping, Wu Linchun and Wang Zhiwei Shaanxi Road Traffic Intelligent Detection and Equipment Engineering Technology Research Center, Chang’an University, Xi’an, China School of Information Engineering, Chang’an University, Xi’an, China songhongx @163.com Abstract In this paper, a new road surface crack detection algorithm is proposed; it is based on the ridge edge detection on fractional calculus and the dual-thresholds on a binary image. First, the multi-scale reduction of image data is used to shrink an original image to eliminate noise, which can not only smooth an image but also enhance cracks. Then, the main cracks are extracted by using the ridge edge detection on fractional calculus in a grey scale image. Subsequently, the resulted binary image is further processed by applying both short and long line thresholds to eliminate short curves and noise for getting rough crack segments. Finally the gaps in cracks are connected with a curve connection function which is an artificial intelligence routine. The experiments show that the algorithm for pavement crack images has the good performance of noise immunity, accurate positioning, and high accuracy. It can accurately locate and detect small and thin cracks that are difficult to identify by other traditional algorithms. Keywords: Crack; Multiscale; Image enhancement; Ridge edge; Threshold 1. Introduction In a time period, any road can be damaged gradually due to traffic loads and the other natural/artificial factors, and cracks are the most common road pavement surface defects that need to mend as early as possible. -
Feature Detection Florian Stimberg
Feature Detection Florian Stimberg Outline ● Introduction ● Types of Image Features ● Edges ● Corners ● Ridges ● Blobs ● SIFT ● Scale-space extrema detection ● keypoint localization ● orientation assignment ● keypoint descriptor ● Resources Introduction ● image features are distinct image parts ● feature detection often is first operation to define image parts to process later ● finding corresponding features in pictures necessary for object recognition ● Multi-Image-Panoramas need to be “stitched” together at according image features ● the description of a feature is as important as the extraction Types of image features Edges ● sharp changes in brightness ● most algorithms use the first derivative of the intensity ● different methods: (one or two thresholds etc.) Types of image features Corners ● point with two dominant and different edge directions in its neighbourhood ● Moravec Detector: similarity between patch around pixel and overlapping patches in the neighbourhood is measured ● low similarity in all directions indicates corner Types of image features Ridges ● curves which points are local maxima or minima in at least one dimension ● quality depends highly on the scale ● used to detect roads in aerial images or veins in 3D magnetic resonance images Types of image features Blobs ● points or regions brighter or darker than the surrounding ● SIFT uses a method for blob detection SIFT ● SIFT = Scale-invariant feature transform ● first published in 1999 by David Lowe ● Method to extract and describe distinctive image features ● feature -
A Comprehensive Analysis of Edge Detectors in Fundus Images for Diabetic Retinopathy Diagnosis
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Special Issue ICRTETM March 2019 A Comprehensive Analysis of Edge Detectors in Fundus Images for Diabetic Retinopathy Diagnosis J.Aashikathul Zuberiya#1, M.Nagoor Meeral#2, Dr.S.Shajun Nisha #3 #1M.Phil Scholar, PG & Research Department of Computer Science, Sadakathullah Appa College, Tirunelveli, Tamilnadu, India #2M.Phil Scholar, PG & Research Department of Computer Science, Sadakathullah Appa College, Tirunelveli, Tamilnadu, India #3Assistant Professor & Head, PG & Research Department of Computer Science, Sadakathullah Appa College, Tirunelveli, Tamilnadu, India Abstract severe stage. PDR is an advanced stage in which the Diabetic Retinopathy is an eye disorder that fluids sent by the retina for nourishment trigger the affects the people with diabetics. Diabetes for a growth of new blood vessel that are abnormal and prolonged time damages the blood vessels of retina fragile.Initial stage has no vision problem, but with and affects the vision of a person and leads to time and severity of diabetes it may lead to vision Diabetic retinopathy. The retinal fundus images of the loss.DR can be treated in case of early detection. patients are collected are by capturing the eye with [1][2] digital fundus camera. This captures a photograph of the back of the eye. The raw retinal fundus images are hard to process. To enhance some features and to remove unwanted features Preprocessing is used and followed by feature extraction . This article analyses the extraction of retinal boundaries using various edge detection operators such as Canny, Prewitt, Roberts, Sobel, Laplacian of Gaussian, Kirsch compass mask and Robinson compass mask in fundus images. -
Robust Edge Aware Descriptor for Image Matching
