Introduction to Gears First Edition

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Gears First Edition Introduction to Gears First Edition Preface The history of gears is probably as old as civilization itself. And yet today, the importance of gears in manufacturing industry is undwindling and even more growing. The purpose of this handbook is to provide an outline of gear fundamentals for those who want to acquire knowledge about mechanics of gears. In reading through this handbook, if you have any questions please refer them to us and we would be happy to respond. We hope this can start you down the road with a good sence of direction. Contents Part 1 About Gears 1. Types of Gears...........................................................................................................4 2. Characteristics of Each Type of Gears.......................................................................7 3. Gear Terminology.....................................................................................................11 4. Involute Tooth Profile...............................................................................................14 5. Pressure Angle..........................................................................................................16 6. Profile Shifted Gears................................................................................................17 7. Gear Accuracy - Testing and Inspecting..................................................................19 8. Metallic Materials for Gears and Heat Treatment...................................................21 9. Gear Noise...............................................................................................................24 10. Q & A ......................................................................................................................26 Part 2 Production Processes 27 1. Spur Gears................................................................................................................28 2. Racks........................................................................................................................30 3. Bevel Gears..............................................................................................................32 4. Production Facilities.................................................................................................34 Part 1 About Gears 1. Types of Gears 2. Characteristics of Each Type of Gears 3. Gear Terminology 4. Involute Tooth Profile 5. Pressure Angle 6. Profile Shifted Gears 7. Gear Accuracy - Testing and Inspecting 8. Metallic Materials and Heat Treatment 9. Gear Noise 10. Q & A (1) About Gears Spur Gear Helical ( 1 ) - 1 Types of Gears Shape of bevel gear ..... Spur Gear Helical Gear Rack Bevel Gear Spiral Bevel Gear Screw Gear Miter Gear Worm & Worm Wheel Internal Gear - 4 - Worm Internal Gear Worm Wheel Gear Coupling Miter Gear Involute Spline Shafts Screw Gear & Bushings Helical Gear Pawl Rack Pinion Spur Gear - 5 - Rachet Involute Spline Shafts & Bushings Spiral Bevel Gear Straight Bevel Gear (1) AboutGears (1) About Gears There are three categories of gears in accordance with the orientation of axes. 1) Parallel Axes MSGA(B),SSG(S),SS,SSA,SSY,SSAY, LS,SUS,SUSA,SUSL,DSL,NSU,PU, Spur Gear PS,PSA,DS,BSS,SSCPG(S),SSCP, SUSCP,SSR,KTSCP Helical Gear KHG,SH KRG(F),KRGD,SRGF,KRF,SR(F), SRFD,SUR(F),SURFD,BSR,DR, Rack PR(F),SRO,SROS,SURO,KRHG(F), SRH,KRG(F)(D),SRCP(F)(D),KRCPF, SURCPF(D),SRCP,FRCP Internal Gear SI,SIR Intersecting Axes 2) MMSG,SMSG,MMSA(B), Miter Gear MMS,SMS,SMA(B)(C),MM,LM, SM,SAM,SUM,PM,DM Straight Bevel Gear SB,CB,SBY,SUB,PB,DB Spiral Bevel Gear MBSG,SBSG,MBSA(B),SBS,KSP 3) Nonparallel, Nonintersecting Screw Gear AN,SN,PN,SUN Axes Worm KWGDL(S),KWG,SWG,SW,SUW Worm Wheel AGDL,AGF,AG,PG,CG,BG 4) Others Involute Spline Shaft SV,SVI & Bushing Gear Coupling GC,GC-I Pawl & Rachet SRT,SRT-C - 6 - (1) About Gears ( 1 ) - 2 Characteristics of Each Type of Gears Spur Gear Teeth are straight and parallel to shaft axis. Transmits power and motion between rotating two parallel shafts. Features ( 1 ) Easy to manufacture. ( 2 ) There will be no axial force. ( 3 ) Relatively easy to produce high quality gears. ( 4 ) The commonest type. Applications Transmission components Helical Gear Teeth are twisted oblique to the gear axis. Left Helix angle Left The hand of helix is