And CTL-Mediated Cytotoxicity Stephane Terry1, Abderemane Abdou1, Agnete S.T

Total Page:16

File Type:pdf, Size:1020Kb

And CTL-Mediated Cytotoxicity Stephane� Terry1, Abderemane Abdou1, Agnete S.T Published OnlineFirst September 5, 2019; DOI: 10.1158/2326-6066.CIR-18-0903 Research Article Cancer Immunology Research AXL Targeting Overcomes Human Lung Cancer Cell Resistance to NK- and CTL-Mediated Cytotoxicity Stephane Terry1, Abderemane Abdou1, Agnete S.T. Engelsen1,2,Stephanie Buart1, Philippe Dessen3,Stephanie Corgnac1, Davi Collares4, Guillaume Meurice3, Gro Gausdal5, Veronique Baud4, Pierre Saintigny6,7, James B. Lorens2, Jean-Paul Thiery1,2,8,9, Fathia Mami-Chouaib1, and Salem Chouaib1,10 Abstract Immune resistance may arise from both genetic instability killer (NK)– and cytotoxic T lymphocyte (CTL)–mediated and tumor heterogeneity. Microenvironmental stresses such as killing. A small-molecule targeting AXL sensitized mesenchy- hypoxia and various resistance mechanisms promote carcino- mal lung cancer cells to cytotoxic lymphocyte–mediated ma cell plasticity. AXL, a member of the TAM (Tyro3, Axl, and killing. Mechanistically, we showed that attenuation of AXL- Mer) receptor tyrosine kinase family, is widely expressed in dependent immune resistance involved a molecular network human cancers and increasingly recognized for its role in cell comprising NF-kB activation, increased ICAM1 expression, and plasticity and drug resistance. To investigate mechanisms of upregulation of ULBP1 expression coupled with MAPK inhi- immune resistance, we studied multiple human lung cancer bition. Higher ICAM1 and ULBP1 tumor expression correlated clones derived from a model of hypoxia-induced tumor plas- with improved patient survival in two non–small cell lung ticity that exhibited mesenchymal or epithelial features. We cancer (NSCLC) cohorts. These results reveal an AXL-mediated demonstrate that AXL expression is increased in mesenchymal immune-escape regulatory pathway, suggest AXL as a candidate lung cancer clones. Expression of AXL in the cells correlated biomarker for tumor resistance to NK and CTL immunity, and with increased cancer cell–intrinsic resistance to both natural support AXL targeting to optimize immune response in NSCLC. Introduction mous cell carcinoma are the most prevalent histotypes. Like most malignancies, lung carcinoma is heterogeneous and composed of Lung cancer is the third most frequent cancer and the first cause subpopulations of cancer cells, or clones, with distinct molecular of cancer-related death worldwide (1, 2). Approximately 85% of and phenotypic features. High intratumoral heterogeneity can patients present with a disease defined as non–small cell lung pose challenges to the effectiveness of therapies for NSCLC and cancer (NSCLC), of which lung adenocarcinoma and lung squa- contributes to the emergence of therapy resistance (3). The underlying biology of tumor heterogeneity and the environmen- tal factors that shape tumor heterogeneity remain unclear. The 1INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, immune system plays a role during tumor development, with the Gustave Roussy, Equipe Labellisee par la Ligue Contre le Cancer, EPHE, Faculte interplay between cancer cells and their tumor microenviron- de Medecine, Universite Paris-Sud, Universite Paris-Saclay, Villejuif, France. ment. The latter contributes to the development of refractoriness 2Department of Biomedicine, Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway. 3Plateforme de Bioinfor- through mechanisms preventing cytotoxic immune effector T matique, UMS AMMICA, Gustave Roussy, Villejuif, France. 4NF-kB, Differentia- cells and natural killer (NK) cells from reaching and destroying tion and Cancer, Universite Paris Descartes, Sorbonne Paris Cite, Paris, France. their targets (4). Under microenvironmental stresses, carcinoma 5BerGenBio ASA, Bergen, Norway. 6Univ Lyon, Universite Claude Bernard Lyon 1, cells can undergo molecular and phenotypic changes referred to as INSERM, CNRS, Centre Leon Berard, Centre de Recherche en Cancerologie de carcinoma cell plasticity, which contributes to heterogeneity in 7 Lyon, Lyon, France. Department of Medical Oncology, Centre Leon Berard, tumors. Previously, we provided evidence that morphologic 8 Lyon, France. Department of Biochemistry, National University of Singapore, changes of carcinoma cells could affect their recognition and Singapore, Singapore. 9Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore. 10Thumbay Research Institute for Precision Medicine, Gulf Medical killing by CTLs (5). We and others demonstrated that carcinoma University, Ajman, United Arab Emirates. cell plasticity results from the activation of epithelial– mesenchymal transition (EMT) programs (6, 7). EMT also confers Note: Supplementary data for this article are available at Cancer Immunology – Research Online (http://cancerimmunolres.aacrjournals.org/). an immune-resistant phenotype (8 13). Our understanding of the mechanistic links between carcinoma cell plasticity, hetero- Corresponding Author: Salem Chouaib, Institut Gustave Roussy, U1186 INSERM, geneity, and the emergence of tumor immune escape remains 114 rue Edouard, Vaillant 94805, Villejuif cedex, France. Phone: 33142114547; Fax: 33142115288; E-mail: [email protected] poor due to the limited number of preclinical models that recapitulate carcinoma cell phenotypic diversity in the tumor Cancer Immunol Res 2019;7:1789–802 mass. doi: 10.1158/2326-6066.CIR-18-0903 AXL, a member of the TAM receptor tyrosine kinase family, is Ó2019 American Association for Cancer Research. overexpressed in various human cancers. Evidence suggests AXL is www.aacrjournals.org 1789 Downloaded from cancerimmunolres.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst September 5, 2019; DOI: 10.1158/2326-6066.CIR-18-0903 Terry et al. associated with carcinoma cell plasticity as well as chemo-, radio-, apheresis products after Ficoll-Paque Plus centrifugation (GE and drug resistance associated with the mesenchymal Healthcare). We used the NK cell isolation kit with MACS system phenotype (14–17). AXL may be a promising therapeutic target (Miltenyi Biotec). NKhd were subsequently cultured in RPMI- for overcoming such resistance (16, 18, 19). However, the bio- 1640 media with 10% pooled human serum (Jacques Boy), 5% logical role of AXL as a driver of cancer cell–intrinsic immune horse serum (Thermo Fisher Scientific), with or without the resistance has not been investigated. presence of IL2 (150 UI/mL), and IL15 (15 ng/mL). TPCA-1 was One hypothesis postulates that microenvironmental stresses purchased from Sigma-Aldrich was prepared in DMSO. Bemcen- such as hypoxia, a hallmark of most solid tumors, promote tinib (formerly known as BGB324, or R428, BerGenBio ASA) was carcinoma cell plasticity, tumor progression, and immune sup- dissolved in DMSO (10 mmol/L stock solution) and used at the pression (20). We used the primary NSCLC IGR-Heu carcinoma final concentration of 1 mmol/L. cell line subjected to hypoxic stress as a model to generate phenotypic diversity (21). This model recapitulates some of the RNA preparation, cDNA synthesis, and quantitative real-time key features of tumor heterogeneity resulting in the emergence of PCR carcinoma cell clones residing in the epithelial (EPI) or the Total RNA extraction was performed using TRIzol reagent. mesenchymal (MES) states of the EMT spectrum. Reverse transcription was performed using Maxima Reverse Tran- Here, we use these clones to explore the mechanisms by which scriptase followed by qPCR using real-time PCR Master SYBR carcinoma cells are positioned in the mesenchymal domain of the Green on a StepOnePlus Real-Time PCR system. All products were EMT spectrum and expressing AXL could affect lysis by CTLs and from Thermo Fisher Scientific. Most oligonucleotide sequences NK cells. EPI and MES carcinoma cells were shown to differentially used were designed using Beacon Designer Free Edition and express various immune-related genes, which may affect their Primer3Plus. The full list is available as Supplementary susceptibility to lysis by cytotoxic effector cells. The present study Table S1. Heat maps were generated using Excel software. also showed that MES carcinoma clones with increased expression of AXL were more resistant to cytotoxic immune cell attacks. Protein extracts, Western blot