Behavioural and Physiological Studies of Fighting in the Velvet Swimming Crab, Necora Puber (L.) (Brachyura, Portunidae)

Total Page:16

File Type:pdf, Size:1020Kb

Behavioural and Physiological Studies of Fighting in the Velvet Swimming Crab, Necora Puber (L.) (Brachyura, Portunidae) Behavioural and Physiological Studies of Fighting in the Velvet Swimming Crab, Necora puber (L.) (Brachyura, Portunidae) by Kathleen Elaine Thorpe B.Sc. (Leicester) Department of Zoology University of Glasgow A thesis submitted for the degree of Doctor of Philosophy at the Faculty of Science at the University of Glasgow © K. E. Thorpe August 1994 ProQuest Number: 13834084 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13834084 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 'ft-M 113 ^ i P -I Irsssssr UNIVERSITY C( I I { library _ Dedicated to the memory of my Dad, Ian Grenville Thorpe. THAT'S THE WHOLE PROBLEM WITH SCIENCE. 'fCU'VE GOT A BUNCH OF EMPIRICISTS TRT1NG TO DESCRIBE THINGS OF UNIMAGINABLE WONDER. ACKNOWLEDGEMENTS First of all, sincere thanks and great respect are due to my supervisors, Felicity Huntingford and Alan Taylor, for their help, advice and enthusiastic encouragement throughout the course of this work. Special thanks go to Felicity for constructive criticism, discussion and guidance during the preparation of this thesis, and also for a welcomed source of pocket money. Thanks go to all the people who have helped me in anyway, especially Cathy McLagan and June Freel, who answered my questions and cries for help with patience; Alan McGregor and Graham Adam for making bits and pieces for me and assisting my own efforts in the workshop; Roddy Macdonald and John Laurie for looking after my beasties; and, Liz Denton for Apple Mac advice and showing me the joys of the scanner. I am very grateful to Cathy McLagan, Brenda McPherson and Davy Watson for action above and beyond the call of duty. To my chums in Glasgow - Kathleen, Alan, Jayne and Isabel (my fellow water babies), Kate, Alwyn, Catherine, Fiona, Richard, June, Neil, Alan, Roddy, Sunil and Andy. You made it fun! Many thanks go to the members of Kirkintilloch Thistle B.S.- A.C., especially Eddy, Gavin, Grant, Greg, Henry, Jeanette, Kevin and Sammy, for good crack on diving trips and for buying me numerous pints when I was broke. Drinks are on me! A big, big thank you goes to Kathleen for being a true friend. For managing to share a flat with me for three years, Chinese takeaways, cinema outings, for being a fellow shopaholic, cheering me up when I was down and innumerable drinking sessions. Thank you for allowing me to use your Apple Mac. Finally, words are inadequate to express my thanks to my Mum and my sister, Irene, for their love and support in all my ventures. Special thanks to Mum for additional financial support for me and Dewy. Many thanks to Catherine Bettinson for helping out in the early days. Thanks to Catherine & Rob Bettinson, & Uncle Jimmy & Uncle Louie for keeping me stocked with finest Lincolnshire produce. The work described in this thesis was funded by a studentship from the Natural Environment Research Council, to whom I am grateful. DECLARATION I declare that this thesis is my own composition and that the research described herein was performed entirely by myself except where expressly stated. K. Elaine Thorpe August 1994 Table of Contents Summary vi Chapter 1 General Introduction 1 1.1 Why fight? 