Cutlassfishes of the Genus Lepidopus (Trichiuridae), with Two New Eastern Pacific Species

Total Page:16

File Type:pdf, Size:1020Kb

Cutlassfishes of the Genus Lepidopus (Trichiuridae), with Two New Eastern Pacific Species Japanese Journal of Ichthyology 魚 類 学 雑 誌 Vol.33, No.4 1987 33巻4号1987年 Cutlassfishes of the Genus Lepidopus (Trichiuridae), with Two New Eastern Pacific Species Richard H. Rosenblatt and Raymond R. Wilson, Jr. (Received January 5, 1986) Abstract Three of the five known species of Lepidopus occur in the eastern Pacific. Lepidopus manis sp. nov. is described from a single specimen from the Galapagos Islands. The holotype of L. xantusi Goode et Bean, 1895, supposedly from Cape San Lucas, Lower California, is shown to be conspecific with L. caudatus (Euphrasen, 1788). The species heretofore reported under the name L. xantusi is described, and named L. fitchi sp. nov. It ranges from Oregon to the Gulf of California and occurs disjunctly in southern Ecuador and northern Peru. A key to the described species of Lepidopus is given and certain morphological features of L. caudatus are described. Geographic variability of L. caudatus and L. fitchi is discussed. The cutlassfishes of the genus Lepidopus were of Natural History (USNM), Oregon State Uni- last reviewed by Tucker (1956) in his preliminary versity (OS), Scripps Institution of Oceanography revision of the Trichiuridae. However, he gave (SIO), and Department of Biology, University of data on but two specimens of L. caudatus, and California, Los Angeles (UCLA). Paratypes had no material of the other putative species, L. of L. fitchi sp. nov. will be deposited at USNM, xantusi. Since that time five important contri- CAS and the British Museum (Natural History). butions have appeared; Fitch and Gotshall (1972) Measurements and counts follow the methods of and Mikhaylin (1982) provided data on Northeast Hubbs and Lagler (1958); counts were obtained and Southeast Pacific specimens of Lepidopus and from radiographs or cleared and stained specimens. Mikhaylin (1977) has discussed variability in L. The presence of rudimentary pelvic soft-rays could caudatus. Parin and Mikhaylin (1981) described only be determined from cleared and stained a new species from the Southeastern Atlantic, L. material. All specimen lengths are standard dubius, and established that Tucker's (1957) record lengths. of Evoxymetopon taeniatus represents an additional undescribed species from the western Atlantic. Recently, Parin and Mikhaylin (1982) have describ- Lepidopus Gouan, 1770 ed a new species, L. calcar, from Colahan Sea- Among the trichiurids with pelvics and a caudal mount, on the Hawaiian Ridge in the Central fin, Lepidopus differs from Assurger and Evoxy- Pacific. metopon in lacking a sagittal crest running from the Our interest in the genus was occasioned by a snout to the dorsal origin, producing a convex specimen in the Scripps Institution collection which profile, and from Diplospinus, Aphanopus, and did not appear to be referable to any known spe- Benthodesmus in having a continuous dorsal fin cies. Our study indicates that there are two without a notch. It differs further from the latter undescribed species of Lepidopus in the eastern genera in having 9 rather than 30 or more dorsal Pacific. It is the purpose of this paper to dis- spines. tinguish the species of the genus and describe and name the two eastern Pacific species. Key to the species of Lepidopus Materials and methods a. Dorsal rays 91-110, vertebrae1 98-114.•c2 b. Dorsal rays 78-89, vertebrae 84-96•c31 The specimens examined in this study are 2a. Premaxillary fangs barbed at tip, second anal housed in the following institutions: California spine flattened and plate-like, dorsal rays 98- Academy of Sciences (CAS), National Museum 110, anal rays II, 59-66, vertebrae 105-114•c ―342― Rosenblatt and Wilson: Classification of Lepidopus L. caudatus (Euphrasen). North and South jaw included; symphysis of mandible sloping up- Atlantic and Southwest Pacific ward at a steep angle from an anterior knob. 2b. Premaxillary fangs smooth, second anal spine Teeth flattened, lanceolate, premaxillary fangs elongated, stout and spur-like, dorsal rays 91- barbed at tip. An outer row of 21 teeth on left 93, anal rays II, 44-47, vertebrae 98-100 dentary. No teeth on vomer or tongue. A L. calcar Parin et Mikhaylin. Central •c Pacific single row of small, conical teeth along palatine. 