analysis, and electrophoretic Inhibition of AXL in MES carcinoma cells resulted in the sensiti- mobility shift assays zation of these cells to NK- and CTL-mediated killing through a Adherent cells were lysed on ice with lysis buffer (62.5 mmol/L molecular network involving MAPK and NF-kB activities as well as Tris-HCl, pH 6.8, 2% w/v SDS, 10% glycerol) containing a cocktail increased expression of ICAM1 and the NKG2D ligand ULBP1. of protease (Thermo Fisher Scientific) and phosphatase inhibitors (Roche Life Science). Western blotting was performed as previ- ously described (21). Antibodies for Western blots were as fol- Materials and Methods lows: antibodies to AXL (C89E7), phospho-p44/42 MAPK (Erk1/ Cell culture and reagents 2; Thr202/Tyr204) D13.14.4E, p44/42 MAPK (Erk1/2; L34F12), Carcinoma clones with EPI or MES phenotypes were isolated as phospho-Akt (Ser473; D9E), Akt (pan; 40D4) were from Cell described (21) from primary NSCLC IGR-Heu cells deriving from Signaling Technology. Phospho-AXL-y779-antibody was from a resection of a nonmetastatic NSCLC patient (22). Briefly, after R&D Systems. Anti-vimentin (Clone V9) was from Dako), anti- cultivating NSCLC IGR-Heu cells for one month and a half under ICAM1 (sc-107)
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Comprehensive Molecular Characterization of Gastric Adenocarcinoma
    Comprehensive molecular characterization of gastric adenocarcinoma The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bass, A. J., V. Thorsson, I. Shmulevich, S. M. Reynolds, M. Miller, B. Bernard, T. Hinoue, et al. 2014. “Comprehensive molecular characterization of gastric adenocarcinoma.” Nature 513 (7517): 202-209. doi:10.1038/nature13480. http://dx.doi.org/10.1038/ nature13480. Published Version doi:10.1038/nature13480 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12987344 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Nature. Author manuscript; available in PMC 2014 September 22. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nature. 2014 September 11; 513(7517): 202–209. doi:10.1038/nature13480. Comprehensive molecular characterization of gastric adenocarcinoma A full list of authors and affiliations appears at the end of the article. Abstract Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer
    [Show full text]
  • HER2 Positive and HER2 Negative Classical Type Invasive Lobular Carcinomas: Comparison of Clinicopathologic Features
    Article HER2 Positive and HER2 Negative Classical Type Invasive Lobular Carcinomas: Comparison of Clinicopathologic Features Lin He 1, Ellen Araj 1 and Yan Peng 1,2,* 1 Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; [email protected] (L.H.); [email protected] (E.A.) 2 Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75235, USA * Correspondence: [email protected] Abstract: Human epidermal growth factor receptor 2 (HER2) positive (+) classical type invasive lobular carcinoma (cILC) of the breast is extremely rare and its clinicopathologic features have not been well characterized. We compared features of HER2(+) and HER2 negative (−) cILCs. A total of 29 cases were identified from the clinical database at our institution from 2011-2019; 9 were HER2(+) cILC tumors and 20 were HER2(−) cILC tumors. The results reveal that HER2(+) cILC group had significantly increased Ki-67 expression and reduced estrogen receptor (ER) expression compared to HER2(−) cILC group (both p < 0.05). In addition, HER2(+) cILCs tended to be diagnosed at a younger age and more common in the left breast, and appeared to have a higher frequency of nodal or distant metastases. These clinicopathologic features suggest HER2(+) cILC tumors may have more aggressive behavior than their HER2(−) counterpart although both groups of tumors showed similar morphologic features. Future directions of the study: (1) To conduct a multi-institutional study with a larger case series of HER2(+) cILC to further characterize its clinicopathologic features; (2) to compare molecular profiles by next generation sequencing (NGS) assay between HER2(+) cILC and HER2(−) cILC cases to better understand tumor biology of this rare subset of HER2(+) breast cancer; Citation: He, L.; Araj, E.; Peng, Y.