Robust Edge Aware Descriptor for Image Matching Rouzbeh Maani, Sanjay Kalra, Yee-Hong Yang Department of Computing Science, University of Alberta, Edmonton, Canada Abstract. This paper presents a method called Robust Edge Aware De- scriptor (READ) to compute local gradient information. The proposed method measures the similarity of the underlying structure to an edge using the 1D Fourier transform on a set of points located on a circle around a pixel. It is shown that the magnitude and the phase of READ can well represent the magnitude and orientation of the local gradients and present robustness to imaging effects and artifacts. In addition, the proposed method can be efficiently implemented by kernels. Next, we de- fine a robust region descriptor for image matching using the READ gra- dient operator. The presented descriptor uses a novel approach to define support regions by rotation and anisotropical scaling of the original re- gions. The experimental results on the Oxford dataset and on additional datasets with more challenging imaging effects such as motion blur and non-uniform illumination changes show the superiority and robustness of the proposed descriptor to the state-of-the-art descriptors. 1 Introduction Local feature detection and description are among the most important tasks in computer vision. The extracted descriptors are used in a variety of applica- tions such as object recognition and image matching, motion tracking, facial expression recognition, and human action recognition. The whole process can be divided into two major tasks: region detection, and region description. The goal of the first task is to detect regions that are invariant to a class of transforma- tions such as rotation, change of scale, and change of viewpoint. -
Coding Images with Local Features
Int J Comput Vis (2011) 94:154–174 DOI 10.1007/s11263-010-0340-z Coding Images with Local Features Timo Dickscheid · Falko Schindler · Wolfgang Förstner Received: 21 September 2009 / Accepted: 8 April 2010 / Published online: 27 April 2010 © Springer Science+Business Media, LLC 2010 Abstract We develop a qualitative measure for the com- The results of our empirical investigations reflect the theo- pleteness and complementarity of sets of local features in retical concepts of the detectors. terms of covering relevant image information. The idea is to interpret feature detection and description as image coding, Keywords Local features · Complementarity · Information and relate it to classical coding schemes like JPEG. Given theory · Coding · Keypoint detectors · Local entropy an image, we derive a feature density from a set of local fea- tures, and measure its distance to an entropy density com- puted from the power spectrum of local image patches over 1 Introduction scale. Our measure is meant to be complementary to ex- Local image features play a crucial role in many computer isting ones: After task usefulness of a set of detectors has vision applications. The basic idea is to represent the image been determined regarding robustness and sparseness of the content by small, possibly overlapping, independent parts. features, the scheme can be used for comparing their com- By identifying such parts in different images of the same pleteness and assessing effects of combining multiple de- scene or object, reliable statements about image geome- tectors. The approach has several advantages over a simple try and scene content are possible. Local feature extraction comparison of image coverage: It favors response on struc- comprises two steps: (1) Detection of stable local image tured image parts, penalizes features in purely homogeneous patches at salient positions in the image, and (2) description areas, and accounts for features appearing at the same lo- of these patches. -
Lecture 10 Detectors and Descriptors
This lecture is about detectors and descriptors, which are the basic building blocks for many tasks in 3D vision and recognition. We’ll discuss Lecture 10 some of the properties of detectors and descriptors and walk through examples. Detectors and descriptors • Properties of detectors • Edge detectors • Harris • DoG • Properties of descriptors • SIFT • HOG • Shape context Silvio Savarese Lecture 10 - 16-Feb-15 Previous lectures have been dedicated to characterizing the mapping between 2D images and the 3D world. Now, we’re going to put more focus From the 3D to 2D & vice versa on inferring the visual content in images. P = [x,y,z] p = [x,y] 3D world •Let’s now focus on 2D Image The question we will be asking in this lecture is - how do we represent images? There are many basic ways to do this. We can just characterize How to represent images? them as a collection of pixels with their intensity values. Another, more practical, option is to describe them as a collection of components or features which correspond to “interesting” regions in the image such as corners, edges, and blobs. Each of these regions is characterized by a descriptor which captures the local distribution of certain photometric properties such as intensities, gradients, etc. Feature extraction and description is the first step in many recent vision algorithms. They can be considered as building blocks in many scenarios The big picture… where it is critical to: 1) Fit or estimate a model that describes an image or a portion of it 2) Match or index images 3) Detect objects or actions form images Feature e.g. -