3a. Head length more than six (6.6) in standard Nostril an elongate oval about one-fifth snout length. Body depth about 16 in standard length before eye. Interorbit concave, with a length. Second anal spine large, with a trough between elevated ridges over eyes, trough strong medial ridge and its margins flaring continued posteriorly between converging frontal laterally•cL. dubius Parin et Mikhaylin. crests at rear margin of eyes. Frontal crests rising Southeast Atlantic over posterior part of eye, elevated at confluence, 3b. Head length less than six (4.2-5.3) in standard which is at posterior margin of eye. A ridge length. Body depth 9 to 13 in standard formed by first pterygiophore extends from dorsal length. Second anal spine flat and triangular•c•c origin almost to apex of frontal confluence, form- 4 ing a sagittal crest. Posterior margin of opercle 4a. Eye large, fleshy orbit 4 in head length; caudal evenly rounded. Dorsal origin at anterior juncture span greater than length of upper caudal of opercular bone with head. Dorsal rays damaged lobe. Dorsal rays 89, vertebrae 94•cL. in available specimen, but no elements are branched manis sp. nov. Galapagos Islands or segmented. According to Tucker (1956) there 4b. Eye smaller, fleshy orbit 5 or more in head are nine spinous elements in the species, as is the length, caudal span less than length of upper case in our specimen. Origin of anal in middle caudal lobe. Dorsal rays 78-86, vertebrae third of body length. Only second anal spine ex- 78-92•cL. fitchi sp. nov. Eastern Pacific ternally obvious, flattened and covered by skin. First spine represented by a thickening of the skin. Only last 23 anal rays protrude beyond body epidopus caudatus (Euphrasen, 1788) L outline. Caudal peduncle very slender, its depth about 5 References in the synonymy given by Tucker (1956) in its length. Caudal well developed and lunate, are not repeated here. length of upper lobe about 3 in head. Length of Lepidopus caudatus: Jordan and Gilbert, 1882: 358. upper lobe about equal to caudal span. Goode and Bean, 1895: 203. Jordan and Evermann, Pectorals inserted low on body, lower corner of 1896: 886, 1900, pl. 136, fig. 373. base just below level of lower border of orbit. Lepidopus xantusi Goode and Bean 1895: 519. Holo- type USNM 10115, Cape San Lucas, Lower Cali- Lower rays of pectoral the longest. Pelvic girdle fornia, Mexico. present, each pelvic fin represented by a flattened, plate-like spine. Description. Based on CAS 10553, Canary Lateral line originates at upper corner of opercle, Islands, 1048mm. Ranges in parentheses for curves concavely downward to midline, which is Southeastern Atlantic specimens recalculated from reached about 0.8 head lengths behind head, then Mikhaylin (1977). Fin ray counts and vertebral descends gradually so that it is on lower third of counts from Tucker (1956), Mikhaylin (1977), and side just before its termination, which is about at Scott (1962). end of anal base. D IX, 98-110; A II, 59-66; P1 12, P2 I, ?; Ver- Color. Accounts agree that the fish is silver in tebrae 105-114; Br 7; GR 12+1+8 (16-21). life, as indicated by the common name "frost- Body depth at pelvics 18 (12.3-14.9), and depth fish". Mikhaylin (1977) reported the occurrence at caudal peduncle 228 in standard length (SL). of black pigmentation on the membrane between Body strongly compressed, ribbon-like. Head 8 the first and third and seventh to ninth dorsal rays (5.7-6.8) in SL. Eye large, 4.8 in head and 1.8 in in specimens from the South Atlantic. Scott snout, barely entering profile of head. Interorbit (1962) reported the occurrence of the I-III spot 1.6 in eye, snout 2.7 in head. Mouth large, maxilla but made no mention of the VII-IX spot in New ending just before anterior margin of pupil, upper Zealand L. caudatus. According to Mikhaylin, ―343― 魚類学雑誌 Japan. J. Ichthyol. 