    [Show full text]
  • MARKER PANEL Figure 1
    Epithelial to Mesenchymal Transition MARKER PANEL Figure 1. E-cadherin (A-F) and N-cadherin (G-L) expression profiles in normal human tissues shown by IHC with the Anti-CDH1 antibody AMAb90863 and the Anti-CDH2 antibody AMAb91220. Note the differential expression of two cadherins in colon (A, J), duodenum (B, K), cervix (C, L), cerebellum (D, G), heart (E, H) and testis (F, I). Inset on J shows CDH2- immunoreactivity in the peripheral ganglion neurons in rectum. A A B B Figure 2. Western blot using Anti-CDH1 antibody AMAb90863 (A) and Anti-CDH2 antibody AMAb91220 (B). Blot A: Lane 1: Marker [kDa], Lane 2: Human cell line MCF-7 (posi- tive), Lane 3: Human cell line SK-BR-3 (negative), Lane 4: Human cell line HeLa (nega- Figure 3. E-cadherin – beta-catenin protein-protein interactions tive). Blot B: Lane 1: Marker [kDa], Lane 2 Human U-251 MG (positive). shown by in situ proximity ligation assay (PLA) in the epi- thelium of normal fallopian tube (A). The Anti-CDH1 mouse Cover image: monoclonal antibody AMAb90865 and the Anti-CTNNB1 rabbit polyclonal antibody HPA029159 were used for the Multiplexed IHC-IF staining of human colorectal cancer section showing membranous PLA reaction. Tonsil was used as negative control ( ). E-cadherin immunoreactivity in tumor cells (AMAb90865, magenta) and laminin gamma 1 B positivity in basement membranes (AMAb91138, green). Page 2 (4) The Epithelial to Mesenchymal The antibodies targeting selected EMT On the contrary, N-cadherin (CDH2) ex- Transition Marker Panel marker proteins are: pression is high in e.g. the nervous sys- tem (G and inset on J), heart muscle (H) Epithelial and mesenchymal cells are fun- • IHC-validated in relevant normal and and testis (I), while glandular epithelium of damentally different and represent the two cancer human tissues gastrointestinal tract (J, K) and squamous main cell types in the body.
    [Show full text]
  • The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • CD Markers Are Routinely Used for the Immunophenotyping of Cells
    ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.
    [Show full text]
  • CDH1 Gene Cadherin 1
    CDH1 gene cadherin 1 Normal Function The CDH1 gene provides instructions for making a protein called epithelial cadherin or E-cadherin. This protein is found within the membrane that surrounds epithelial cells, which are the cells that line the surfaces and cavities of the body, such as the inside of the eyelids and mouth. E-cadherin belongs to a family of proteins called cadherins whose function is to help neighboring cells stick to one another (cell adhesion) to form organized tissues. Another protein called p120-catenin, produced from the CTNND1 gene, helps keep E-cadherin in its proper place in the cell membrane, preventing it from being taken into the cell through a process called endocytosis and broken down prematurely. E-cadherin is one of the best-understood cadherin proteins. In addition to its role in cell adhesion, E-cadherin is involved in transmitting chemical signals within cells, controlling cell maturation and movement, and regulating the activity of certain genes. Interactions between the E-cadherin and p120-catenin proteins, in particular, are thought to be important for normal development of the head and face (craniofacial development), including the eyelids and teeth. E-cadherin also acts as a tumor suppressor protein, which means it prevents cells from growing and dividing too rapidly or in an uncontrolled way. Health Conditions Related to Genetic Changes Breast cancer Inherited mutations in the CDH1 gene increase a woman's risk of developing a form of breast cancer that begins in the milk-producing glands (lobular breast cancer). In many cases, this increased risk occurs as part of an inherited cancer disorder called hereditary diffuse gastric cancer (HDGC) (described below).