2 1.2 Effects of agonistic behaviour 2 1.3 Agonistic behaviour and game theory 3 1.4 The velvet swimming crab, Necora puber (L.) (Crustacea, Decapoda, Brachyura, Portunidae) 5 Chapter 2 Relative size and agonistic behaviour in the female velvet swimming crab, Necora puber 9 2.1 Introduction 10 2.1.1 Agonistic displays of the Crustacea 10 2.1.2 Application of game theory to agonistic behaviour 11 2.1.3 Effect of relative size on agonistic behaviour in Crustacea 12 2.1.4 Aims 14 2.2 Materials & Methods 15 2.2.1 Experimental animals 15 2.2.2 Observation of agonistic behaviour 15 2.2.3 Agonistic behaviour of female Necora puber 16 2.2.4 Definition of initiation and duration of interactions 18 2.2.5 Content of agonistic interactions 19 2.2.6 Statistical analyses 21 2.3 Results 22 2.3.1 Effect of relative size on initiation and outcome 22 2.3.2 Contests won by small crabs 22 2.3.3 Evaluation of contest costs 22 2.3.4 Behaviour of winners and losers 25 2.4 Discussion 29 i Chapter 3 Escalation and communication during agonistic behaviour in Necora puber 33 3.1 Introduction 34 3.1.1 Escalation in animal fights 34 3.1.2 Explaining and predicting the occurrence of escalation - the use of game theory 34 3.1.3 Assessment of fighting ability and resource value 36 3.1.4 Behavioural mechanisms underlying escalation 38 3.1.5 Communication during aggressive encounters 39 3.1.6 Information availability 41 3.1.7 Resolution of fights 42 3.1.8 Describing and analysing sequences of behaviour 42 3.1.9 Communication in Crustacea 45 3.1.10 Aims 46 3.2 Materials & Methods 47 3.2.1 Experimental design 47 3.2.2 Statistical analyses 47 3.3 Results 50 3.3.1 Males 50 3.3.1.1 Inter-individual transitions: winners 50 3.3.1.2 Inter-individual transitions: losers 55 3.3.1.3 Comparison of inter-individual (winner & loser) transition matrices 62 3.3.1.4 Intra-individual transitions: winners 64 3.3.1.5 Intra-individual transitions: losers 69 3.3.1.6 Comparison of intra-individual (winner & loser) transition matrices 74 3.3.2 Females 76 3.3.2.1 Inter-individual transitions: winners 76 3.3.2.2 Inter-individual transitions: losers 82 3.3.2.3 Comparison of inter-individual (winner & loser) transition matrices 88 3.3.2.4 Intra-individual transitions: winners 90 3.3.2.5 Intra-individual transitions: losers 95 3.3.2.6 Comparison of intra-individual (winner & loser) transition matrices 100 ii 3.3.3 Comparison of males and females 100 3.4 Discussion 102 Chapter 4 Metabolic consequences of agonistic behaviour and exercise in male Necora puber 108 4.1 Introduction 109 4.1.1 Costs of agonistic behaviour 109 4.1.2 Measurement of the physiological costs associated with behaviours 109 4.1.3 Physiological consequences of various activities in non-crustacean species 110 4.1.3.1 Anuran amphibians 110 4.1.3.2 Birds 112 4.1.4 Crustacean metabolism 113 4.1.5 Responses of brachyuran crabs to exercise 116 4.1.6 Physiological consequences of fighting in Necora puber 117 4.1.7 Aims 118 4.2 Materials & Methods 119 4.2.1 Experimental animals 119 4.2.2 Experimental development 119 4.2.3 Experimental design 119 4.2.3.1 Metabolic consequences of agonistic behaviour 119 4.2.3.2 Metabolic consequences of exercise 120 4.2.4 Preparation of haemolymph and tissue samples using perchloric acid (PCA) extraction 120 4.2.4.1 Haemolymph samples 120 4.2.4.2 Tissue samples 121 4.2.5 Enzymatic analyses 121 4.2.5.1 L-lactate determination 121 4.2.5.2 D-glucose determination 122 4.2.5.3 Glycogen determination 123 4.2.6 Statistical analyses 124 4.2.6.1 