33(4),1987 Fig. 1. Distribution of 5 species of Lepidopus. Shaded area, range of L. caudatus (open square, Gettysburg Seamount). Solid squares, records of L. dubius. Solid triangles, records of L. fitchi (solid star, type locality), Open triangle, type locality of L. xantusi. Open star, type locality of L. manis. Solid circle, type locality of L. calcar. specimens from the Azores and the Canary Islands tion in vertebral and dorsal counts. The presence lack this conspicuous black pigmentation and have of the Gettysburg Seamount population of south- instead a blackish-gray dorsal fin. ern type fish is puzzling; no specimen has been Distribution. Norway, Canary Islands, and reported from between about 12•‹N and 17•‹S. Cape Frio to Agulhas Bank in the eastern Atlantic; Nevertheless, it does indicate that the meristic dif- Mediterranean (Parin and Becker, 1973); South ferences noted by Mikhaylin are maintained in Australia, Tasmania, New Zealand in the western sympatry and probably warrant recognition at the Pacific (Scott, 1962); Cape San Lucas, Baja Cali- species level. The Gettysburg Seamount popula- fornia (see "Remarks" under L. fitchi) (Fig. 1). tion does differ somewhat from both North Atlantic Remarks. Mikhaylin (1977) conducted an ex- and South African material in anal ray number. tensive variation study of L. caudatus in the At- Although Mikhaylin's study forms a solid basis lantic. He established that samples from the for understanding Lepidopus caudatus, sensu lato, Azores and the Canary Islands differ from samples it is clear that adequate material from more locali- from South Africa in dorsal and anal rays and ties, including the Mediterranean, Australia, and vertebrae (Figs.
Recommended publications
  • Lepidopus Caudatus) Off West Coast South Island
    Age determination of frostfish (Lepidopus caudatus) off west coast South Island New Zealand Fisheries Assessment Report 2013/21 P.L. Horn ISSN 1179-5352 (online) ISBN 978-0-478-40595-8 (online) April 2013 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries Table of Contents EXECUTIVE SUMMARY ..................................................................................................................... 1 1. INTRODUCTION .......................................................................................................................... 2 2. REVIEW OF AGE-RELATED STUDIES .................................................................................... 2 3. METHODS ..................................................................................................................................... 6 3.1 Analysis of length-frequency data .......................................................................... 6 3.2 Otolith-based ageing .............................................................................................. 6 3.3 Estimating catch-at-age .........................................................................................
    [Show full text]
  • Hairtail and Frostfish (Trichiuridae) Exploitation Status Undefined
    I & I NSW WILD FISHERIES RESEARCH PROGRAM Hairtail and Frostfish (Trichiuridae) EXPLOITATION STATUS UNDEFINED No local biological information available for either species in this group, but growth and maturity have been studied for Trichiurus lepturus from the East China Sea, where it supports a major fishery. SCIENTIFIC NAME STANDARD NAME COMMENT Trichiurus lepturus largehead hairtail Lepidopus caudatus frostfish Trichiurus lepturus Image © Bernard Yau Background The hairtail is commonly around 100 cm in length and about 2 kg in weight but reaches a The largehead hairtail (Trichiurus lepturus) maximum length of about 220 cm and weight belongs to the family Trichiuridae which, of 3.5 kg. worldwide, includes nine genera and about 30 species generally referred to as cutlassfishes or Overseas studies have observed that adults scabbardfishes. Off NSW, at least four species feed at the surface during the day, and retreat of trichiurids are found in deepwater, but the to deeper waters at night. In contrast, juveniles most well known member of the family to most and small adults tend to feed at night at the people is the hairtail, found in shallow coastal surface, and aggregate into schools at depths waters and estuaries. during the day. The adult hairtail diet consists mainly of fish with occasional squid and A cosmopolitan species, the largehead hairtail crustaceans, whereas juveniles mainly feed on is subject to significant fisheries off many planktonic crustaceans, euphausiids and small Asian countries, particularly China and Korea. fish. The world catch reportedly now exceeds 1.5 million t annually. In eastern Australia, Reported landings in NSW generally range hairtail occasionally school in coastal bays between 10 and 25 t with catches greatest and estuaries where they may be targeted during March-May.