    [Show full text]
  • Cell Adhesion Molecules in Normal Skin and Melanoma
    biomolecules Review Cell Adhesion Molecules in Normal Skin and Melanoma Cian D’Arcy and Christina Kiel * Systems Biology Ireland & UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-1-716-6344 Abstract: Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, espe- cially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier for- mation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and Citation: D’Arcy, C.; Kiel, C. Cell strategies for novel anti-melanoma therapies. Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021, 11, Keywords: cadherins; GTEx consortium; Human Protein Atlas; integrins; melanocytes; single cell 1213. https://doi.org/10.3390/ RNA sequencing; selectins; tumour microenvironment biom11081213 Academic Editor: Sang-Han Lee 1.
    [Show full text]
  • CDH2 and CDH11 Act As Regulators of Stem Cell Fate Decisions Stella Alimperti A, Stelios T
    Stem Cell Research (2015) 14, 270–282 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/scr REVIEW CDH2 and CDH11 act as regulators of stem cell fate decisions Stella Alimperti a, Stelios T. Andreadis a,b,⁎ a Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA b Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA Received 18 September 2014; received in revised form 24 January 2015; accepted 10 February 2015 Abstract Accumulating evidence suggests that the mechanical and biochemical signals originating from cell–cell adhesion are critical for stem cell lineage specification. In this review, we focus on the role of cadherin mediated signaling in development and stem cell differentiation, with emphasis on two well-known cadherins, cadherin-2 (CDH2) (N-cadherin) and cadherin-11 (CDH11) (OB-cadherin). We summarize the existing knowledge regarding the role of CDH2 and CDH11 during development and differentiation in vivo and in vitro. We also discuss engineering strategies to control stem cell fate decisions by fine-tuning the extent of cell–cell adhesion through surface chemistry and microtopology. These studies may be greatly facilitated by novel strategies that enable monitoring of stem cell specification in real time. We expect that better understanding of how intercellular adhesion signaling affects lineage specification may impact biomaterial and scaffold design to control stem cell fate decisions in three-dimensional context with potential implications for tissue engineering and regenerative medicine. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • The Importance of E-Cadherin Binding Partners to Evaluate the Pathogenicity of E-Cadherin Missense Mutations Associated to HDGC
    European Journal of Human Genetics (2013) 21, 301–309 & 2013 Macmillan Publishers Limited All rights reserved 1018-4813/13 www.nature.com/ejhg ARTICLE The importance of E-cadherin binding partners to evaluate the pathogenicity of E-cadherin missense mutations associated to HDGC Joana Figueiredo1,2, Ola So¨derberg3, Joana Simo˜es-Correia1,4, Karin Grannas3, Gianpaolo Suriano1 and Raquel Seruca*,1,2 In hereditary diffuse gastric cancer (HDGC), CDH1 germline gene alterations are causative events in 30% of the cases. In 20% of HDGC families, CDH1 germline mutations are of the missense type and the mutation carriers constitute a problem in terms of genetic counseling and surveillance. To access the pathogenic relevance of missense mutations, we have previously developed an in vitro method to functionally characterize them. Pathogenic E-cadherin missense mutants fail to aggregate and become more invasive, in comparison with cells expressing the wild-type (WT) protein. Herein, our aim was to develop a complementary method to unravel the pathogenic significance of E-cadherin missense mutations. We used cells stably expressing WT E-cadherin and seven HDGC-associated mutations (five intracellular and two extracellular) and studied by proximity ligation assays (PLA) how these mutants bind to fundamental regulators of E-cadherin function and trafficking. We focused our attention on the interaction with: p120, b-catenin, PIPKIc and Hakai. We showed that cytoplasmic E-cadherin mutations affect the interaction of one or more binding partners, compromising the E-cadherin stability at the plasma membrane and likely affecting the adhesion complex competence. In the present work, we demonstrated that the study of the interplay between E-cadherin and its binding partners, using PLA, is an easy, rapid, quantitative and highly reproducible technique that can be applied in routine labs to verify the pathogenicity of E-cadherin missense mutants for HDGC diagnosis, especially those located in the intracellular domain of the protein.
    [Show full text]