designated as either left or right. Right Right Right hand and left hand helical gears mate as a set. But they have the same helix angle. Features ( 1 ) Has higher strength compared with spur gear. ( 2 ) Effective in reducing noise and vibration compared with spur gear. ( 3 ) Gears in mesh produce thrust forces in the axial directions. Applications Transmission components, automobile, speed reducers etc. - 7 - (1) About Gears Rack The rack is a bar containing teeth on one face for meshing with a gear. The basic rack form is the profile of the gear of infinite diameter. Racks with machined ends can be joined together to make any desired length. Features ( 1 ) Changes a rotary motion into a rectilinear motion. Applications A transfer system for machine tools, printing press, robots, etc. Internal Gear An annular gear having teeth on the inner surface of its rim. The internal gear always meshes with the external gear. Features ( 1 ) In the meshing of two external gears, rotation goes in the opposite direction. In the meshing of an internai gear with an external gear the rotation goes in the same direction. ( 2 ) Care should be taken to the number of teeth when meshing a large (internal) gear with a small (external) gear, since three types of interference can occur. ( 3 ) Usually internal gear is driven by external (small) gear. ( 4 ) Allows compact design of the machine. Applications Planetary gear drive of high reduction ratios, clutches etc. - 8 - (1) About Gears Bevel Gear One of a pair of gears used to connect two shafts whose axes intersect, and Apex the pitch surfaces are cones. Pitch cone Teeth are cut along the pitch cone. Depending on tooth trace bevel gear is classified: 1) Straight bevel gear 2) Spiral bevel gear 1 ) Straight Bevel Gear A simple form of bevel gear having straight teeth which, if extended inward, would come together at the intersetion of the shaft axes. Features ( 1 ) Relatively easy to manufacture. ( 2 ) Provides reduction ratio up to approx. 1:5. Applications Machine tools, printing press, etc. Especially suitable for a differential gear unit. 2 ) Spiral Bevel Gear Bevel gear with curved, oblique teeth to provide gradual engagement and bring more teeth together at a given time than an equivalent straight bevel gear. Features ( 1 ) Has higher contact ratio, higher strength and durability than an equivalent straight bevel gear. ( 2 ) Allows a higher reduction ratio. ( 3 ) Has better efficiency of transmission with reduced gear noise. ( 4 ) Involves some technical difficulties in manufacturing. Applications Automobile, tractor, vehicles, final reduction gearing for ships. Miter Gears A special class of bevel gear where the shafts intersect at 90° and the gear ratio is 1:1. - 9 - (1) About Gears Screw Gear A helical gear that transmit power from one shaft to another, non-parallel, non-intersecting shafts. Features ( 1 ) Used in a speed reducer and/or a multiplying gear. ( 2 ) Tends to wear as the gear come in sliding contact. ( 3 ) Not suitable for transmission of high horsepower. Applications Driving gear for automobile. Automatic machines that require intricate movement. Worm Gear Pair Worm Worm is a shank having at least one complete tooth (thread) around the pitch surface; the driver of a worm wheel. Worm wheel is a gear with teeth cut on an angle to be driven by a worm. Center distance Worm Wheel Features ( 1 ) Provides large reduction ratios for a given center distance. ( 2 ) Quiet and smooth action. ( 3 ) A worm wheel is not feasible to drive a worm except for special occasions. Applications Speed reducers, anti-reversing gear device making the most of its self-locking features, machine tools, indexing device, chain block, portable generator, etc. - 10 - (1) About Gears ( 1 ) - 3 Gear Terminology Facewidth T i α Pressure angle Reference circlep c ir c le B a R s o e o c t ir c c ir l c e T le ip Reference pitch d ia m e R te ef r er en ce d ia B m as et e er dia me ter R oot diam eter Center line t c a t n Pitch point o c f o h t a p f o h t Backlash g n e L Interference point Tooth thickness Dedendum Center distance Tooth depth Addendum - 11 - (1) About Gears Reference diameter. The Module Let me see ... of a Gear The number of teeth 1 2 3 "Module" is the unit of size to indicate how big or small a gear is. It is the ratio of the reference diameter of the gear divided by the number of teeth. Reference diameter Thus: (Module =──────────── ) Number of teeth The mutual relation between the module and the reference diameter etc. is as follows: Reference diameter ( Reference diameter = Module × Number of teeth ) Reference diameter Number of teeth ( Number of teeth = ──────────── ) Module Reference pitch ( Reference pitch = π × Module ) Then, what is the reference pitch? It is equal to the circumference divided by Circumference the number of teeth. Circumference (pd) Reference pitch Reference pitch = ───────── Number of teeth (z) Diameter Then, what is the reference circle? This is a friction pully. As the surfaces are smooth, the rotation will not go properly when great force is applied. This problem will be solved if there are teeth on the periphery of the friction pully. And this is the concept of gearing. Friction pully (Reference circle) Both reference circles
Recommended publications
  • Gears and Gearing Part 1 Types of Gears Types of Gears
    Gears and Gearing Part 1 Types of Gears Types of Gears Spur Helical Bevel Worm Nomenclature of Spur-Gear Teeth Fig. 13–5 Shigley’s Mechanical Engineering Design Rack A rack is a spur gear with an pitch diameter of infinity. The sides of the teeth are straight lines making an angle to the line of centers equal to the pressure angle. Fig. 13–13 Shigley’s Mechanical Engineering Design Tooth Size, Diameter, Number of Teeth Shigley’s Mechanical Engineering Design Tooth Sizes in General Industrial Use Table 13–2 Shigley’s Mechanical Engineering Design How an Involute Gear Profile is constructed A1B1=A1A0, A2B2=2 A1A0 , etc Pressure Angle Φ has the values of 20° or 25 ° 14.5 ° has also been used. Gear profile is constructed from the base circle. Then additional clearance are given. Relation of Base Circle to Pressure Angle Fig. 13–10 Shigley’s Mechanical Engineering Design Standardized Tooth Systems: AGMA Standard Common pressure angles f : 20º and 25º Older pressure angle: 14 ½º Common face width: 35p F p p P 35 F PP Shigley’s Mechanical Engineering Design Gear Sources • Boston Gear • Martin Sprocket • W. M. Berg • Stock Drive Products …. Numerous others Shigley’s Mechanical Engineering Design Conjugate Action When surfaces roll/slide against each other and produce constant angular velocity ratio, they are said to have conjugate action. Can be accomplished if instant center of velocity between the two bodies remains stationary between the grounded instant centers. Fig. 13–6 Shigley’s Mechanical Engineering Design Fundamental Law of Gearing: The common normal of the tooth profiles at all points within the mesh must always pass through a fixed point on the line of the centers called pitch point.
    [Show full text]
  • Factory 6-Speed Tapered Roller Bearing Kit Installation Instructions
    PV1-117139 Factory 6-Speed Tapered Roller Bearing Kit Installation Instructions www.bakerdrivetrain.com PV1-117139 FACTORY 6-SPEED TAPERED ROLLER BEARING KIT TABLE OF CONTENTS 1. Introduction and Fitment 2. Required Parts, Tools, and Reference Materials 3. Included Parts 4. Tapered Roller Bearing Exploded View 5. Torque Specifications and Stock Component Removal 6. Transmission Case Preparation 7. Countershaft Bearing Removal 8. Countershaft Bearing Installation 9. Tapered Roller Bearing Adapter Installation 10. Tapered Roller Bearing Adapter Installation 11. Tapered Roller Bearing Adapter Installation 12. Main Drive Gear Installation 13. Main Drive Gear Installation 14. Main Drive Gear Installation 15. Main Drive Gear Installation 16. Finish Line 17. Terms & Conditions 18. Notes INTRODUCTION BAKER R&D started the design and development process of the GrudgeBox in early 2016. As the design progressed the youngest and most inexperienced member of the group was disturbed by something that the others failed to see until one day he said, “Isn’t the strength of any system only as good as the weakest link?”. After much profanity and embarrassing public outbursts Bert proclaimed, “He’s right!”. So began the development of the tapered roller main drive gear bearing for the GrudgeBox. Word of this leaked out of the R&D department and soon the calls started coming in. Some inquiries were hostile in nature. The decision was made to offer the crown jewel of the GrudgeBox to those with a stock 2007-later transmission. Tapered roller bearings can be found in lathes, 18-wheeler trailer axles, and the left side flywheels on Milwaukee engines from the last century.