    [Show full text]
  • Lepturacanthus Fowler, 1905 Lepturacanthus Pantului (Gupta
    click for previous page Snake Mackerels and Cutlassfishes of the World llllllllllllllllllllll99 Lepturacanthus Fowler, 1905 TRICH Lept Lepturacanthus (subgenus of Trichiurus) Fowler, 1905:770. Type species, Trichiurus savala Cuvier, 1829, by original designation (also monotypic). Synonyms: None. Diagnostic Features: Body elongate and remarkably compressed. Anteriormost fang of upper jaw very long, coming out through a small slit on ventral side of lower jaw; lower hind margin of gill cover concave. Anal-fin soft rays pungent spinules; pectoral fins fairly long, extending above lateral line; pelvic fins completely absent; caudal fin absent, posterior part of body tapering to a point. Biology, Habitat and Distribution: Benthopelagic mostly on continental shelf, comes often close to surface at night. Feeds on a wide variety of small coastal fishes, squid and crustaceans. Known from Indo-West Pacific waters. Interest to Fisheries: Caught with shore seines, bag nets and small bottom trawls in many Asian countries, mainly mixed with other coastal fish. Species: Two species recognized so far. Key to Species of Lepturacanthus: 1a. Snout rather short, its length about 3 times in head length; eye large, its diameter 5 to 7 times in head length; distance between eye and upper jaw (suborbital length) about half of eye diameter; dorsal-fin elements 123 to 133 ...................................................................... L. pantului 1b. Snout long, its length about 2 to 2.5 times in head length; eye small, its diameter 7 to 9 times in head length; distance between eye and upper jaw (suborbital length) slightly smaller than eye diameter; dorsal-fin elements 113 to 123 ....................................... L. savala Lepturacanthus pantului (Gupta, 1966) Fig.
    [Show full text]
  • Morphology and Phylogenetic Relationships of Fossil Snake Mackerels and Cutlassfishes (Trichiuroidea) from the Eocene (Ypresian) London Clay Formation
    MS. HERMIONE BECKETT (Orcid ID : 0000-0003-4475-021X) DR. ZERINA JOHANSON (Orcid ID : 0000-0002-8444-6776) Article type : Original Article Handling Editor: Lionel Cavin Running head: Relationships of London Clay trichiuroids Hermione Becketta,b, Sam Gilesa, Zerina Johansonb and Matt Friedmana,c aDepartment of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK bDepartment of Earth Sciences, Natural History Museum, London, SW7 5BD, UK cCurrent address: Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI 48109-1079, USA *Correspondence to: Hermione Beckett, +44 (0) 1865 272000 [email protected], Department of Earth Sciences, University of Oxford, Oxford, UK, OX1 3AN Short title: Relationships of London Clay trichiuroids Author Manuscript Key words: Trichiuroidea, morphology, London Clay, Trichiuridae, Gempylidae, fossil This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/spp2.1221 This article is protected by copyright. All rights reserved A ‘Gempylids’ (snake mackerels) and trichiurids (cutlassfishes) are pelagic fishes characterised by slender to eel-like bodies, deep-sea predatory ecologies, and large fang-like teeth. Several hypotheses of relationships between these groups have been proposed, but a consensus remains elusive. Fossils attributed to ‘gempylids’ and trichiurids consist almost exclusively of highly compressed body fossils and isolated teeth and otoliths. We use micro-computed tomography to redescribe two three- dimensional crania, historically assigned to †Eutrichiurides winkleri and †Progempylus edwardsi, as well as an isolated braincase (NHMUK PV OR 41318).
    [Show full text]
  • Distribution, Abundance and Biological Interactions of the Cutlassfish Trichiurus Zepturus in the Southern Brazil Subtropical Convergence Ecosystem
    ELSEVIER Fisheries Research 30 (1997) 217-227 Distribution, abundance and biological interactions of the cutlassfish Trichiurus Zepturus in the southern Brazil subtropical convergence ecosystem Agnaldo Silva Martins a,* , Manuel Haimovici b a Departamento de Ecologia e Recursos Naturais-Universidade Federal do Espirito Sante-Au. Fernando Ferrari, s/n, Vithia-ES, 29060-900, Braril h Departamento de Oceanograjia, Funda@o Uniuersidade do Rio Grande. Caixa Postal 474, Rio Grande, RS 96201-900. Brazil Accepted 5 October 1996 Abstract The distribution, abundance and biological interactions of the cutlassfish Tn’chiurus lepturus in the southern Brazil subtropical convergence ecosystem were studied from demersal trawl surveys conducted along the continental shelf and upper slope from Cape Santa Marta Grande (28”36’S) to Chui (34”45’S) between 1981 and 1987. Trichiurus lepturus was more abundant at bottom water temperatures of over 16°C and in the 40-120 m depth range. From late spring to fall, juveniles of S-30 cm total length (TL) were found in coastal waters, subadults (TL 30-70 cm) mainly in inner shelf waters and adults (TL > 70 cm) in coastal, inner and outer shelf waters. Higher catches of subadults and adults were found associated with thermal fronts in the western boundary of the Subtropical Convergence or with a shelf break upwelling observed in summer. The standing stock in a 58 000 km2 shelf area estimated by the swept area method, ranged from 3066 t ( f 46% Cl) in September 1981 to 37 8 14 t ( f 22% CI) in January 1982. Correlation between occurrences of different size groups of cutlassfishes and other fishes caught in 250 bottom trawl hauls was analyzed.