Metabolic consequences of agonistic behaviour 124 iii 4.2.6.2 Metabolic consequences of exercise 124 4.3 Results 126 4.3.1 Comparison of the metabolic consequences of agonistic behaviour, exercise and low activity 126 4.3.1.1 Haemolymph metabolites 126 4.3.1.2 Tissue metabolites 126 4.3.1.3 Relationship between metabolic and behavioural variables 129 4.3.2 Metabolic events during recovery from exercise 129 4.3.2.1 Haemolymph metabolites 129 4.3.2.2 Tissue metabolites 133 4.4 Discussion 138 Chapter 5 Constraints imposed by agonistic behaviour in male Necora puber 143 5.1 Introduction 144 5.1.1 Effect of aggression on reef-building corals 144 5.1.2 Behavioural constraints of reproduction in crickets - calling versus courtship gifts in males 145 5.1.3 Metabolic constraints on spider web relocation 146 5.1.4 Metabolic constraints on behaviour in decapods 147 5.1.5 Aims 148 5.2 Materials & Methods 149 5.2.1 Experimental animals 149 5.2.2 Experimental design 149 5.2.3 Statistical analyses 150 5.3 Results 151 5.3.1 Immediate re-fights 151 5.3.2 Delayed re-fights 151 5.4 Discussion 156 Chapter 6 General Discussion 158 iv References 165 v SUMMARY The velvet swiming crab, Necora puber (L.), is a marine brachyuran commonly found in shallow, rocky, sublittoral areas on the Atlantic coasts of Europe. In Britain, the commercial importance of N. puber has increased over the last fifteen years, following the collapse of the Spanish fishery for this species, and the crab now forms the basis of an important fishery based mainly off the west coast of Scotland. N. puber has traditionally been regarded as "aggressive", due mainly to its rapid defensive response of striking and grasping humans who attempt to handle them, but relatively little was known of their intra-specific agonistic behaviour until the work of Smith (1990; Smith & Taylor 1993; Smith et al.
Recommended publications
  • Front Page Graphics.Cdr
    Ecological effects of the Lundy No-take Zone: The first five years (2003-2007) MG Hoskin, RA Coleman & L von Carlshausen March 2009 Final Report to Natural England, DEFRA & WWF-UK This report should be cited as: Hoskin, M.G., R.A Coleman, & L. von Carlshausen (2009). Ecological effects of the Lundy No-Take Zone: the first five years (2003-2007). Report to Natural England, DEFRA and WWF-UK. © Hoskin, M.G 1., R.A Coleman 2, & L. von Carlshausen 1 2009 1 Dr Miles Hoskin BSc (Hons), PhD, MIEEM Liz von Carlshausen BSc (Hons) Coastal & Marine Environmental Research (CMER) 2 Raleigh Place Falmouth Cornwall England Tel: +44 (0)1326 219 498 E-mail: [email protected] / [email protected] 2 Professor Ross Coleman Centre for Research on Ecological Impacts of Coastal Cities (EICC) Marine Ecology Laboratories (A11) University of Sydney Sydney NSW 2006 Australia Tel: +61(0)2 9351 2039 Fax: +61(0)2 9351 6713 E-mail: [email protected] Web page: http://www.eicc.bio.usyd.edu.au Ecological effects of the Lundy NTZ: 2003 to 2007 Hoskin et al., 2009 Acknowledgements This work was made possible by funds from Natural England and match-funding from the ‘Financial Instruments for Fisheries Guidance’ (FIFG) grant scheme administered by the Department for Environment, Food and Rural Affairs (DEFRA). Additional funding or contributions in-kind were provided by the World Wildlife Fund (UK), the Esmée Fairburn Foundation, the Marine Biological Association of the UK, the University of Plymouth, the University of Sydney and Coastal & Marine Environmental Research (CMER).