    [Show full text]
  • Identification and Proposed Control of Helicopter Transmission Noise at the Source
    ~ I \. USAAVSCOM-TR-87-C-2 Identification and Proposed Control of Helicopter Transmission Noise at the Source John J. Coy, Robert F. Handschuh, and David G. Lewicki Propulsion Directorate U.S. Army Research and Technology Activity-AVSCOM Lewis Research Center Cleveland, Ohio Ronald G. Huff, Eugene A. Krejsa, and Allan M. Karchmer Lewis Research Center Cleveland, Ohio (NASA-TH-89312) IDENTIEICA?ICh AND PROPOSED 1487- 168 16 CCNTRCL CF HELICCE'ILR TEANSMISSlCN dOISE AT TEE SCUBCE (NASA) 23 i; csci 01c Unclas 63/05 43744 Preprint for the NASA/Army Rotorcraft Technology Conference held at NASA Ames Research Center Moffett Field, California, March 17-19, 1987 IDENTIFICATION AND PROPOSED CONTROL OF HELICOPTER TRANSMISSION NOISE AT THE SOURCE John J. Coy, Robert F. Handschuh, and David G. Lewicki Propulsion Directorate U.S. Army Research and Technology Activity - AVSCOM Lewis Research Center Cleveland, Ohio 44135 Ronald 6. Huff, Eugene A. Krejsa, and Allan M. Karchmer National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 SUMMARY Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. This paper describes gork conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army's OH-58 helicopter. Flight test data indicate that the planetary gear traln Is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Compan- ion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh.
    [Show full text]
  • Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-Gear Drives
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-gear Drives Meng Peng [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Acoustics, Dynamics, and Controls Commons, and the Propulsion and Power Commons Recommended Citation Peng, Meng, "Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-gear Drives. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1434 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Meng Peng entitled "Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-gear Drives." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Mechanical Engineering. Hans A. DeSmidt, Major Professor We have read this dissertation and recommend its acceptance: J. A. M. Boulet, Seddik M. Djouadi, Xiaopeng Zhao Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-gear Drives A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Meng Peng August 2012 ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my primary advisor, Dr.
    [Show full text]
  • Computer Numerical Control Grinding of Spiral Bevel Gears
    AUG 31 '95 09:03 FR NASA LERC 216 433 5783 TO 913816218134 P.83 NASA AVSCOM Contractor Report 187175 Technical Report 90- F- 6 Computer Numerical Control Grinding of Spiral Bevel Gears H. Wayne Scott Bell Helicopter Textron, Inc. Fort Worth, Texas August 1991 •.& PUBLICLY AVAII_. BLE . .... .. luly 1995 Prepared for Lewis Research Center Under Contract NAS3 - 25030 and Propulsion Directorate U.S. Army Aviation Research and Technology--AVSCOM AI/ A NatJot_ Aeronauticsand Spaoe Administration - - • ' " (NASA-CR-187175) COMPUTER N96-10758 NUMERICAL CONTROL GRINDING OF SPIRAL BEVEL GEARS (Textron Bell Helicopter) 89 p Unclas J J G3/37 0064089 IF TABLE OF CONTENTS SECTION TITLE PAGE I. Introduction ............................................................... 1 II. Background ............................................................... 2 III. Program Plan .............................................................. 4 IV. Technical Approach ........................................................ 6 4.1 Phase I - Definition of the Prototype CNC Grinder ......................... 6 4.1.1 Task 1- Baseline Grinder 4.1.2 Task 2 - Definition of Prototype 4.1.3 Task 3- Economic Analysis 4.1.4 Task 4- Drawings and Oral Briefings 4.2 Phase II - Integration of Hardware and Software into Prototype CNC Grinder for Spiral Bevel Gears ............................................... 12 4.2.1 Task 5 - Implementation of Conversion Hardware to Baseline Grinder 4.2.2 Task 6 - Add CNC to the Converted Grinder 4.2.3 Task 7 - Demonstrate CNC - Controlled Grinder 4.2.4 Task 8 - Update Economic Analysis 4.2.5 Task 9 - Drawings and Oral Briefing 4.3 Phase III- Pilot Production ............................................. 44 4.3.1 Task 10 - Production Runs Using the Proof of Concept Grinder 4.3.1.1 Development Activities 4.3.2 Task 11 - Update Conversion to CNC Cost and Estimated Savings on Finish Grinding 4.3.3 Task 12- Government/Industries Briefing 4.3.4 Task 13 - Documentation V.