    [Show full text]
  • Fish in Disguise: Seafood Fraud in Korea
    Fish in disguise: Seafood fraud in Korea A briefing by the Environmental Justice Foundation 1 Executive summary Between January and December 2018, the Environmental Justice Foundation (EJF) used DNA testing to determine levels of seafood fraud in the Republic of Korea. The results showed that over a third of samples tested were mislabelled. This mislabelling defrauds consumers, risks public health, harms the marine environment and can be associated with serious human rights abuses across the world. These findings demonstrate the urgent need for greater transparency and traceability in Korean seafood, including imported products. Key findings: • Over a third of seafood samples (34.8%, 105 of 302 samples) genetically analysed were mislabelled. • Samples labelled Fleshy Prawn, Fenneropenaeus chinensis (100%), Japanese Eel, Anguilla japonica (67.7%), Mottled Skate, Raja pulchra (53.3%) and Common Octopus, Octopus vulgaris (52.9%) had the highest rates of mislabelling. • Not a single sample labelled Fleshly Prawn was the correct species. • Mislabelling was higher in restaurants, fish markets and online than in general markets or superstores. • By processed types, sushi (53.9%), fresh fish (38.9%) and sashimi (33.6%) were the most likely to be mislabelled. • The seafood fraud identified by this research has direct negative impacts for consumers. It is clear that for some species sampled consumers were likely to be paying more than they should. For example, more than half of the eel and skate samples that were labelled domestic were actually found to be imported, which can cost only half of the price of domestic products. Swordfish mislabelled as Bluefin Tuna can be sold for four to five times as much.
    [Show full text]
  • Fao Species Catalogue
    FAO Fisheries Synopsis No. 125, Volume 15 ISSN 0014-5602 FIR/S125 Vol. 15 FAO SPECIES CATALOGUE VOL. 15. SNAKE MACKERELS AND CUTLASSFISHES OF THE WORLD (FAMILIES GEMPYLIDAE AND TRICHIURIDAE) AN ANNOTATED AND ILLUSTRATED CATALOGUE OF THE SNAKE MACKERELS, SNOEKS, ESCOLARS, GEMFISHES, SACKFISHES, DOMINE, OILFISH, CUTLASSFISHES, SCABBARDFISHES, HAIRTAILS AND FROSTFISHES KNOWN TO DATE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS FAO Fisheries Synopsis No. 125, Volume 15 FIR/S125 Vol. 15 FAO SPECIES CATALOGUE VOL. 15. SNAKE MACKERELS AND CUTLASSFISHES OF THE WORLD (Families Gempylidae and Trichiuridae) An Annotated and Illustrated Catalogue of the Snake Mackerels, Snoeks, Escolars, Gemfishes, Sackfishes, Domine, Oilfish, Cutlassfishes, Scabbardfishes, Hairtails, and Frostfishes Known to Date I. Nakamura Fisheries Research Station Kyoto University Maizuru, Kyoto, 625, Japan and N. V. Parin P.P. Shirshov Institute of Oceanology Academy of Sciences Krasikova 23 Moscow 117218, Russian Federation FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1993 The designations employed and the presenta- tion of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-40 ISBN 92-5-103124-X All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy.