    [Show full text]
  • Caribbean Wildlife Undersea 2017
    Caribbean Wildlife Undersea life This document is a compilation of wildlife pictures from The Caribbean, taken from holidays and cruise visits. Species identification can be frustratingly difficult and our conclusions must be checked via whatever other resources are available. We hope this publication may help others having similar problems. While every effort has been taken to ensure the accuracy of the information in this document, the authors cannot be held re- sponsible for any errors. Copyright © John and Diana Manning, 2017 1 Angelfishes (Pomacanthidae) Corals (Cnidaria, Anthozoa) French angelfish 7 Bipinnate sea plume 19 (Pomacanthus pardu) (Antillogorgia bipinnata) Grey angelfish 8 Black sea rod 20 (Pomacanthus arcuatus) (Plexaura homomalla) Queen angelfish 8 Blade fire coral 20 (Holacanthus ciliaris) (Millepora complanata) Rock beauty 9 Branching fire coral 21 (Holacanthus tricolor) (Millepora alcicornis) Townsend angelfish 9 Bristle Coral 21 (Hybrid) (Galaxea fascicularis) Elkhorn coral 22 Barracudas (Sphyraenidae) (Acropora palmata) Great barracuda 10 Finger coral 22 (Sphyraena barracuda) (Porites porites) Fire coral 23 Basslets (Grammatidae) (Millepora dichotoma) Fairy basslet 10 Great star coral 23 (Gramma loreto) (Montastraea cavernosa) Grooved brain coral 24 Bonnetmouths (Inermiidae) (Diploria labyrinthiformis) Boga( Inermia Vittata) 11 Massive starlet coral 24 (Siderastrea siderea) Bigeyes (Priacanthidae) Pillar coral 25 Glasseye snapper 11 (Dendrogyra cylindrus) (Heteropriacanthus cruentatus) Porous sea rod 25 (Pseudoplexaura
    [Show full text]
  • 2010-11-23-MO-DEA-Kalaupapa
    National Park Service U.S. Department of the Interior Kalaupapa National Historical Park Hawaii Project to Repair the Kalaupapa Dock Structures Environmental Assessment August 2010 EXECUTIVE SUMMARY The Kalaupapa Settlement is home to surviving Hansen's disease (leprosy) patients, and is cur- rently managed jointly by the Hawaii Department of Health and the National Park Service (NPS). The vast majority of materials needed to sustain the park and the Kalaupapa Settlement is received by barge delivery. An engineering study (Daly 2005) has determined that severe win- ter swell conditions have compromised the structural integrity of the Kalaupapa harbor facilities used by the barge. The NPS proposes to ensure delivery of supplies essential to operate and maintain Kalaupapa National Historical Park (“the park”) and the community by improving conditions of the dock structures at the harbor. This environmental assessment considered two alternatives for improving conditions of the dock structures: Alternative A: The No Action Alternative: Current NPS management operations at the dock and harbor would remain unchanged without repair to the dock structures. The integrity and stability of the pier may be compromised to the point of being unsafe for barge operations. Over the long-term, barge service to the park would likely be disrupted or become sporadic. Delive- ries of annual supplies and materials used for state operations, park programs, and the park’s ongoing rehabilitation of historic properties would be affected. Alternative B: The Preferred Alternative: This alternative would include completion of the repairs necessary to maintain service via a small barge. Voids in the bulkhead wall toe, the low dock toe, and the breakwater would be filled for structural integrity, and repairs would be made to the pier dock.