    [Show full text]
  • Evaluation on Failure Analysis of an Automobile Differential Pinion Assembly (IJIRST/ Volume 1 / Issue 12 / 054)
    IJIRST –International Journal for Innovative Research in Science & Technology| Volume 1 | Issue 12 | May 2015 ISSN (online): 2349-6010 Evaluation on Failure Analysis of an Automobile Differential Pinion Assembly Ronak P Panchal Pratik B. Umrigar M.E. Student Department of Automobile Engineering Department of I.C. Engine & Automobile GTU, Mahesana, India GTU, Mahesana, India Abstract Bevel gears have become a subject to research interest because the dynamicload, attention of the noise level during operation and demand for lighter and smaller. In such type of gears there is a problems of failures contact at meshing the teeths. This can be avoided or minimized by proper method analysis and modification of the different gear parameters. This thesis presents characteristics of a bevel gear in dynamic condition involving meshing stiffness and other stresses produce. The purpose of this thesis is by using numerical approach to develop theoretical model of bevel gear and to determine the effect of meshing gear tooth stresses by taking material case hardened alloy steel (15Ni4Cr1) . To estimate the meshing stiffness, three-dimensional solid models for different number of teeth are generated by Solid works and the numerical solution is done in Ansys which is a finite element analysis. Keywords: Design of Spiral Bevel Gear, Analysis of Spiral Bevel Gear _______________________________________________________________________________________________________ I. INTRODUCTION Gear is a mechanical device used in transmission systems that allows rotational force to be transferred to another gears . The gear teeth allow force to be fully transmitted without slip and depending on the configuration can transmit forces at different speeds, torques, and even in a different directions.
    [Show full text]
  • Back to Basics
    BACK TO BASICS. • • Gear Design National Broach and Machine Division ,of Lear Siegler, Inc. A gear can be defined as a toothed wheel which, when meshed with another toothed wheel with similar configura- tion, will transmit rotation from one shaft to another. Depending upon the type and accuracy of motion desired, the gears and the profiles of the gear teeth can be of almost any form. Gears come in all shapes and sizes from square to circular, elliptical to conical and from as small as a pinhead to as large asa house. They are used to provide positive transmis- sion of both motion and power. Most generally, gear teeth are equally spaced around the periphery of the gear. The original gear teeth were wooden pegs driven into the periphery of wooden wheels and driven by other wooden Fig. 1-2- The common normal of cycloidal gears is a. curve which varies wheels of similar construction ..As man's progress in the use from a maximum inclination with respect to the common tangent at the of gears, and the form of the gear teeth changed to suit the pitch point to coincidence with the direction of this tangent. For cycloidal gears rotating as shown here. the arc B'P is theArc of Approach, and the all; application. The contacting sides or profiles of the teeth PA, the Arc of Recess. changed in shape until eventually they became parts of regular curves which were easily defined. norma] of cydoidal gears isa curve, Fig. 1-2, which is not of To obtain correct tooth action, (constant instantaneous a fixed direction, but varies from.