    [Show full text]
  • Guide to the Coastal Marine Fishes of California
    STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 157 GUIDE TO THE COASTAL MARINE FISHES OF CALIFORNIA by DANIEL J. MILLER and ROBERT N. LEA Marine Resources Region 1972 ABSTRACT This is a comprehensive identification guide encompassing all shallow marine fishes within California waters. Geographic range limits, maximum size, depth range, a brief color description, and some meristic counts including, if available: fin ray counts, lateral line pores, lateral line scales, gill rakers, and vertebrae are given. Body proportions and shapes are used in the keys and a state- ment concerning the rarity or commonness in California is given for each species. In all, 554 species are described. Three of these have not been re- corded or confirmed as occurring in California waters but are included since they are apt to appear. The remainder have been recorded as occurring in an area between the Mexican and Oregon borders and offshore to at least 50 miles. Five of California species as yet have not been named or described, and ichthyologists studying these new forms have given information on identification to enable inclusion here. A dichotomous key to 144 families includes an outline figure of a repre- sentative for all but two families. Keys are presented for all larger families, and diagnostic features are pointed out on most of the figures. Illustrations are presented for all but eight species. Of the 554 species, 439 are found primarily in depths less than 400 ft., 48 are meso- or bathypelagic species, and 67 are deepwater bottom dwelling forms rarely taken in less than 400 ft.
    [Show full text]
  • Nbr First Edition Update Table 4.2 Southeast Region Fish
    NBR FIRST EDITION UPDATE TABLE 4.2 SOUTHEAST REGION FISH BYCATCH BY STOCKS AND SPECIES - 2010 The Southeast Region generated 2010 fish bycatch estimates and ratios using 2006- 2010 data, except where otherwise noted. Species bycatch ratio = total regional bycatch of a species / (total regional landings of the species + total regional bycatch of the species). Landings data were not available at the stock level. Some bycatch ratios (marked **) could not be developed, e.g., where bycatch was by weight and numbers of individuals, and landings were in pounds. Bycatch ratio cells are left blank when landings = 0. BYCATCH SPECIES BYCATCH BYCATCH LANDINGS BYCATCH COMMON NAME SCIENTIFIC NAME (POUNDS) (INDIVIDUALS) (POUNDS) RATIO FOOTNOTE(S) ACANTHURIDAE (group) Acanthuridae (group) 77.27 Acanthuridae 0 ACANTHURIDAE (group) (Subtotal) 0.00 77.27 AFRICAN POMPANO African pompano 121.89 Alectis ciliaris 9,321 ** AFRICAN POMPANO (Subtotal) 0.00 121.89 ALBACORE Albacore 1,918.02 214.41 Thunnus alalunga 135,931 ** ALBACORE (Subtotal) 1,918.02 214.41 ALMACO JACK Almaco jack 1,680.06 Seriola rivoliana 244,114 ** ALMACO JACK (Subtotal) 0.00 1,680.06 AMBERFISHES, BANDED RUDDERFISH, AMBERJACKS, AND YELLOWTAILS (group) Amberfishes, banded rudderfish, amberjacks, and 137,243.72 yellowtails (group) Seriola 0 AMBERFISHES, BANDED RUDDERFISH, AMBERJACKS, AND 0.00 137,243.72 YELLOWTAILS (group) (Subtotal) ATLANTIC ANGELSHARK Atlantic angelshark 119.89 Squatina dumeril 0 ATLANTIC ANGELSHARK (Subtotal) 0.00 119.89 ATLANTIC BONITO Atlantic bonito 21,317.97 Sarda sarda
    [Show full text]
  • Seamap Environmental and Biological Atlas of the Gulf of Mexico, 2017
    environmental and biological atlas of the gulf of mexico 2017 gulf states marine fisheries commission number 284 february 2019 seamap SEAMAP ENVIRONMENTAL AND BIOLOGICAL ATLAS OF THE GULF OF MEXICO, 2017 Edited by Jeffrey K. Rester Gulf States Marine Fisheries Commission Manuscript Design and Layout Ashley P. Lott Gulf States Marine Fisheries Commission GULF STATES MARINE FISHERIES COMMISSION FEBRUARY 2019 NUMBER 284 This project was supported in part by the National Oceanic and Atmospheric Administration, National Marine Fisheries Service, under State/Federal Project Number NA16NMFS4350111. GULF STATES MARINE FISHERIES COMMISSION COMMISSIONERS ALABAMA Chris Blankenship John Roussel Alabama Department of Conservation 1221 Plains Port Hudson Road and Natural Resources Zachary, LA 70791 64 North Union Street Montgomery, AL 36130-1901 MISSISSIPPI Joe Spraggins, Executive Director Representative Steve McMillan Mississippi Department of Marine Resources P.O. Box 337 1141 Bayview Avenue Bay Minette, AL 36507 Biloxi, MS 39530 Chris Nelson TBA Bon Secour Fisheries, Inc. P.O. Box 60 Joe Gill, Jr. Bon Secour, AL 36511 Joe Gill Consulting, LLC 910 Desoto Street FLORIDA Ocean Springs, MS 39566-0535 Eric Sutton FL Fish and Wildlife Conservation Commission TEXAS 620 South Meridian Street Carter Smith, Executive Director Tallahassee, FL 32399-1600 Texas Parks and Wildlife Department 4200 Smith School Road Representative Jay Trumbull Austin, TX 78744 State of Florida House of Representatives 402 South Monroe Street Troy B. Williamson, II Tallahassee, FL 32399 P.O. Box 967 Corpus Christi, TX 78403 TBA Representative Wayne Faircloth LOUISIANA Texas House of Representatives Jack Montoucet, Secretary 2121 Market Street, Suite 205 LA Department of Wildlife and Fisheries Galveston, TX 77550 P.O.