    [Show full text]
  • Ga7459. B) Polyonyx Pedalis, 1 Female 4.56×4.73 Mm, Mayotte, St
    23 Figure 11. A) Polyonyx biunguiculatus, 1 male 2.68×3.23 mm, Mayotte, St. 23, MNHN- Ga7459. B) Polyonyx pedalis, 1 female 4.56×4.73 mm, Mayotte, St. 19, MNHN-Ga7464 (coloration altered by preservative). C) Polyonyx triunguiculatus, 1 male 3.69×4.37, Mayotte, St. 23, MNHN-Ga7438. D) Polyonyx aff. boucheti, 1 ovigerous female 2.20×3.24 mm, Mayotte, St. 12, MNHN-Ga7465. Polyonyx triunguiculatus Zehntner, 1894 Polyonyx triunguiculatus (Figure 11 C) - Haig, 1966: 44 (Mayotte, lagoon, small blocks and coarse sands, coll. A. Crosnier, September 1959, 2 males 2.7 and 3.2 mm, 1 female 1.9 mm, 2 ovigerous females 3.1 and 3.2 mm; same, coarse sands, 50 m, 1 male 3.7 mm, 1 female 3.3 mm, MNHN). - BIOTAS collections, Glorioso, 3-7 May 2009, det. J. Poupin from photo, St. GLOR-2, reef platform and shallow canyons with dead Acropora digitifera head, 7-14 m, specimen MEPA 948; St. GLOR-5, reef slope East side, 17 m, specimen MEPA 1045. - Mayotte, KUW fieldwork November 2009, St. 14, La Prudente bank, 15-17 m, 2 males 3.38×4.13 and 3.31×3.79 mm, 1 ovigerous female 3.29×4.20, 1 juvenile broken, MNHN-Ga7436; St. 17, North reef, 22 m, 1 male 3.43×3.94, 1 ovigerous female 3.10×3.97 mm, MNHN-Ga7437; St. 23, Choizil pass ‘Patate à Teddy’, 15-30 m, 1 male 3.69×4.37, 1 female 2.72×3.12 mm, MNHN-Ga7438; St. 25, islet M'tzamboro, 15-20 m, 1 ovigerous female 3.46×4.45 mm, 1 female 2.74×3.06 mm, 2 ovigerous females 2.89×3.44 and 3.40×3.99 mm, 1 female not measured, MNHN-Ga7439; St.
    [Show full text]
  • Theses Digitisation: This Is a Digitised
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] THE AGONISTIC BEHAVIOUR OF THE VELVET SWIMMING CRAB, LIOCARCINUS PUBER (L.) (BRACHYURA, PORTUNIDAE) Ian Philip Smith BSc (Wales) Department of Zoology, The University, Glasgow, G12 8QQ and University Marine Biological Station, Millport, Isle of Cumbrae, KA28 OEG A thesis submitted for the degree of Doctor of Philosophy to the Faculty of Science at the University of Glasgow, November 1990. ProQuest Number: 11007588 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007588 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.
    [Show full text]
  • Air Perez PV Art2020.Pdf
    Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Air-exposure behavior: a restricted BRAZILIAN CRUSTACEAN SOCIETY or a common conduct among intertidal hermit crabs? e-ISSN 2358-2936 www.scielo.br/nau Marta Perez-Miguel1 orcid.org/0000-0002-6285-7515 www.crustacea.org.br Ingo S. Wehrtmann2, 3 orcid.org/0000-0002-6826-7938 Pilar Drake1 orcid.org/0000-0003-3221-1358 Jose A. Cuesta1 orcid.org/0000-0001-9482-2336 1 Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC). Avda. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. MP-M E-mail: [email protected] PD E-mail: [email protected] JAC E-mail: [email protected] 2 Unidad de Investigación Pesquera y Acuicultura (UNIP) of the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica. 11501-2060 San José, Costa Rica. ISW E-mail: [email protected] 3 Museo de Zoología, Escuela de Biología, Universidad de Costa Rica. 11501-2060 San José, Costa Rica. ZOOBANK: http://zoobank.org/urn:lsid:zoobank.org:pub:C7D42A69-A8DF-4999- 90F1-C3A19CB0557D ABSTRACT A new behavior related to shell care was recently reported for the intertidal hermit crab Clibanarius erythropus (Latreille, 1818) in the Gulf of Cádiz (southwestern Europe). It also has been observed in other species of the diogenid genera Clibanarius Dana, 1952, and Calcinus Dana, 1951, however, it has not been described as an active behavior. In the present study, intertidal hermit crabs from different species and localities were sampled to assess if air-exposure is a shell cleaning behavior restricted to some species of intertidal hermit crabs or if it is a more generalized behavior among species inhabiting intertidal habitats.