    [Show full text]
  • Design and Fabrication of Shaft Drive for Two Wheelers
    International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Design and Fabrication of Shaft Drive for two Wheelers K.Vinoth Kumar1, Kari Naga Nikhil2, Kakollu Manoj Kumar3, Kaza Sai Sravan4, K.Subha Theja5 1,2,3,4,5Student, Department Of Mechanical Engineering R.M.K College Of Engineering & Technology, Thiruvallur , India 1. Abstract 1.1 Role Of Automobile In Our Day To Day Life In modern world the living status were developed and developing more equipped. The automobile takes a great part in the development, since it plays a major key in daily life while automobile is concern two wheeler i.e.(motor cycles and bike) it plays very important role because it saves the time of traveller by reaching the target place very faster. Although it saves the time, it makes lots of noise by the chain drive and also makes greasy over the parts of the bike by the chain drive lubrication. It leads to lot of maintenance cost. So by keeping maintenance as the main concept in our mind we had planned to do this project. 1.2 Proposed Method A shaft-driven two wheeler is a two wheeler that uses a drive shaft instead of a chain to transmit power from the pedals to the wheel arrangement. Shaft drives were introduced over a century ago, but were mostly supplanted by chain-driven two wheelers due to the gear ranges possible with sprockets and derailleur. Recently, due to advancements in internal gear technology, a small number of modern shaft-driven two wheelers have been introduced. Shaft-driven bikes have a large bevel gear where a conventional bike would have its chain ring.
    [Show full text]
  • Gear Nomenclature
    Nomenclature Gear Gear Nomenclature Racks Bevel Gears Spur Gears B Bevel Gear, Cast Iron S Steel B Pinion, Steel TS Steel, 20° BS Bevel Gear, Steel C Cast Iron BS Pinion, Steel TC Cast Iron, 20° H Hardened Teeth Notes: NM Non-Metallic B steel pinions may run with BS gear of same ratio. R Steel ANY RATIO OTHER THAN 1:1. RA Steel, Heavy Backing Examples: Pinion and driven gear have S620 Steel 6DP 20T 14½°PA TR Steel, 20°, Heavy Backing different number of teeth. R20 Steel, 20°, Wide Face TS620 Steel 6DP 20T 20°PA C660 Cast 6DP 60T 14½°PA Examples: Examples: S620H Steel 6DP 20T Hardened 14½°PA R6X2 14½° STD Backing 6DPX2' Long B1040-2 Cast 10DP 40T 2:1 Ratio NM620 Non-Metallic 6DP 20T 14½°PA RA6X4 14½° Heavy Backing 6DPX4' Long B1020-2 Steel 10DP 20T 2:1 Ratio S612BS1 Steel 6P 12T 1" Bore KW SS TR6X6 20° STD Width 6DPX6' Long BS1040-2 Steel 10DP 40T 2:1 Ratio TS816BS7/8 Steel 8DP 16T 20°PA .875 Bore KW SS R206X6 20° Wide Face 6DPX6' Long BS1020-2 Steel 10DP 20T 2:1 Ratio BS1020-2 Steel 10DP 20T 2:1 Ratio Miter Gears Worm Worm Gear M Miter — Steel Gears W Steel W Worm, Steel A or B Larger Bore (Suffix) WH Steel With Hub WH Worm, Steel w/Hub HM Miter-Hardened Teeth Projection Projection K KW & SS WG Steel Hardened WG Worm, Steel Hardened Ground Threads Ground Threads Notes: WHG Steel Hardened Ground Threads WHG Worm, Steel Hardened ALWAYS 1: 1 RATIO.