Line Detection by Hough Transformation
Line Detection by Hough transformation 09gr820 April 20, 2009 1 Introduction When images are to be used in different areas of image analysis such as object recognition, it is important to reduce the amount of data in the image while preserving the important, characteristic, structural information. Edge detection makes it possible to reduce the amount of data in an image considerably. However the output from an edge detector is still a image described by it’s pixels. If lines, ellipses and so forth could be defined by their characteristic equations, the amount of data would be reduced even more. The Hough transform was originally developed to recognize lines [5], and has later been generalized to cover arbitrary shapes [3] [1]. This worksheet explains how the Hough transform is able to detect (imperfect) straight lines. 2 The Hough Space 2.1 Representation of Lines in the Hough Space Lines can be represented uniquely by two parameters. Often the form in Equation 1 is used with parameters a and b. y = a · x + b (1) This form is, however, not able to represent vertical lines. Therefore, the Hough transform uses the form in Equation 2, which can be rewritten to Equation 3 to be similar to Equation 1. The parameters θ and r is the angle of the line and the distance from the line to the origin respectively. r = x · cos θ + y · sin θ ⇔ (2) cos θ r y = − · x + (3) sin θ sin θ All lines can be represented in this form when θ ∈ [0, 180[ and r ∈ R (or θ ∈ [0, 360[ and r ≥ 0). -
A Survey of Feature Extraction Techniques in Content-Based Illicit Image Detection
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiti Teknologi Malaysia Institutional Repository Journal of Theoretical and Applied Information Technology 10 th May 2016. Vol.87. No.1 © 2005 - 2016 JATIT & LLS. All rights reserved . ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 A SURVEY OF FEATURE EXTRACTION TECHNIQUES IN CONTENT-BASED ILLICIT IMAGE DETECTION 1,2 S.HADI YAGHOUBYAN, 1MOHD AIZAINI MAAROF, 1ANAZIDA ZAINAL, 1MAHDI MAKTABDAR OGHAZ 1Faculty of Computing, Universiti Teknologi Malaysia (UTM), Malaysia 2 Department of Computer Engineering, Islamic Azad University, Yasooj Branch, Yasooj, Iran E-mail: 1,2 [email protected], [email protected], [email protected] ABSTRACT For many of today’s youngsters and children, the Internet, mobile phones and generally digital devices are integral part of their life and they can barely imagine their life without a social networking systems. Despite many advantages of the Internet, it is hard to neglect the Internet side effects in people life. Exposure to illicit images is very common among adolescent and children, with a variety of significant and often upsetting effects on their growth and thoughts. Thus, detecting and filtering illicit images is a hot and fast evolving topic in computer vision. In this research we tried to summarize the existing visual feature extraction techniques used for illicit image detection. Feature extraction can be separate into two sub- techniques feature detection and description. This research presents the-state-of-the-art techniques in each group. The evaluation measurements and metrics used in other researches are summarized at the end of the paper. -
Rotational Features Extraction for Ridge Detection
1 Rotational Features Extraction for Ridge Detection German´ Gonzalez,´ Member, IEEE, Franc¸ois Fleuret, Member, IEEE, Franc¸ois Aguet, Fethallah Benmansour, Michael Unser Fellow, IEEE., and P. Fua, Senior Member, IEEE. Abstract State-of-the-art approaches to detecting ridge-like structures in images rely on filters designed to respond to locally linear intensity features. While these approaches may be optimal for ridges whose appearance is close to being ideal, their performance degrades quickly in the presence of structured noise that corrupts the image signal, potentially to the point where it truly does not conform to the ideal model anymore. In this paper, we address this issue by introducing a learning framework that relies on rich, local, rotationally invariant image descriptors and demonstrate that we can outperform state-of-the-art ridge detectors in many different kinds of imagery. More specifically, our framework yields superior performance for the detection of blood vessel in retinal scans, dendrites in bright-field and confocal microscopy image-stacks, and streets in satellite imagery. Index Terms Rotational features. Ridge Detection. Steerable filters. Data aggregation. Machine Learning. F 1 INTRODUCTION INEAR structures of significant width, such as roads in aerial images, blood vessels in retinal scans, or L dendrites in 3D-microscopy image stacks, are pervasive. State-of-the-art approaches to detecting them rely on ideal models of their appearance and of the noise. They are usually optimized to find ideal ribbon or tubular structures. However, ridge-like linear structures such as those of Fig. 1 often do not conform to these models, which can drastically impact performance.