    [Show full text]
  • ZOOLOGISCHE MEDEDELINGEN UITGEGEVEN DOOR HET RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN CULTUUR, RECREATIE EN MAATSCHAPPELIJK WERK) Deel 56 No
    ZOOLOGISCHE MEDEDELINGEN UITGEGEVEN DOOR HET RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN CULTUUR, RECREATIE EN MAATSCHAPPELIJK WERK) Deel 56 no. 3 23 december 1980 THE DECAPOD AND STOMATOPQD CRUSTACEA OF ST PAUL'S ROCKS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands A. J. EDWARDS and H. R. LUBBOCK Department of Zoology, University of Cambridge, Cambridge, U.K. With two text-figures and one plate INTRODUCTION Saint Paul's Rocks (Penedos de Sao Pedro e Sao Paulo) are a small group of rocky islets on the mid-Atlantic ridge near the equator, occupying an area of roughly 250 by 425 m. There is no vegetation and, apart from birds and invertebrates, the islands are uninhabited. The Cambridge Expedi­ tion to Saint Paul's Rocks visited the group from 16 to 24 September 1979 and made extensive collections of the terrestrial and marine fauna; these included a number of Crustacea. The Decapoda and Stomatopoda of St Paul's Rocks are the subject of the present paper. Few detailed studies have been published to date on the Crustacea of St Paul's Rocks, largely because of the Rocks' remoteness and inhospitable nature. Crustacea, especially the common and conspicuous rock crab Grapsus grapsus, have been mentioned in several narratives and popular accounts, but the only material on which scientific reports have been based is that collected by H.M.S. "Challenger" in 1873. The Challenger reports mention eight species of Decapoda (5 Macrura, 1 Anomuran and 2 Brachyura) from St Paul's Rocks. The Cambridge Expedition collected nine species of Deca­ poda (2 Macrura and 7 Brachyura) and one species of Stomatopoda; in addition one macrurous decapod was observed but not collected.
    [Show full text]
  • Sally Lightfoot Crab
    Stephen Nowak Sally Lightfoot Crab Scientific Name: Arthropoda Crustacea Decapoda Grapsidae Grapsus grapsus Spanish Name: Abuete Negro Closest Relative: Percnon gibbesi Atlantic Ocean; Also known as Sally Lightfoot © 2004-5 Select Latin America Ltd Sally Lightfoot crab scavenging on a dead animal Geographical/Habitat: The Sally Lightfoot crab geographical local extends from the coasts of Baja California through the western coasts of Central and South America. This species of crab is a land dwelling species which spend the majority of its day on dark rocky beaches and in intertidal zones where many other animals find the constant barrage of waves too difficult to inhabit. What to Look for Physically: These creatures normally range from 5-7 cm but in the Galapagos they grow slightly larger. The Sally Lightfoot crab has developed a few adaptations to best survive in its ecological niche. As immature crabs the species' carapace is cryptically colored to match the beaches it dwells upon to remain hidden from overhead attacks from predators flying above. As the species develops, the exoskeleton becomes more difficult for these birds to break through, and sexual selection becomes the new priority to overcome. Adult Sally Lightfoot crabs are characterized by a vibrant red shell which contrasts strikingly with the lava rock beaches of the Galapagos. The name Sally Lightfoot was given to these crabs because of their agility to elude skilled trappers across the beaches. John Steinbeck comments in The Log of the Sea of Cortez “They seem to be able to run in all four directions; but more than this, perhaps because of their rapid reaction time they appear to read the mind of their hunter.