    [Show full text]
  • Design of Involute Spur Gears with Asymmetric Teeth & Direct Gear
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 1 Issue 6, August - 2012 Design of Involute Spur Gears with Asymmetric teeth & Direct gear Design G. Gowtham krishna 1, K. Srinvas2,M.Suresh3 1.P.G.student,Dept. of Mechanical Engineering, DVR AND DHM college of Engineering and technology, Kanchikacherla, 521180,Krishna dt, A.P. 2.Associat.professor, Dept of Mechanical Engineering,DVR AND DHM college of Engineering and technology, Kanchikacherla, 521180,Krishna dt, A.P. 3.P.G.student,Dept. of Mechanical Engineering,BEC,Bapatla,Guntur,A.P. Abstract-- Design of gears with asymmetric teeth that production. • Gear grinding is adaptable to custom tooth shapes. enables to increase load capacity, reduce weight, size and • Metal and plastic gear molding cost largely does not depend vibration level. standard tool parameters and uses nonstandard on tooth shape. This article presents the direct gear design tooth shapes to provide required performance for a particular method, which separates gear geometry definition from tool custom application. This makes finite element analysis (FEA) selection, to achieve the best possible performance for a more preferable than the Lewis equation for bending stress particular product and application. definition. This paper does not describe the FEA application for comprehensive stress analysis of the gear teeth. It sents the engineering method for bending stress balance and minimization. Involute gear Introduction Conventional involute spur gears are designed with symmetric tooth side surfaces . It is well known that the conditions of load and meshing are different for drive and coast tooth's side. Application of asymmetric tooth side surfaces enables to increase the load capacity and durability for the drive tooth side.
    [Show full text]
  • Spur and Straight Bevel Gears
    FUNdaMENTALS of Design Topic 6 Power Transmission Elements II © 2000 Alexander Slocum 6-0 1/25/2005 Topic 6 Power Transmission Elements II Topics: • Screws! • Gears! www.omax.com © 2000 Alexander Slocum 6-1 1/25/2005 Screws! • The screw thread is one of the most important inventions ever made • HUGE forces can be created by screw threads, so they need to be carefully engineered: – Leadscrews – Physics of operation –Stresses – Buckling and shaft whip – Mounting • When HUGE forces are created by screws – The speed is often slow – Always check to make sure you get what you want Mike Schmidt-Lange designed this auger-wheeled vehicle for the “sands” of 1995’s 2.007 contest Pebble Beach, and – If you try sometime, you just might get what you need ☺ years later, a major government lab “invented” the idea as a Mars rover sand-propulsion device… Someday, apples will be so plentiful, people will need machines to peel © 2000 Alexander Slocum 6-2 them…!1/25/2005 Screws: Leadscrews & Ballscrews • Leadscrews are essentially accurate screws used to move a nut attached to a load, and they have been used for centuries to convert rotary motion into linear motion – Leadscrews are commonly used on rugged economy machine tools – Efficiency in a leadscrew system may be 30-50%, • Precision machine or those concerned with high efficiency often uses a ballscrew – Sliding contact between the screw and nut is replaced by recirculating ball bearings and may have 95% efficiency Carriage Rotary Encoder AC Brushless Motor Flexible Coupling Support Bearings Bearing
    [Show full text]
  • Investigation on Planetary Bearing Weak Fault Diagnosis Based on a Fault Model and Improved Wavelet Ridge
    energies Article Investigation on Planetary Bearing Weak Fault Diagnosis Based on a Fault Model and Improved Wavelet Ridge Hongkun Li *, Rui Yang ID , Chaoge Wang and Changbo He School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China; [email protected] (R.Y.); [email protected] (C.W.); [email protected] (C.H.) * Correspondence: [email protected]; Tel.: +86-0411-8470-6561 Received: 12 April 2018; Accepted: 9 May 2018; Published: 17 May 2018 Abstract: Rolling element bearings are of great importance in planetary gearboxes. Monitoring their operation state is the key to keep the whole machine running normally. It is not enough to just apply traditional fault diagnosis methods to detect the running condition of rotating machinery when weak faults occur. It is because of the complexity of the planetary gearbox structure. In addition, its running state is unstable due to the effects of the wind speed and external disturbances. In this paper, a signal model is established to simulate the vibration data collected by sensors in the event of a failure occurred in the planetary bearings, which is very useful for fault mechanism research. Furthermore, an improved wavelet scalogram method is proposed to identify weak impact features of planetary bearings. The proposed method is based on time-frequency distribution reassignment and synchronous averaging. The synchronous averaging is performed for reassignment of the wavelet scale spectrum to improve its time-frequency resolution. After that, wavelet ridge extraction is carried out to reveal the relationship between this time-frequency distribution and characteristic information, which is helpful to extract characteristic frequencies after the improved wavelet scalogram highlights the impact features of rolling element bearing weak fault detection.
    [Show full text]