    [Show full text]
  • Swansea University Open Access Repository
    Cronfa - Swansea University Open Access Repository _____________________________________________________________ This is an author produced version of a paper published in : Bulletin of the European Association of Fish Pathologists Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa29681 _____________________________________________________________ Paper: AL Nahdi, A., Garcia De Leaniz, C. & King, A. (2016). Two distinct hyperostosis shapes in ribbonfish, Trichiurus lepturus (Linnaeus 1758). Bulletin of the European Association of Fish Pathologists, 36(3), 132-136. _____________________________________________________________ This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository. http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ Two distinct hyperostosis shapes in ribbonfish, Trichiurus lepturus Linnaeus 1758. Abdullah AL Nahdi*1, 2, Carlos Garcia De Leaniz1, and Andrew J. King1 1 Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK. 2Marine Science and Fisheries Centre, Fisheries Research Directorate, Ministry of Agriculture and Fisheries Wealth, Muscat, P.O Box 467 R.B 100, Sultanate of Oman. * Author to whom correspondence should be addressed. Tel. +44 (0) 1792 606991; E-mail: [email protected] 1 This study provides a morphological description of bone enlargement (hyperostosis) in ribbonfish Trichiurus lepturus. Of 146 fish examined, 52.7% showed hyperostosis in the neural and hemal spines.
    [Show full text]
  • Tooth Development and Replacement in the Atlantic Cutlassfish, Trichiurus Lepturus, with Comparisons to Other Scombroidei
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 1-2019 Tooth development and replacement in the Atlantic Cutlassfish, Trichiurus lepturus, with comparisons to other Scombroidei Katherine E. Bemis Virginia Institute of Marine Science Samantha M. Burke Carl A. St John Eric J. Hilton Virginia Institute of Marine Science William E. Bemis Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Bemis, Katherine E.; Burke, Samantha M.; St John, Carl A.; Hilton, Eric J.; and Bemis, William E., "Tooth development and replacement in the Atlantic Cutlassfish, richiurusT lepturus, with comparisons to other Scombroidei" (2019). VIMS Articles. 1317. https://scholarworks.wm.edu/vimsarticles/1317 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Received: 6 April 2018 Revised: 17 October 2018 Accepted: 27 October 2018 DOI: 10.1002/jmor.20919 RESEARCH ARTICLE Tooth development and replacement in the Atlantic Cutlassfish, Trichiurus lepturus, with comparisons to other Scombroidei Katherine E. Bemis1 | Samantha M. Burke2 | Carl A. St. John2 | Eric J. Hilton1 | William E. Bemis3 1Department of Fisheries Science, Virginia Institute of Marine Science, College of Abstract William & Mary, Gloucester Point, Virginia Atlantic Cutlassfish, Trichiurus lepturus, have large, barbed, premaxillary and dentary fangs, and 2Department of Ecology and Evolutionary sharp dagger-shaped teeth in their oral jaws. Functional teeth firmly ankylose to the dentigerous Biology, Cornell University, Ithaca, New York bones.
    [Show full text]