    [Show full text]
  • The Effects of Isolation on the Behavioral Interactions of Juvelnille Land Hermit Crabs (Coenobitidae) from the Motus of Mo’Orea, French Polynesia
    ONE IS THE LONLIEST NUMBER: THE EFFECTS OF ISOLATION ON THE BEHAVIORAL INTERACTIONS OF JUVELNILLE LAND HERMIT CRABS (COENOBITIDAE) FROM THE MOTUS OF MO’OREA, FRENCH POLYNESIA *WITH AN APPENDIX SURVEYING THE HERMIT CRAB SPECIES PRESENT ON SELECT MO’OREAN MOTUS. VANESSA E. VAN ZERR Integrative Biology, University of California, Berkeley, California 94720 USA, [email protected] Abstract. Hermit crabs interact with each other in a variety of ways involving spatial use (aggregations, migrations), housing (shells), mating, recognition of conspecifics, and food. To test if isolation from conspecifics affects the behavioral interactions of hermit crabs, crabs of the species Coenobita rugosus (Milne‐Edwards 1837) of Mo’orea, French Polynesia were isolated from each other for two days, four days, six days, fifteen days, and twenty‐two days. They were kept in individual opaque containers with separate running seawater systems to prevent them from seeing or smelling each other. Afterwards, the hermit crabs were put into a tank two at a time and their behavior was recorded and compared to the behaviors of non‐isolated crabs. Behaviors looked at fell into two categories: 1) “social” interactions, meaning that the crabs reacted to each other’s presence, and 2) “nonsocial” interactions, meaning that the crabs either ignored each other’s presence or actively avoided behavioral interactions with other crabs. Results indicated that although “social” behavior showed a slight decreasing trend over time, it was not significant; however, the amount of “nonsocial” avoidance behavior seen increased significantly the longer crabs were isolated. Key words: hermit crab, Coenobita, Calcinus, Dardanus, isolation, behavior, motu. INTRODUCTION: sex ratios are uneven (Wada S.
    [Show full text]
  • Genus Panopeus H. Milne Edwards, 1834 Key to Species [Based on Rathbun, 1930, and Williams, 1983] 1
    610 Family Xanthidae Genus Panopeus H. Milne Edwards, 1834 Key to species [Based on Rathbun, 1930, and Williams, 1983] 1. Dark color of immovable finger continued more or less on palm, especially in males. 2 Dark color of immovable finger not continued on palm 7 2. (1) Outer edge of fourth lateral tooth longitudinal or nearly so. P. americanus Outer edge of fourth lateral tooth arcuate 3 3. (2) Edge of front thick, beveled, and with transverse groove P. bermudensis Edge of front if thick not transversely grooved 4 4. (3) Major chela with cusps of teeth on immovable finger not reaching above imaginary straight line drawn between tip and angle at juncture of finger with anterior margin of palm (= length immovable finger) 5 Major chela with cusps of teeth near midlength of immovable finger reaching above imaginary straight line drawn between tip and angle at juncture of finger with anterior margin of palm (= length immovable finger) 6 5. (4) Coalesced anterolateral teeth 1-2 separated by shallow rounded notch, 2 broader than but not so prominent as 1; 4 curved forward as much as 3; 5 much smaller than 4, acute and hooked forward; palm with distance between crest at base of movable finger and tip of cusp lateral to base of dactylus 0.7 or less length of immovable finger P. herbstii Coalesced anterolateral teeth 1-2 separated by deep rounded notch, adjacent slopes of 1 and 2 about equal, 2 nearly as prominent as 1; 4 not curved forward as much as 3; 5 much smaller than 4, usually projecting straight anterolaterally, sometimes slightly hooked; distance between crest of palm and tip of cusp lateral to base of movable finger 0.8 or more length of immovable finger P.
    [Show full text]
  • A Novel Interaction: the Thin Stripe Hermit Crab, Clibanarius
    A NOVEL INTERACTION: THE THIN STRIPE HERMIT CRAB, CLIBANARIUS VITTATUS, KILLS THE FLORIDA CROWN CONCH, MELONGENA CORONA, FOR ITS SHELL by Jennifer Cutter A Thesis Submitted to the Faculty of Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2017 Copyright by Jennifer Cutter 2017 ii ACKNOWLEDGEMENTS I would like to thank Florida Atlantic University, Harbor Branch Oceanographic Institute, and Dr. Donna Devlin for giving me the opportunity to conduct this fascinating study. I would also like to thank the other committee members (Dr. Vincent Encomio, Dr. Edward Proffitt, and Dr. William Brooks) for their help, advice, and guidance. This work was made possible through funding from the Indian River Lagoon Research Fellowship awarded by the Harbor Branch Foundation and a scholarship awarded by The Broward Shell Club. Additionally, I would like to thank Dr. Richard Turner for being willing to meet with me on several occasions to answer questions and share his vast knowledge. iv ABSTRACT Author: Jennifer Cutter Title: A Novel Interaction: The thin stripe hermit Crab, Clibanarius vittatus, kills the Florida crown conch, Melongena corona, for its shell Institution: Florida Atlantic University Thesis Advisor: Dr. Donna Devlin Degree: Master of Science Year: 2017 The hermit crab Clibanarius vittatus kills Melongena corona solely to acquire a better fitting shell. This finding is contrary to previous studies, which found that hermit crabs of other species cannot kill gastropods or, in most instances, remove freshly dead gastropods from their shells. This interaction cannot be classified as predation because Melongena tissue was never consumed.
    [Show full text]
  • Hermit Crabs from the South China Sea (Crustacea: Decapoda: Anomura: Diogenidae, Paguridae, Parapaguridae)
    THE RAFFLES BULLETIN OF ZOOLOGY 2000 Supplement No. 8: 377-404 © National University of Singapore HERMIT CRABS FROM THE SOUTH CHINA SEA (CRUSTACEA: DECAPODA: ANOMURA: DIOGENIDAE, PAGURIDAE, PARAPAGURIDAE) Dwi Listyo Rahayu Rand D Center for Oceanology, Indonesian Institute of Sciences (LIP/), Jt. Pasir Putih I, Ancol Timur, PO Box 4801 JKTF, Jakarta 11048, Indonesia ABSTRACT. - One hundred and two species of hermit crabs are recorded from the South China Sea. Information presented is from published references to the species. Most of the species are widely distributed in the Indo-West Pacific. INTRODUCTION Studies on hermit crabs of the South China Sea were done mostly according to country border and not to geographical border, such as hermit crab of Singapore and Malaysia (Nobili, 1900; 1903a, c; Lanchester, 1902; Rahayu, 1996), Vietnam (Fize & Serene, 1955; Forest, 1956c; 1958), Philippines (Estampador, 1937, 1959), Taiwan (Yu, 1987; Yu & Foo, 1990) and China (Wang, 1994). Some hermit crabs from this region are mentioned in the revision of one or more taxonomical groups, such as revision of the family Parapaguridae (de Saint Laurent, 1972; Lemaitre, 1996, 1997), genus Aniculus (Forest, 1984), genus Pagurixus (McLaughlin & Haig, 1984), genus Pylopaguropsis (McLaughlin & Haig, 1989), genus Pylopagurus and Tomopagurus (McLaughlin & Gunn, 1992) and genus Trizopagurus (Forest, 1995). One hundred and two species belonging to family Diogenidae, Paguridae and Parapaguridae are recorded from the South China Sea. The family Diogenidae is represented by eight genera (Aniculus, Calcinus, Ciliopagurus, Clibanarius, Dardanus, Diogenes, Paguristes and Strigopagurus), the family Paguridae is represented by eight genera (Australeremus, Ceratopagurus, Nematopagurus, Paguritta, Pagurixus, Pagurus, Pylopaguropsis and Spiropagurus) and the family Parapaguridae is represented by four genera (Bivalvopagurus, Oncopagurus, Paragiopagurus, and Sympagurus).
    [Show full text]